mirror of
https://github.com/osmarks/meme-search-engine.git
synced 2025-01-06 15:30:30 +00:00
63 lines
2.1 KiB
Python
63 lines
2.1 KiB
Python
import sklearn.decomposition
|
|
import numpy as np
|
|
import sqlite3
|
|
import asyncio
|
|
import aiohttp
|
|
import base64
|
|
|
|
meme_search_backend = "http://localhost:1707/"
|
|
memes_url = "https://i.osmarks.net/memes-or-something/"
|
|
meme_search_url = "https://mse.osmarks.net/?e="
|
|
db = sqlite3.connect("/srv/mse/data.sqlite3")
|
|
db.row_factory = sqlite3.Row
|
|
|
|
def fetch_all_files():
|
|
csr = db.execute("SELECT embedding FROM files WHERE embedding IS NOT NULL")
|
|
x = [ np.frombuffer(row[0], dtype="float16").copy() for row in csr.fetchall() ]
|
|
csr.close()
|
|
return np.array(x)
|
|
|
|
embeddings = fetch_all_files()
|
|
|
|
print("loaded")
|
|
pca = sklearn.decomposition.PCA()
|
|
pca.fit(embeddings)
|
|
print(pca.explained_variance_ratio_)
|
|
print(pca.components_)
|
|
|
|
def emb_url(embedding):
|
|
return meme_search_url + base64.urlsafe_b64encode(embedding.astype(np.float16).tobytes()).decode("utf-8")
|
|
|
|
async def get_exemplars():
|
|
with open("components.html", "w") as f:
|
|
f.write("""<!DOCTYPE html>
|
|
<title>Embeddings PCA</title>
|
|
<style>
|
|
div img {
|
|
width: 20%
|
|
}
|
|
</style>
|
|
<body><h1>Embeddings PCA</h1>""")
|
|
async with aiohttp.ClientSession():
|
|
async def lookup(embedding):
|
|
async with aiohttp.request("POST", meme_search_backend, json={
|
|
"terms": [{ "embedding": list(float(x) for x in embedding) }], # sorry
|
|
"k": 10
|
|
}) as res:
|
|
return (await res.json())["matches"]
|
|
|
|
for i, (component, explained_variance_ratio) in enumerate(zip(pca.components_, pca.explained_variance_ratio_)):
|
|
f.write(f"""
|
|
<h2>Component {i}</h2>
|
|
<h3>Explained variance {explained_variance_ratio*100:0.2}%</h3>
|
|
<div>
|
|
<h4><a href="{emb_url(component)}">Max</a></h4>
|
|
""")
|
|
for match in await lookup(component):
|
|
f.write(f'<img loading="lazy" src="{memes_url+match[1]}">')
|
|
f.write(f'<h4><a href="{emb_url(-component)}">Min</a></h4>')
|
|
for match in await lookup(-component):
|
|
f.write(f'<img loading="lazy" src="{memes_url+match[1]}">')
|
|
f.write("</div>")
|
|
|
|
asyncio.run(get_exemplars()) |