1
0
mirror of https://github.com/osmarks/meme-search-engine.git synced 2025-01-22 23:16:57 +00:00
meme-search-engine/misc/bad-go-version/ocr.go
osmarks 7cb42e028f Rewrite entire application (well, backend) in Rust and also Go
I decided I wanted to integrate the experimental OCR thing better, so I rewrote in Go and also integrated the thumbnailer.
However, Go is a bad langauge and I only used it out of spite.
It turned out to have a very hard-to-fix memory leak due to some unclear interaction between libvips and both sets of bindings I tried, so I had Claude-3 transpile it to Rust then spent a while fixing the several mistakes it made and making tweaks.
The new Rust version works, although I need to actually do something with the OCR data and make the index queryable concurrently.
2024-05-21 00:09:04 +01:00

265 lines
8.6 KiB
Go

package main
import (
"bytes"
"errors"
"fmt"
"io"
"math"
"mime/multipart"
"net/http"
"net/textproto"
"regexp"
"strings"
"time"
"github.com/h2non/bimg"
"github.com/samber/lo"
"github.com/titanous/json5"
)
const CALLBACK_REGEX string = ">AF_initDataCallback\\(({key: 'ds:1'.*?)\\);</script>"
type SegmentCoords struct {
x int
y int
w int
h int
}
type Segment struct {
coords SegmentCoords
text string
}
type ScanResult []Segment
// TODO coordinates are negative sometimes and I think they shouldn't be
func rationalizeCoordsFormat1(imageW float64, imageH float64, centerXFraction float64, centerYFraction float64, widthFraction float64, heightFraction float64) SegmentCoords {
return SegmentCoords{
x: int(math.Round((centerXFraction - widthFraction/2) * imageW)),
y: int(math.Round((centerYFraction - heightFraction/2) * imageH)),
w: int(math.Round(widthFraction * imageW)),
h: int(math.Round(heightFraction * imageH)),
}
}
func scanImageChunk(image []byte, imageWidth int, imageHeight int) (ScanResult, error) {
var result ScanResult
timestamp := time.Now().UnixMicro()
var b bytes.Buffer
w := multipart.NewWriter(&b)
defer w.Close()
h := make(textproto.MIMEHeader)
h.Set("Content-Disposition", fmt.Sprintf(`form-data; name="encoded_image"; filename="ocr%d.png"`, timestamp))
h.Set("Content-Type", "image/png")
fw, err := w.CreatePart(h)
if err != nil {
return result, err
}
fw.Write(image)
w.Close()
req, err := http.NewRequest("POST", fmt.Sprintf("https://lens.google.com/v3/upload?stcs=%d", timestamp), &b)
if err != nil {
return result, err
}
req.Header.Add("User-Agent", "Mozilla/5.0 (Linux; Android 13; RMX3771) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.6167.144 Mobile Safari/537.36")
req.AddCookie(&http.Cookie{
Name: "SOCS",
Value: "CAESEwgDEgk0ODE3Nzk3MjQaAmVuIAEaBgiA_LyaBg",
})
req.Header.Set("Content-Type", w.FormDataContentType())
client := http.Client{}
res, err := client.Do(req)
if err != nil {
return result, err
}
defer res.Body.Close()
body, err := io.ReadAll(res.Body)
if err != nil {
return result, err
}
re, _ := regexp.Compile(CALLBACK_REGEX)
matches := re.FindStringSubmatch(string(body[:]))
if len(matches) == 0 {
return result, fmt.Errorf("invalid API response")
}
match := matches[1]
var lensObject map[string]interface{}
err = json5.Unmarshal([]byte(match), &lensObject)
if err != nil {
return result, err
}
if _, ok := lensObject["errorHasStatus"]; ok {
return result, errors.New("lens failed")
}
root := lensObject["data"].([]interface{})
var textSegments []string
var textRegions []SegmentCoords
// I don't know why Google did this.
// Text segments are in one place and their locations are in another, using a very strange coordinate system.
// At least I don't need whatever is contained in the base64 parts (which I assume are protobufs).
// TODO: on a few images, this seems to not work for some reason.
defer func() {
if r := recover(); r != nil {
// https://github.com/dimdenGD/chrome-lens-ocr/blob/main/src/core.js#L316 has code for a fallback text segment read mode.
// In testing, this proved unnecessary (quirks of the HTTP request? I don't know), and this only happens on textless images.
textSegments = []string{}
textRegions = []SegmentCoords{}
}
}()
textSegmentsRaw := root[3].([]interface{})[4].([]interface{})[0].([]interface{})[0].([]interface{})
textRegionsRaw := root[2].([]interface{})[3].([]interface{})[0].([]interface{})
for _, x := range textRegionsRaw {
if strings.HasPrefix(x.([]interface{})[11].(string), "text:") {
rawCoords := x.([]interface{})[1].([]interface{})
coords := rationalizeCoordsFormat1(float64(imageWidth), float64(imageHeight), rawCoords[0].(float64), rawCoords[1].(float64), rawCoords[2].(float64), rawCoords[3].(float64))
textRegions = append(textRegions, coords)
}
}
for _, x := range textSegmentsRaw {
textSegment := x.(string)
textSegments = append(textSegments, textSegment)
}
return lo.Map(lo.Zip2(textSegments, textRegions), func(x lo.Tuple2[string, SegmentCoords], _ int) Segment {
return Segment{
text: x.A,
coords: x.B,
}
}), nil
}
const MAX_DIM int = 1024
func scanImage(image *bimg.Image) (ScanResult, error) {
result := ScanResult{}
metadata, err := image.Metadata()
if err != nil {
return result, err
}
width := metadata.Size.Width
height := metadata.Size.Height
if width > MAX_DIM {
width = MAX_DIM
height = int(math.Round(float64(height) * (float64(width) / float64(metadata.Size.Width))))
}
for y := 0; y < height; y += MAX_DIM {
chunkHeight := MAX_DIM
if y+chunkHeight > height {
chunkHeight = height - y
}
chunk, err := image.Process(bimg.Options{
Height: height, // these are for overall image dimensions (resize then crop)
Width: width,
Top: y,
AreaHeight: chunkHeight,
AreaWidth: width,
Crop: true,
Type: bimg.PNG,
})
if err != nil {
return result, err
}
res, err := scanImageChunk(chunk, width, chunkHeight)
if err != nil {
return result, err
}
for _, segment := range res {
result = append(result, Segment{
text: segment.text,
coords: SegmentCoords{
y: segment.coords.y + y,
x: segment.coords.x,
w: segment.coords.w,
h: segment.coords.h,
},
})
}
}
return result, nil
}
/*
async def scan_image_chunk(sess, image):
# send data to inscrutable undocumented Google service
# https://github.com/AuroraWright/owocr/blob/master/owocr/ocr.py#L193
async with aiohttp.ClientSession() as sess:
data = aiohttp.FormData()
data.add_field(
"encoded_image",
encode_img(image),
filename="ocr" + str(timestamp) + ".png",
content_type="image/png"
)
async with sess.post(url, headers=headers, cookies=cookies, data=data, timeout=10) as res:
body = await res.text()
# I really worry about Google sometimes. This is not a sensible format.
match = CALLBACK_REGEX.search(body)
if match == None:
raise ValueError("Invalid callback")
lens_object = pyjson5.loads(match.group(1))
if "errorHasStatus" in lens_object:
raise RuntimeError("Lens failed")
text_segments = []
text_regions = []
root = lens_object["data"]
# I don't know why Google did this.
# Text segments are in one place and their locations are in another, using a very strange coordinate system.
# At least I don't need whatever is contained in the base64 partss (which I assume are protobufs).
# TODO: on a few images, this seems to not work for some reason.
try:
text_segments = root[3][4][0][0]
text_regions = [ rationalize_coords_format1(image.width, image.height, *x[1]) for x in root[2][3][0] if x[11].startswith("text:") ]
except (KeyError, IndexError):
# https://github.com/dimdenGD/chrome-lens-ocr/blob/main/src/core.js#L316 has code for a fallback text segment read mode.
# In testing, this proved unnecessary (quirks of the HTTP request? I don't know), and this only happens on textless images.
return [], []
return text_segments, text_regions
MAX_SCAN_DIM = 1000 # not actually true but close enough
def chunk_image(image: Image):
chunks = []
# Cut image down in X axis (I'm assuming images aren't too wide to scan in downscaled form because merging text horizontally would be annoying)
if image.width > MAX_SCAN_DIM:
image = image.resize((MAX_SCAN_DIM, round(image.height * (image.width / MAX_SCAN_DIM))), Image.LANCZOS)
for y in range(0, image.height, MAX_SCAN_DIM):
chunks.append(image.crop((0, y, image.width, min(y + MAX_SCAN_DIM, image.height))))
return chunks
async def scan_chunks(sess: aiohttp.ClientSession, chunks: [Image]):
# If text happens to be split across the cut line it won't get read.
# This is because doing overlap read areas would be really annoying.
text = ""
regions = []
for chunk in chunks:
new_segments, new_regions = await scan_image_chunk(sess, chunk)
for segment in new_segments:
text += segment + "\n"
for i, (segment, region) in enumerate(zip(new_segments, new_regions)):
regions.append({ **region, "y": region["y"] + (MAX_SCAN_DIM * i), "text": segment })
return text, regions
async def scan_image(sess: aiohttp.ClientSession, image: Image):
return await scan_chunks(sess, chunk_image(image))
if __name__ == "__main__":
async def main():
async with aiohttp.ClientSession() as sess:
print(await scan_image(sess, Image.open("/data/public/memes-or-something/linear-algebra-chess.png")))
asyncio.run(main())
*/