1
0
mirror of https://github.com/osmarks/meme-search-engine.git synced 2024-11-14 07:44:49 +00:00
meme-search-engine/meme-rater/al2.py

76 lines
2.4 KiB
Python

import torch.nn
import torch.nn.functional as F
import torch
import sqlite3
import random
import numpy
import json
import time
from tqdm import tqdm
from torch.func import functional_call, vmap, grad
from model import Config, BradleyTerry
import shared
steps = 855
batch_size = 128
num_pairs = batch_size * 1024
device = "cuda"
config = Config(
d_emb=1152,
n_hidden=1,
n_ensemble=1,
device=device,
dtype=torch.bfloat16
)
model = BradleyTerry(config)
modelc, _ = shared.checkpoint_for(855)
model.load_state_dict(torch.load(modelc))
params = sum(p.numel() for p in model.parameters())
print(f"{params/1e6:.1f}M parameters")
print(model)
files = shared.fetch_all_files()
importance = {}
params = {k: v.detach() for k, v in model.named_parameters()}
buffers = {k: v.detach() for k, v in model.named_buffers()}
# https://pytorch.org/tutorials/intermediate/per_sample_grads.html
def compute_loss(params, buffers, sample, target):
batch = sample.unsqueeze(0)
targets = target.unsqueeze(0)
predictions = functional_call(model, (params, buffers), (batch,))
loss = F.binary_cross_entropy(predictions, targets)
return loss
ft_compute_grad = grad(compute_loss)
ft_compute_sample_grad = vmap(ft_compute_grad, in_dims=(None, None, 1, 1))
pairs = []
for _ in range(num_pairs):
pairs.append(tuple(random.sample(files, 2)))
for bstart in tqdm(range(0, len(pairs), batch_size)):
batch = pairs[bstart:bstart + batch_size]
filenames = [ (f1, f2) for ((f1, e1), (f2, e2)) in batch ]
embs = torch.stack([ torch.stack((torch.Tensor(e1).to(config.dtype), torch.Tensor(e2).to(config.dtype))) for ((f1, e1), (f2, e2)) in batch ])
inputs = embs.unsqueeze(0).expand((config.n_ensemble, batch_size, 2, config.d_emb)).to(device)
#win_probs = model(inputs)
# TODO gradients
# don't take variance: do backwards pass and compute gradient norm
grads = ft_compute_sample_grad(params, buffers, inputs, torch.full((1, batch_size), 0.95).to(device))
total_grad_norms = torch.zeros(batch_size).to(device)
for k, v in grads.items():
param_dims = tuple(range(1, len(v.shape)))
total_grad_norms += torch.linalg.vector_norm(v, dim=param_dims)
tgn = total_grad_norms.cpu().numpy()
for filename, tg in zip(filenames, tgn):
importance[filename] = float(tg)
top = sorted(importance.items(), key=lambda x: -x[1])
with open("top.json", "w") as f:
json.dump(top[:256], f)