1
0
mirror of https://github.com/osmarks/meme-search-engine.git synced 2025-01-21 14:36:58 +00:00
meme-search-engine/clip_server.py

210 lines
7.8 KiB
Python
Raw Normal View History

2023-11-13 17:31:43 +00:00
import torch
2023-09-28 16:30:20 +00:00
import time
import threading
from aiohttp import web
import aiohttp
import asyncio
import traceback
2024-11-07 16:52:58 +00:00
import msgpack
2023-09-28 16:30:20 +00:00
import collections
import queue
2023-11-13 17:31:43 +00:00
import open_clip
2023-09-28 16:30:20 +00:00
from PIL import Image
from prometheus_client import Counter, Histogram, REGISTRY, generate_latest
import io
import json
2023-11-13 17:31:43 +00:00
import torchvision.transforms.transforms as transforms
2023-09-28 16:30:20 +00:00
import sys
with open(sys.argv[1], "r") as config_file:
CONFIG = json.load(config_file)
2023-11-13 17:31:43 +00:00
device = torch.device(CONFIG["device"])
model, _, preprocess = open_clip.create_model_and_transforms(CONFIG["model"], device=device, pretrained=dict(open_clip.list_pretrained())[CONFIG["model"]], precision="fp16")
model.eval()
tokenizer = open_clip.get_tokenizer(CONFIG["model"])
print("Model loaded")
2023-09-28 16:30:20 +00:00
BS = CONFIG["max_batch_size"]
MODELNAME = CONFIG["model_name"]
fast_image_fns = {}
# ugly hack, sorry
if CONFIG.get("aitemplate_image_models"):
from aitemplate.compiler import Model
from aitemplate.testing import detect_target
USE_CUDA = detect_target().name() == "cuda"
state = model.state_dict()
conv_weights = state["visual.trunk.patch_embed.proj.weight"].permute((0, 2, 3, 1)).contiguous().cuda().half()
def load_pretrained():
params = {}
for key, value in state.items():
orig_key = key
if key.startswith("visual."):
key = key.removeprefix("visual.") \
.replace("trunk.patch_embed", "patch_embed") \
.replace("trunk.blocks", "encoder.layers") \
.replace(".attn.", ".mha.") \
.replace(".norm1.", ".ln1.") \
.replace(".norm2.", ".ln2.") \
.replace("trunk.pos_embed", "pos_emb_pos_emb") \
.replace("trunk.norm.", "encoder.ln.") \
.replace("trunk.attn_pool.latent", "pool.probe") \
.replace("trunk.attn_pool", "pool") \
.replace("pool.norm", "pool.ln")
if "patch_embed.proj.weight" not in key:
params[key.replace(".", "_")] = value.cuda()
#print(orig_key, key.replace(".", "_"))
2024-11-07 16:52:58 +00:00
params["patch_embed_proj_weight"] = conv_weights
return params
def generate_wrapper(path):
ait_model = Model(path)
ait_model.set_many_constants_with_tensors(load_pretrained())
ait_model.fold_constants(sync=True)
def wrapper(batch):
xs = [batch.permute((0, 2, 3, 1)).contiguous()]
ys = []
for i in range(len(ait_model.get_output_name_to_index_map())):
shape = ait_model.get_output_maximum_shape(i)
ys.append(torch.empty(shape).cuda().half())
ait_model.run_with_tensors(xs, ys)
return ys[0][:, 0, :]
return wrapper
for batch_size, path in CONFIG["aitemplate_image_models"]:
fast_image_fns[batch_size] = generate_wrapper(path)
print("loaded", batch_size, path)
2023-09-28 16:30:20 +00:00
InferenceParameters = collections.namedtuple("InferenceParameters", ["text", "images", "callback"])
items_ctr = Counter("modelserver_total_items", "Items run through model server", ["model", "modality"])
inference_time_hist = Histogram("modelserver_inftime", "Time running inference", ["model", "batch_size"])
batch_count_ctr = Counter("modelserver_batchcount", "Inference batches run", ["model"])
2023-11-13 17:31:43 +00:00
torch.set_grad_enabled(False)
2023-09-28 16:30:20 +00:00
def do_inference(params: InferenceParameters):
with torch.no_grad():
try:
text, images, callback = params
if text is not None:
items_ctr.labels(MODELNAME, "text").inc(text.shape[0])
with inference_time_hist.labels(MODELNAME + "-text", text.shape[0]).time():
2023-11-13 17:31:43 +00:00
features = model.encode_text(text)
2023-10-27 14:50:21 +00:00
features /= features.norm(dim=-1, keepdim=True)
features = features.cpu().numpy()
2023-09-28 16:30:20 +00:00
elif images is not None:
with inference_time_hist.labels(MODELNAME + "-image", images.shape[0]).time():
2023-11-13 17:31:43 +00:00
items_ctr.labels(MODELNAME, "image").inc(images.shape[0])
batch = images.shape[0]
if fast_image_fns:
progress = 0
features = torch.zeros((batch, model.text.text_projection.out_features))
while progress < batch:
biggest_available = max(x for x in fast_image_fns.keys() if x <= (batch - progress))
chunk = fast_image_fns[biggest_available](images[progress:progress + biggest_available])
features[progress:progress + biggest_available] = chunk
progress += biggest_available
else:
features = model.encode_image(images)
2023-10-27 14:50:21 +00:00
features /= features.norm(dim=-1, keepdim=True)
features = features.cpu().numpy()
2023-10-08 21:52:17 +00:00
batch_count_ctr.labels(MODELNAME).inc()
2023-10-27 14:50:21 +00:00
callback(True, features)
2023-09-28 16:30:20 +00:00
except Exception as e:
traceback.print_exc()
callback(False, str(e))
2023-11-13 17:31:43 +00:00
finally:
torch.cuda.empty_cache()
2023-09-28 16:30:20 +00:00
iq = queue.Queue(10)
def infer_thread():
while True:
do_inference(iq.get())
pq = queue.Queue(10)
def preprocessing_thread():
while True:
text, images, callback = pq.get()
try:
if text:
assert len(text) <= BS, f"max batch size is {BS}"
2023-11-13 17:31:43 +00:00
text = tokenizer(text).to(device)
2023-09-28 16:30:20 +00:00
elif images:
assert len(images) <= BS, f"max batch size is {BS}"
2023-11-13 17:31:43 +00:00
images = torch.stack([ preprocess(Image.open(io.BytesIO(im))).half() for im in images ]).to(device)
2023-09-28 16:30:20 +00:00
else:
assert False, "images or text required"
iq.put(InferenceParameters(text, images, callback))
except Exception as e:
traceback.print_exc()
callback(False, str(e))
app = web.Application(client_max_size=2**26)
routes = web.RouteTableDef()
@routes.post("/")
async def run_inference(request):
loop = asyncio.get_event_loop()
2024-11-07 16:52:58 +00:00
data = msgpack.loads(await request.read())
2023-09-28 16:30:20 +00:00
event = asyncio.Event()
results = None
def callback(*argv):
nonlocal results
results = argv
2023-09-29 17:35:42 +00:00
loop.call_soon_threadsafe(lambda: event.set())
2023-09-28 16:30:20 +00:00
pq.put_nowait(InferenceParameters(data.get("text"), data.get("images"), callback))
await event.wait()
body_data = results[1]
if results[0]:
status = 200
body_data = [x.astype("float16").tobytes() for x in body_data]
else:
status = 500
print(results[1])
2024-11-07 16:52:58 +00:00
return web.Response(body=msgpack.dumps(body_data), status=status, content_type="application/msgpack")
2023-09-28 16:30:20 +00:00
@routes.get("/config")
async def config(request):
2024-11-07 16:52:58 +00:00
return web.Response(body=msgpack.dumps({
2023-11-13 17:31:43 +00:00
"model": CONFIG["model"],
2023-09-28 16:30:20 +00:00
"batch": BS,
2023-11-13 17:31:43 +00:00
"image_size": [ t for t in preprocess.transforms if isinstance(t, transforms.Resize) ][0].size,
"embedding_size": model.text.text_projection.out_features
2023-09-28 16:30:20 +00:00
}), status=200, content_type="application/msgpack")
@routes.get("/")
async def health(request):
return web.Response(status=204)
@routes.get("/metrics")
async def metrics(request):
return web.Response(body=generate_latest(REGISTRY))
app.router.add_routes(routes)
async def run_webserver():
runner = web.AppRunner(app)
await runner.setup()
site = web.TCPSite(runner, "", CONFIG["port"])
print("Ready")
await site.start()
try:
th = threading.Thread(target=infer_thread)
th.start()
th = threading.Thread(target=preprocessing_thread)
th.start()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(run_webserver())
loop.run_forever()
except KeyboardInterrupt:
import sys
2024-11-07 16:52:58 +00:00
sys.exit(0)