1
0
mirror of https://github.com/kepler155c/opus synced 2025-01-28 08:04:46 +00:00
opus/sys/apis/jumper/core/path.lua

201 lines
5.9 KiB
Lua
Raw Normal View History

2016-12-11 19:24:52 +00:00
--- The Path class.
-- The `path` class is a structure which represents a path (ordered set of nodes) from a start location to a goal.
-- An instance from this class would be a result of a request addressed to `Pathfinder:getPath`.
--
-- This module is internally used by the library on purpose.
-- It should normally not be used explicitely, yet it remains fully accessible.
--
if (...) then
-- Dependencies
local _PATH = (...):match('(.+)%.path$')
local Heuristic = require (_PATH .. '.heuristics')
-- Local references
local abs, max = math.abs, math.max
local t_insert, t_remove = table.insert, table.remove
--- The `Path` class.<br/>
-- This class is callable.
-- Therefore, <em><code>Path(...)</code></em> acts as a shortcut to <em><code>Path:new(...)</code></em>.
-- @type Path
local Path = {}
Path.__index = Path
--- Inits a new `path`.
-- @class function
-- @treturn path a `path`
-- @usage local p = Path()
function Path:new()
return setmetatable({_nodes = {}}, Path)
end
--- Iterates on each single `node` along a `path`. At each step of iteration,
-- returns the `node` plus a count value. Aliased as @{Path:nodes}
-- @class function
-- @treturn node a `node`
-- @treturn int the count for the number of nodes
-- @see Path:nodes
-- @usage
-- for node, count in p:iter() do
-- ...
-- end
function Path:iter()
local i,pathLen = 1,#self._nodes
return function()
if self._nodes[i] then
i = i+1
return self._nodes[i-1],i-1
end
end
end
--- Iterates on each single `node` along a `path`. At each step of iteration,
-- returns a `node` plus a count value. Alias for @{Path:iter}
-- @class function
-- @name Path:nodes
-- @treturn node a `node`
-- @treturn int the count for the number of nodes
-- @see Path:iter
-- @usage
-- for node, count in p:nodes() do
-- ...
-- end
Path.nodes = Path.iter
--- Evaluates the `path` length
-- @class function
-- @treturn number the `path` length
-- @usage local len = p:getLength()
function Path:getLength()
local len = 0
for i = 2,#self._nodes do
len = len + Heuristic.EUCLIDIAN(self._nodes[i], self._nodes[i-1])
end
return len
end
--- Counts the number of steps.
-- Returns the number of waypoints (nodes) in the current path.
-- @class function
-- @tparam node node a node to be added to the path
-- @tparam[opt] int index the index at which the node will be inserted. If omitted, the node will be appended after the last node in the path.
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage local nSteps = p:countSteps()
function Path:addNode(node, index)
index = index or #self._nodes+1
t_insert(self._nodes, index, node)
return self
end
--- `Path` filling modifier. Interpolates between non contiguous nodes along a `path`
-- to build a fully continuous `path`. This maybe useful when using search algorithms such as Jump Point Search.
-- Does the opposite of @{Path:filter}
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @see Path:filter
-- @usage p:fill()
function Path:fill()
local i = 2
local xi,yi,dx,dy
local N = #self._nodes
local incrX, incrY
while true do
xi,yi = self._nodes[i]._x,self._nodes[i]._y
dx,dy = xi-self._nodes[i-1]._x,yi-self._nodes[i-1]._y
if (abs(dx) > 1 or abs(dy) > 1) then
incrX = dx/max(abs(dx),1)
incrY = dy/max(abs(dy),1)
t_insert(self._nodes, i, self._grid:getNodeAt(self._nodes[i-1]._x + incrX, self._nodes[i-1]._y +incrY))
N = N+1
else i=i+1
end
if i>N then break end
end
return self
end
--- `Path` compression modifier. Given a `path`, eliminates useless nodes to return a lighter `path`
-- consisting of straight moves. Does the opposite of @{Path:fill}
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @see Path:fill
-- @usage p:filter()
function Path:filter()
local i = 2
local xi,yi,dx,dy, olddx, olddy
xi,yi = self._nodes[i]._x, self._nodes[i]._y
dx, dy = xi - self._nodes[i-1]._x, yi-self._nodes[i-1]._y
while true do
olddx, olddy = dx, dy
if self._nodes[i+1] then
i = i+1
xi, yi = self._nodes[i]._x, self._nodes[i]._y
dx, dy = xi - self._nodes[i-1]._x, yi - self._nodes[i-1]._y
if olddx == dx and olddy == dy then
t_remove(self._nodes, i-1)
i = i - 1
end
else break end
end
return self
end
--- Clones a `path`.
-- @class function
-- @treturn path a `path`
-- @usage local p = path:clone()
function Path:clone()
local p = Path:new()
for node in self:nodes() do p:addNode(node) end
return p
end
--- Checks if a `path` is equal to another. It also supports *filtered paths* (see @{Path:filter}).
-- @class function
-- @tparam path p2 a path
-- @treturn boolean a boolean
-- @usage print(myPath:isEqualTo(anotherPath))
function Path:isEqualTo(p2)
local p1 = self:clone():filter()
local p2 = p2:clone():filter()
for node, count in p1:nodes() do
if not p2._nodes[count] then return false end
local n = p2._nodes[count]
if n._x~=node._x or n._y~=node._y then return false end
end
return true
end
--- Reverses a `path`.
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage myPath:reverse()
function Path:reverse()
local _nodes = {}
for i = #self._nodes,1,-1 do
_nodes[#_nodes+1] = self._nodes[i]
end
self._nodes = _nodes
return self
end
--- Appends a given `path` to self.
-- @class function
-- @tparam path p a path
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage myPath:append(anotherPath)
function Path:append(p)
for node in p:nodes() do self:addNode(node) end
return self
end
return setmetatable(Path,
{__call = function(self,...)
return Path:new(...)
end
})
end