1
0
mirror of https://github.com/osmarks/mycorrhiza.git synced 2025-01-23 00:26:50 +00:00

Rewrite the tree using the new iteration object WIP

This commit is contained in:
bouncepaw 2021-04-06 23:47:35 +05:00
parent bfeb341341
commit 690b9ca339
2 changed files with 174 additions and 95 deletions

52
hyphae/iteration.go Normal file
View File

@ -0,0 +1,52 @@
package hyphae
import (
"sync"
)
// Iteration represents an iteration over all hyphae in the storage. You may use it instead of directly iterating using hyphae.YieldExistingHyphae when you want to do n checks at once instead of iterating n times.
type Iteration struct {
sync.Mutex
iterator func() chan *Hypha
checks []func(h *Hypha) CheckResult
}
func NewIteration() *Iteration {
return &Iteration{
iterator: YieldExistingHyphae,
checks: make([]func(h *Hypha) CheckResult, 0),
}
}
// AddCheck adds the check to the iteration. It is concurrent-safe.
func (i7n *Iteration) AddCheck(check func(h *Hypha) CheckResult) {
i7n.Lock()
i7n.checks = append(i7n.checks, check)
i7n.Unlock()
}
func (i7n *Iteration) removeCheck(i int) {
i7n.checks[i] = i7n.checks[len(i7n.checks)-1]
i7n.checks = i7n.checks[:len(i7n.checks)-1]
}
// Ignite does the iteration by walking over all hyphae yielded by the iterator used and calling all checks on the hypha. Ignited iterations are not concurrent-safe.
func (i7n *Iteration) Ignite() {
for h := range i7n.iterator() {
for i, check := range i7n.checks {
if res := check(h); res == CheckForgetMe {
i7n.removeCheck(i)
}
}
}
}
// CheckResult is a result of an iteration check.
type CheckResult int
const (
// CheckContinue is returned when the check wants to be used next time too.
CheckContinue CheckResult = iota
// CheckForgetMe is returned when the check wants to be forgotten and not used anymore.
CheckForgetMe
)

View File

@ -5,25 +5,131 @@ import (
"path" "path"
"sort" "sort"
"strings" "strings"
"sync"
"github.com/bouncepaw/mycorrhiza/hyphae" "github.com/bouncepaw/mycorrhiza/hyphae"
"github.com/bouncepaw/mycorrhiza/util" "github.com/bouncepaw/mycorrhiza/util"
) )
func findSiblingsAndDescendants(hyphaName string) ([]*sibling, map[string]bool) {
var (
siblings = make([]*sibling, 0)
siblingCheck = func(h *hyphae.Hypha) hyphae.CheckResult {
if path.Dir(hyphaName) == path.Dir(h.Name) {
siblings = append(siblings, &sibling{h.Name, 0, 0})
}
return hyphae.CheckContinue
}
descendantsPool = make(map[string]bool, 0)
descendantCheck = func(h *hyphae.Hypha) hyphae.CheckResult {
if strings.HasPrefix(h.Name, hyphaName+"/") {
descendantsPool[h.Name] = true
}
return hyphae.CheckContinue
}
i7n = hyphae.NewIteration()
)
i7n.AddCheck(siblingCheck)
i7n.AddCheck(descendantCheck)
i7n.Ignite()
sort.Slice(siblings, func(i, j int) bool {
return siblings[i].name < siblings[j].name
})
return siblings, descendantsPool
}
func countSubhyphae(siblings []*sibling) {
var (
subhyphaCheck = func(h *hyphae.Hypha) hyphae.CheckResult {
for _, s := range siblings {
if path.Dir(h.Name) == s.name {
s.directSubhyphaeCount++
return hyphae.CheckContinue
} else if strings.HasPrefix(h.Name, s.name+"/") {
s.indirectSubhyphaeCount++
return hyphae.CheckContinue
}
}
return hyphae.CheckContinue
}
i7n = hyphae.NewIteration()
)
i7n.AddCheck(subhyphaCheck)
i7n.Ignite()
}
// Tree generates a tree for `hyphaName` as html and returns next and previous hyphae if any.
func Tree(hyphaName string) (siblingsHTML, childrenHTML, prev, next string) {
children := make([]child, 0)
I := 0
// The tree is generated in two iterations of hyphae storage:
// 1. Find all siblings (sorted) and descendants' names
// 2. Count how many subhyphae siblings have
//
// We also have to figure out what is going on with the descendants: who is a child of whom. We do that in parallel with (2) because we can.
// One of the siblings is the hypha with name `hyphaName`
siblings, descendantsPool := findSiblingsAndDescendants(hyphaName)
wg := sync.WaitGroup{}
wg.Add(2)
go func() {
countSubhyphae(siblings)
wg.Done()
}()
go func() {
children = figureOutChildren(hyphaName, descendantsPool).children
wg.Done()
}()
wg.Wait()
for i, s := range siblings {
if s.name == hyphaName {
I = i
siblingsHTML += fmt.Sprintf(`<li class="navitree__entry navitree__entry_this"><span>%s</span></li>`, util.BeautifulName(path.Base(hyphaName)))
} else {
siblingsHTML += s.asHTML(hyphaName)
}
}
if I != 0 {
prev = siblings[I-1].name
}
if I != len(siblings)-1 {
next = siblings[I+1].name
}
return fmt.Sprintf(`<ul class="navitree">%s</ul>`, siblingsHTML), subhyphaeMatrix(children), prev, next
}
type child struct {
name string
children []child
}
func figureOutChildren(hyphaName string, subhyphaePool map[string]bool) child {
var (
nestLevel = strings.Count(hyphaName, "/")
adopted = make([]child, 0)
)
for subhyphaName, _ := range subhyphaePool {
subnestLevel := strings.Count(subhyphaName, "/")
if subnestLevel-1 == nestLevel && path.Dir(subhyphaName) == hyphaName {
delete(subhyphaePool, subhyphaName)
adopted = append(adopted, figureOutChildren(subhyphaName, subhyphaePool))
}
}
return child{hyphaName, adopted}
}
type sibling struct { type sibling struct {
name string name string
hasChildren bool directSubhyphaeCount int
indirectSubhyphaeCount int
} }
func (s *sibling) checkThisChild(hyphaName string) { func (s *sibling) asHTML(hyphaName string) string {
if !s.hasChildren && path.Dir(hyphaName) == s.name {
s.hasChildren = true
}
}
func (s *sibling) asHTML() string {
class := "navitree__entry navitree__sibling" class := "navitree__entry navitree__sibling"
if s.hasChildren { if s.directSubhyphaeCount > 0 {
class += " navitree__sibling_fertile navitree__entry_fertile" class += " navitree__sibling_fertile navitree__entry_fertile"
} else { } else {
class += " navitree__sibling_infertile navitree__entry_infertile" class += " navitree__sibling_infertile navitree__entry_infertile"
@ -36,54 +142,21 @@ func (s *sibling) asHTML() string {
) )
} }
type mainFamilyMember struct { func (c *child) asHTML() string {
name string if len(c.children) == 0 {
children []*mainFamilyMember return fmt.Sprintf(`<li class="subhyphae__entry"><a class="subhyphae__link" href="/hypha/%s">%s</a></li>`, c.name, util.BeautifulName(path.Base(c.name)))
}
func (m *mainFamilyMember) checkThisChild(hyphaName string) (adopted bool) {
if path.Dir(hyphaName) == m.name {
m.children = append(m.children, &mainFamilyMember{
name: hyphaName,
children: make([]*mainFamilyMember, 0),
})
return true
} }
return false sort.Slice(c.children, func(i, j int) bool {
} return c.children[i].name < c.children[j].name
func (m *mainFamilyMember) asHTML() string {
if len(m.children) == 0 {
return fmt.Sprintf(`<li class="subhyphae__entry"><a class="subhyphae__link" href="/hypha/%s">%s</a></li>`, m.name, util.BeautifulName(path.Base(m.name)))
}
sort.Slice(m.children, func(i, j int) bool {
return m.children[i].name < m.children[j].name
}) })
html := fmt.Sprintf(`<li class="subhyphae__entry"><a class="subhyphae__link" href="/hypha/%s">%s</a><ul>`, m.name, util.BeautifulName(path.Base(m.name))) html := fmt.Sprintf(`<li class="subhyphae__entry"><a class="subhyphae__link" href="/hypha/%s">%s</a><ul>`, c.name, util.BeautifulName(path.Base(c.name)))
for _, child := range m.children { for _, child := range c.children {
html += child.asHTML() html += child.asHTML()
} }
return html + `</li></ul></li>` return html + `</li></ul></li>`
} }
func mainFamilyFromPool(hyphaName string, subhyphaePool map[string]bool) *mainFamilyMember { func subhyphaeMatrix(children []child) (html string) {
var (
nestLevel = strings.Count(hyphaName, "/")
adopted = make([]*mainFamilyMember, 0)
)
for subhyphaName, _ := range subhyphaePool {
subnestLevel := strings.Count(subhyphaName, "/")
if subnestLevel-1 == nestLevel && path.Dir(subhyphaName) == hyphaName {
delete(subhyphaePool, subhyphaName)
adopted = append(adopted, mainFamilyFromPool(subhyphaName, subhyphaePool))
}
}
return &mainFamilyMember{name: hyphaName, children: adopted}
}
func subhyphaeMatrix(hyphaName string, subhyphaePool map[string]bool) string {
var html string
children := mainFamilyFromPool(hyphaName, subhyphaePool).children
sort.Slice(children, func(i, j int) bool { sort.Slice(children, func(i, j int) bool {
return children[i].name < children[j].name return children[i].name < children[j].name
}) })
@ -92,49 +165,3 @@ func subhyphaeMatrix(hyphaName string, subhyphaePool map[string]bool) string {
} }
return html return html
} }
// Tree generates a tree for `hyphaName` as html and returns next and previous hyphae if any.
func Tree(hyphaName string) (relatives, subhyphae, prev, next string) {
var (
// One of the siblings is the hypha with name `hyphaName`
siblings = findSiblings(hyphaName)
subhyphaePool = make(map[string]bool)
I int
)
for h := range hyphae.YieldExistingHyphae() {
for _, s := range siblings {
s.checkThisChild(h.Name)
}
if strings.HasPrefix(h.Name, hyphaName+"/") {
subhyphaePool[h.Name] = true
}
}
for i, s := range siblings {
if s.name == hyphaName {
I = i
relatives += fmt.Sprintf(`<li class="navitree__entry navitree__entry_this"><span>%s</span></li>`, util.BeautifulName(path.Base(hyphaName)))
} else {
relatives += s.asHTML()
}
}
if I != 0 {
prev = siblings[I-1].name
}
if I != len(siblings)-1 {
next = siblings[I+1].name
}
return fmt.Sprintf(`<ul class="navitree">%s</ul>`, relatives), subhyphaeMatrix(hyphaName, subhyphaePool), prev, next
}
func findSiblings(hyphaName string) []*sibling {
siblings := []*sibling{&sibling{name: hyphaName, hasChildren: true}}
for h := range hyphae.YieldExistingHyphae() {
if path.Dir(hyphaName) == path.Dir(h.Name) && hyphaName != h.Name {
siblings = append(siblings, &sibling{name: h.Name, hasChildren: false})
}
}
sort.Slice(siblings, func(i, j int) bool {
return siblings[i].name < siblings[j].name
})
return siblings
}