1
0
mirror of https://github.com/osmarks/meme-search-engine.git synced 2024-11-13 07:19:54 +00:00
meme-search-engine/meme-rater/meme_pipeline.py

98 lines
3.1 KiB
Python
Raw Normal View History

2024-04-22 17:44:29 +00:00
import subprocess
import torch
from tqdm import tqdm
import json
from pathlib import Path
import os
import asyncio
import aiohttp
import time
import shared
from model import Config, BradleyTerry
meme_search_backend = "http://localhost:1707/"
score_threshold = 1.7264162302017212
2024-04-22 17:44:29 +00:00
shared.db.executescript("""
CREATE TABLE IF NOT EXISTS last_crawl (time INTEGER);
CREATE TABLE IF NOT EXISTS library_queue (
filename TEXT PRIMARY KEY,
score REAL NOT NULL
);
""")
shared.db.commit()
csr = shared.db.execute("SELECT MAX(time) FROM last_crawl")
row = csr.fetchone()
last_crawl = row[0] or 0
csr.close()
with open("rater_mse_config.json", "r") as f:
mse_config = json.load(f)
basedir = Path(mse_config["files"])
print("crawling...")
crawl_start = time.time()
subprocess.run(["python", "crawler.py", str(last_crawl)]).check_returncode()
print("indexing...")
subprocess.run(["python", "../mse.py", "rater_mse_config.json"]).check_returncode()
print("evaluating...")
batch_size = 128
device = "cuda"
config = Config(
d_emb=1152,
n_hidden=1,
n_ensemble=16,
device=device,
dtype=torch.float32,
dropout=0.1
)
model = BradleyTerry(config).float()
modelc, _ = shared.checkpoint_for(1500)
model.load_state_dict(torch.load(modelc))
params = sum(p.numel() for p in model.parameters())
print(f"{params/1e6:.1f}M parameters")
print(model)
files = shared.fetch_all_files()
ratings = {}
model.eval()
with torch.inference_mode():
for bstart in tqdm(range(0, len(files), batch_size)):
batch = files[bstart:bstart + batch_size]
filenames = [ filename for filename, embedding in batch ]
embs = torch.stack([ torch.Tensor(embedding) for filename, embedding in batch ])
inputs = embs.unsqueeze(0).expand((config.n_ensemble, len(batch), config.d_emb)).to(device)
scores = model.ensemble(inputs).float()
mscores = torch.median(scores, dim=0).values
for filename, mscore in zip(filenames, mscores):
ratings[filename] = float(mscore)
print(sorted(ratings.values())[round(len(ratings) * 0.95)])
print(f"{len(ratings)} memes in {crawl_start - last_crawl} seconds ({len(ratings) / (crawl_start - last_crawl) * 1e3}mHz)")
2024-04-22 17:44:29 +00:00
files = dict(files)
async def run_inserts():
async with aiohttp.ClientSession():
async def duplicate_exists(embedding):
async with aiohttp.request("POST", meme_search_backend, json={
"embeddings": [ list(float(x) for x in embedding) ], # sorry
"top_k": 1
}) as res:
result = await res.json()
closest = result[0]["score"]
return closest > 0.99 # arbitrary threshold, TODO
for filename, rating in ratings.items():
if rating > score_threshold and not await duplicate_exists(files[filename]):
shared.db.execute("INSERT OR REPLACE INTO library_queue VALUES (?, ?)", (filename, rating))
else:
os.unlink(basedir / filename)
shared.db.execute("INSERT INTO last_crawl VALUES (?)", (crawl_start,))
shared.db.commit()
asyncio.run(run_inserts())