ldd-CC/API/skynet.lua

705 lines
18 KiB
Lua

-- Skynet was created by Gollark
-- This version was modified to include CBOR in the same file
local CBOR = (function()
-- Concise Binary Object Representation (CBOR)
-- RFC 7049
local function softreq(pkg, field)
local ok, mod = pcall(require, pkg);
if not ok then return end
if field then return mod[field]; end
return mod;
end
local dostring = function (s)
local ok, f = pcall(loadstring or load, s); -- luacheck: read globals loadstring
if ok and f then return f(); end
end
local setmetatable, getmetatable = setmetatable, getmetatable;
local dbg_getmetatable
-- if debug then dbg_getmetatable = debug.getmetatable else dbg_getmetatable = getmetatable end
local assert = assert;
local error = error;
local type = type;
local pairs = pairs;
local ipairs = ipairs;
local tostring = tostring;
local s_char = string.char;
local t_concat = table.concat;
local t_sort = table.sort;
local m_floor = math.floor;
local m_abs = math.abs;
local m_huge = math.huge;
local m_max = math.max;
local maxint = math.maxinteger or 9007199254740992;
local minint = math.mininteger or -9007199254740992;
local NaN = 0/0;
local m_frexp = math.frexp;
local m_ldexp = math.ldexp or function (x, exp) return x * 2.0 ^ exp; end;
local m_type = math.type or function (n) return n % 1 == 0 and n <= maxint and n >= minint and "integer" or "float" end;
local s_pack = string.pack or softreq("struct", "pack");
local s_unpack = string.unpack or softreq("struct", "unpack");
local b_rshift = softreq("bit32", "rshift") or softreq("bit", "rshift") or
dostring "return function(a,b) return a >> b end" or
function (a, b) return m_max(0, m_floor(a / (2 ^ b))); end;
-- sanity check
if s_pack and s_pack(">I2", 0) ~= "\0\0" then
s_pack = nil;
end
if s_unpack and s_unpack(">I2", "\1\2\3\4") ~= 0x102 then
s_unpack = nil;
end
local _ENV = nil; -- luacheck: ignore 211
local encoder = {};
local function encode(obj, opts)
return encoder[type(obj)](obj, opts);
end
-- Major types 0, 1 and length encoding for others
local function integer(num, m)
if m == 0 and num < 0 then
-- negative integer, major type 1
num, m = - num - 1, 32;
end
if num < 24 then
return s_char(m + num);
elseif num < 2 ^ 8 then
return s_char(m + 24, num);
elseif num < 2 ^ 16 then
return s_char(m + 25, b_rshift(num, 8), num % 0x100);
elseif num < 2 ^ 32 then
return s_char(m + 26,
b_rshift(num, 24) % 0x100,
b_rshift(num, 16) % 0x100,
b_rshift(num, 8) % 0x100,
num % 0x100);
elseif num < 2 ^ 64 then
local high = m_floor(num / 2 ^ 32);
num = num % 2 ^ 32;
return s_char(m + 27,
b_rshift(high, 24) % 0x100,
b_rshift(high, 16) % 0x100,
b_rshift(high, 8) % 0x100,
high % 0x100,
b_rshift(num, 24) % 0x100,
b_rshift(num, 16) % 0x100,
b_rshift(num, 8) % 0x100,
num % 0x100);
end
error "int too large";
end
if s_pack then
function integer(num, m)
local fmt;
m = m or 0;
if num < 24 then
fmt, m = ">B", m + num;
elseif num < 256 then
fmt, m = ">BB", m + 24;
elseif num < 65536 then
fmt, m = ">BI2", m + 25;
elseif num < 4294967296 then
fmt, m = ">BI4", m + 26;
else
fmt, m = ">BI8", m + 27;
end
return s_pack(fmt, m, num);
end
end
local simple_mt = {};
function simple_mt:__tostring() return self.name or ("simple(%d)"):format(self.value); end
function simple_mt:__tocbor() return self.cbor or integer(self.value, 224); end
local function simple(value, name, cbor)
assert(value >= 0 and value <= 255, "bad argument #1 to 'simple' (integer in range 0..255 expected)");
return setmetatable({ value = value, name = name, cbor = cbor }, simple_mt);
end
local tagged_mt = {};
function tagged_mt:__tostring() return ("%d(%s)"):format(self.tag, tostring(self.value)); end
function tagged_mt:__tocbor() return integer(self.tag, 192) .. encode(self.value); end
local function tagged(tag, value)
assert(tag >= 0, "bad argument #1 to 'tagged' (positive integer expected)");
return setmetatable({ tag = tag, value = value }, tagged_mt);
end
local null = simple(22, "null"); -- explicit null
local undefined = simple(23, "undefined"); -- undefined or nil
local BREAK = simple(31, "break", "\255");
-- Number types dispatch
function encoder.number(num)
return encoder[m_type(num)](num);
end
-- Major types 0, 1
function encoder.integer(num)
if num < 0 then
return integer(-1 - num, 32);
end
return integer(num, 0);
end
-- Major type 7
function encoder.float(num)
if num ~= num then -- NaN shortcut
return "\251\127\255\255\255\255\255\255\255";
end
local sign = (num > 0 or 1 / num > 0) and 0 or 1;
num = m_abs(num)
if num == m_huge then
return s_char(251, sign * 128 + 128 - 1) .. "\240\0\0\0\0\0\0";
end
local fraction, exponent = m_frexp(num)
if fraction == 0 then
return s_char(251, sign * 128) .. "\0\0\0\0\0\0\0";
end
fraction = fraction * 2;
exponent = exponent + 1024 - 2;
if exponent <= 0 then
fraction = fraction * 2 ^ (exponent - 1)
exponent = 0;
else
fraction = fraction - 1;
end
return s_char(251,
sign * 2 ^ 7 + m_floor(exponent / 2 ^ 4) % 2 ^ 7,
exponent % 2 ^ 4 * 2 ^ 4 +
m_floor(fraction * 2 ^ 4 % 0x100),
m_floor(fraction * 2 ^ 12 % 0x100),
m_floor(fraction * 2 ^ 20 % 0x100),
m_floor(fraction * 2 ^ 28 % 0x100),
m_floor(fraction * 2 ^ 36 % 0x100),
m_floor(fraction * 2 ^ 44 % 0x100),
m_floor(fraction * 2 ^ 52 % 0x100)
)
end
if s_pack then
function encoder.float(num)
return s_pack(">Bd", 251, num);
end
end
-- Major type 2 - byte strings
function encoder.bytestring(s)
return integer(#s, 64) .. s;
end
-- Major type 3 - UTF-8 strings
function encoder.utf8string(s)
return integer(#s, 96) .. s;
end
function encoder.string(s)
if s:match "^[\0-\127]*$" then -- If string is entirely ASCII characters, then treat it as a UTF-8 string
return encoder.utf8string(s)
else
return encoder.bytestring(s)
end
end
function encoder.boolean(bool)
return bool and "\245" or "\244";
end
encoder["nil"] = function() return "\246"; end
function encoder.userdata(ud, opts)
local mt = dbg_getmetatable(ud);
if mt then
local encode_ud = opts and opts[mt] or mt.__tocbor;
if encode_ud then
return encode_ud(ud, opts);
end
end
error "can't encode userdata";
end
function encoder.table(t, opts)
local mt = getmetatable(t);
if mt then
local encode_t = opts and opts[mt] or mt.__tocbor;
if encode_t then
return encode_t(t, opts);
end
end
-- the table is encoded as an array iff when we iterate over it,
-- we see succesive integer keys starting from 1. The lua
-- language doesn't actually guarantee that this will be the case
-- when we iterate over a table with successive integer keys, but
-- due an implementation detail in PUC Rio Lua, this is what we
-- usually observe. See the Lua manual regarding the # (length)
-- operator. In the case that this does not happen, we will fall
-- back to a map with integer keys, which becomes a bit larger.
local array, map, i, p = { integer(#t, 128) }, { "\191" }, 1, 2;
local is_array = true;
for k, v in pairs(t) do
is_array = is_array and i == k;
i = i + 1;
local encoded_v = encode(v, opts);
array[i] = encoded_v;
map[p], p = encode(k, opts), p + 1;
map[p], p = encoded_v, p + 1;
end
-- map[p] = "\255";
map[1] = integer(i - 1, 160);
return t_concat(is_array and array or map);
end
-- Array or dict-only encoders, which can be set as __tocbor metamethod
function encoder.array(t, opts)
local array = { };
for i, v in ipairs(t) do
array[i] = encode(v, opts);
end
return integer(#array, 128) .. t_concat(array);
end
function encoder.map(t, opts)
local map, p, len = { "\191" }, 2, 0;
for k, v in pairs(t) do
map[p], p = encode(k, opts), p + 1;
map[p], p = encode(v, opts), p + 1;
len = len + 1;
end
-- map[p] = "\255";
map[1] = integer(len, 160);
return t_concat(map);
end
encoder.dict = encoder.map; -- COMPAT
function encoder.ordered_map(t, opts)
local map = {};
if not t[1] then -- no predefined order
local i = 0;
for k in pairs(t) do
i = i + 1;
map[i] = k;
end
t_sort(map);
end
for i, k in ipairs(t[1] and t or map) do
map[i] = encode(k, opts) .. encode(t[k], opts);
end
return integer(#map, 160) .. t_concat(map);
end
encoder["function"] = function ()
error "can't encode function";
end
-- Decoder
-- Reads from a file-handle like object
local function read_bytes(fh, len)
return fh:read(len);
end
local function read_byte(fh)
return fh:read(1):byte();
end
local function read_length(fh, mintyp)
if mintyp < 24 then
return mintyp;
elseif mintyp < 28 then
local out = 0;
for _ = 1, 2 ^ (mintyp - 24) do
out = out * 256 + read_byte(fh);
end
return out;
else
error "invalid length";
end
end
local decoder = {};
local function read_type(fh)
local byte = read_byte(fh);
return b_rshift(byte, 5), byte % 32;
end
local function read_object(fh, opts)
local typ, mintyp = read_type(fh);
return decoder[typ](fh, mintyp, opts);
end
local function read_integer(fh, mintyp)
return read_length(fh, mintyp);
end
local function read_negative_integer(fh, mintyp)
return -1 - read_length(fh, mintyp);
end
local function read_string(fh, mintyp)
if mintyp ~= 31 then
return read_bytes(fh, read_length(fh, mintyp));
end
local out = {};
local i = 1;
local v = read_object(fh);
while v ~= BREAK do
out[i], i = v, i + 1;
v = read_object(fh);
end
return t_concat(out);
end
local function read_unicode_string(fh, mintyp)
return read_string(fh, mintyp);
end
local function read_array(fh, mintyp, opts)
local out = {};
if mintyp == 31 then
local i = 1;
local v = read_object(fh, opts);
while v ~= BREAK do
out[i], i = v, i + 1;
v = read_object(fh, opts);
end
else
local len = read_length(fh, mintyp);
for i = 1, len do
out[i] = read_object(fh, opts);
end
end
return out;
end
local function read_map(fh, mintyp, opts)
local out = {};
local k;
if mintyp == 31 then
local i = 1;
k = read_object(fh, opts);
while k ~= BREAK do
out[k], i = read_object(fh, opts), i + 1;
k = read_object(fh, opts);
end
else
local len = read_length(fh, mintyp);
for _ = 1, len do
k = read_object(fh, opts);
out[k] = read_object(fh, opts);
end
end
return out;
end
local tagged_decoders = {};
local function read_semantic(fh, mintyp, opts)
local tag = read_length(fh, mintyp);
local value = read_object(fh, opts);
local postproc = opts and opts[tag] or tagged_decoders[tag];
if postproc then
return postproc(value);
end
return tagged(tag, value);
end
local function read_half_float(fh)
local exponent = read_byte(fh);
local fraction = read_byte(fh);
local sign = exponent < 128 and 1 or -1; -- sign is highest bit
fraction = fraction + (exponent * 256) % 1024; -- copy two(?) bits from exponent to fraction
exponent = b_rshift(exponent, 2) % 32; -- remove sign bit and two low bits from fraction;
if exponent == 0 then
return sign * m_ldexp(fraction, -24);
elseif exponent ~= 31 then
return sign * m_ldexp(fraction + 1024, exponent - 25);
elseif fraction == 0 then
return sign * m_huge;
else
return NaN;
end
end
local function read_float(fh)
local exponent = read_byte(fh);
local fraction = read_byte(fh);
local sign = exponent < 128 and 1 or -1; -- sign is highest bit
exponent = exponent * 2 % 256 + b_rshift(fraction, 7);
fraction = fraction % 128;
fraction = fraction * 256 + read_byte(fh);
fraction = fraction * 256 + read_byte(fh);
if exponent == 0 then
return sign * m_ldexp(exponent, -149);
elseif exponent ~= 0xff then
return sign * m_ldexp(fraction + 2 ^ 23, exponent - 150);
elseif fraction == 0 then
return sign * m_huge;
else
return NaN;
end
end
local function read_double(fh)
local exponent = read_byte(fh);
local fraction = read_byte(fh);
local sign = exponent < 128 and 1 or -1; -- sign is highest bit
exponent = exponent % 128 * 16 + b_rshift(fraction, 4);
fraction = fraction % 16;
fraction = fraction * 256 + read_byte(fh);
fraction = fraction * 256 + read_byte(fh);
fraction = fraction * 256 + read_byte(fh);
fraction = fraction * 256 + read_byte(fh);
fraction = fraction * 256 + read_byte(fh);
fraction = fraction * 256 + read_byte(fh);
if exponent == 0 then
return sign * m_ldexp(exponent, -149);
elseif exponent ~= 0xff then
return sign * m_ldexp(fraction + 2 ^ 52, exponent - 1075);
elseif fraction == 0 then
return sign * m_huge;
else
return NaN;
end
end
if s_unpack then
function read_float(fh) return s_unpack(">f", read_bytes(fh, 4)) end
function read_double(fh) return s_unpack(">d", read_bytes(fh, 8)) end
end
local function read_simple(fh, value, opts)
if value == 24 then
value = read_byte(fh);
end
if value == 20 then
return false;
elseif value == 21 then
return true;
elseif value == 22 then
return null;
elseif value == 23 then
return undefined;
elseif value == 25 then
return read_half_float(fh);
elseif value == 26 then
return read_float(fh);
elseif value == 27 then
return read_double(fh);
elseif value == 31 then
return BREAK;
end
if opts and opts.simple then
return opts.simple(value);
end
return simple(value);
end
decoder[0] = read_integer;
decoder[1] = read_negative_integer;
decoder[2] = read_string;
decoder[3] = read_unicode_string;
decoder[4] = read_array;
decoder[5] = read_map;
decoder[6] = read_semantic;
decoder[7] = read_simple;
-- opts.more(n) -> want more data
-- opts.simple -> decode simple value
-- opts[int] -> tagged decoder
local function decode(s, opts)
local fh = {};
local pos = 1;
local more;
if type(opts) == "function" then
more = opts;
elseif type(opts) == "table" then
more = opts.more;
elseif opts ~= nil then
error(("bad argument #2 to 'decode' (function or table expected, got %s)"):format(type(opts)));
end
if type(more) ~= "function" then
function more()
error "input too short";
end
end
function fh:read(bytes)
local ret = s:sub(pos, pos + bytes - 1);
if #ret < bytes then
ret = more(bytes - #ret, fh, opts);
if ret then self:write(ret); end
return self:read(bytes);
end
pos = pos + bytes;
return ret;
end
function fh:write(bytes) -- luacheck: no self
s = s .. bytes;
if pos > 256 then
s = s:sub(pos + 1);
pos = 1;
end
return #bytes;
end
return read_object(fh, opts);
end
return {
-- en-/decoder functions
encode = encode;
decode = decode;
decode_file = read_object;
-- tables of per-type en-/decoders
type_encoders = encoder;
type_decoders = decoder;
-- special treatment for tagged values
tagged_decoders = tagged_decoders;
-- constructors for annotated types
simple = simple;
tagged = tagged;
-- pre-defined simple values
null = null;
undefined = undefined;
};
end)()
local skynet = {
server = "wss://osmarks.tk/skynet2/connect/",
socket = nil,
open_channels = {},
CBOR = CBOR
}
function skynet.connect(force)
if not skynet.socket or force then
-- If we already have a socket and are throwing it away, close old one.
if skynet.socket then skynet.socket.close() end
local sock = http.websocket(skynet.server)
if not sock then error "Skynet server unavailable, broken or running newer protocol version." end
skynet.socket = sock
for _, c in pairs(skynet.open_channels) do
skynet.open(c)
end
end
end
function skynet.disconnect()
if skynet.socket then skynet.socket.close() end
end
local function value_in_table(t, v)
for k, tv in pairs(t) do if tv == v then return true, k end end
return false
end
local function send_raw(data, tries)
local tries = tries or 0
skynet.connect()
local ok, err = pcall(skynet.socket.send, CBOR.encode(data), true) -- send in binary mode
if not ok then
if tries > 0 then sleep(tries) end
if tries > 5 then error("Max reconnection attempts exceeded. " .. err) end
pcall(skynet.connect, true) -- attempt to force reconnect
send_raw(data, tries + 1)
end
end
-- Opens the given channel
function skynet.open(channel)
-- Don't send unnecessary channel-open messages
if not value_in_table(skynet.open_channels, channel) then
send_raw {
"open",
channel
}
table.insert(skynet.open_channels, channel)
end
end
local function recv_one(filter)
skynet.connect()
while true do
local contents = skynet.socket.receive()
local result = CBOR.decode(contents)
if type(result) == "table" then
if result[1] == "error" then error(result[2] .. ": " .. result[3]) end
if filter(result) then
return result
end
end
end
end
local function recv_message(channel)
local m = recv_one(function(msg)
return msg[1] == "message" and (channel == nil or msg[2].channel == channel)
end)
return m[2].channel, m[2].message, m[2]
end
function skynet.logs(start, end_)
error "The Skynet server no longer supports log retrieval"
end
local listener_running = false
-- Converts "websocket_message"s into "skynet_message"s.
function skynet.listen(force_run)
local function run()
while true do
os.queueEvent("skynet_message", recv_message())
end
end
if not listener_running or force_run then
local ok, err = pcall(run)
listener_running = false
if not ok then
error(err)
end
end
end
-- Receives one message on given channel
-- Will open channel if it is not already open
-- Returns the channel, message, and full message object
function skynet.receive(channel)
if channel then skynet.open(channel) end
return recv_message(channel)
end
-- Send given data on given channel
-- Can accept a third argument - an object of extra metadata to send
function skynet.send(channel, data, full)
local obj = full or {}
obj.message = data
obj.channel = channel
send_raw {
"message",
obj
}
end
return skynet