import subprocess import torch from tqdm import tqdm import json from pathlib import Path import os import asyncio import aiohttp import time import shared from model import Config, BradleyTerry meme_search_backend = "http://localhost:1707/" score_threshold = 1.5162627696990967 shared.db.executescript(""" CREATE TABLE IF NOT EXISTS last_crawl (time INTEGER); CREATE TABLE IF NOT EXISTS library_queue ( filename TEXT PRIMARY KEY, score REAL NOT NULL ); """) shared.db.commit() csr = shared.db.execute("SELECT MAX(time) FROM last_crawl") row = csr.fetchone() last_crawl = row[0] or 0 csr.close() with open("rater_mse_config.json", "r") as f: mse_config = json.load(f) basedir = Path(mse_config["files"]) print("crawling...") crawl_start = time.time() subprocess.run(["python", "crawler.py", str(last_crawl)]).check_returncode() print("indexing...") subprocess.run(["python", "../mse.py", "rater_mse_config.json"]).check_returncode() print("evaluating...") batch_size = 128 device = "cuda" config = Config( d_emb=1152, n_hidden=1, n_ensemble=16, device=device, dtype=torch.float32, dropout=0.1 ) model = BradleyTerry(config).float() modelc, _ = shared.checkpoint_for(1500) model.load_state_dict(torch.load(modelc)) params = sum(p.numel() for p in model.parameters()) print(f"{params/1e6:.1f}M parameters") print(model) files = shared.fetch_all_files() ratings = {} model.eval() with torch.inference_mode(): for bstart in tqdm(range(0, len(files), batch_size)): batch = files[bstart:bstart + batch_size] filenames = [ filename for filename, embedding in batch ] embs = torch.stack([ torch.Tensor(embedding) for filename, embedding in batch ]) inputs = embs.unsqueeze(0).expand((config.n_ensemble, len(batch), config.d_emb)).to(device) scores = model.ensemble(inputs).float() mscores = torch.median(scores, dim=0).values for filename, mscore in zip(filenames, mscores): ratings[filename] = float(mscore) print(sorted(ratings.values())[round(len(ratings) * 0.85)]) files = dict(files) async def run_inserts(): async with aiohttp.ClientSession(): async def duplicate_exists(embedding): async with aiohttp.request("POST", meme_search_backend, json={ "embeddings": [ list(float(x) for x in embedding) ], # sorry "top_k": 1 }) as res: result = await res.json() closest = result[0]["score"] return closest > 0.99 # arbitrary threshold, TODO for filename, rating in ratings.items(): if rating > score_threshold and not await duplicate_exists(files[filename]): shared.db.execute("INSERT OR REPLACE INTO library_queue VALUES (?, ?)", (filename, rating)) else: os.unlink(basedir / filename) shared.db.execute("INSERT INTO last_crawl VALUES (?)", (crawl_start,)) shared.db.commit() asyncio.run(run_inserts())