#include /* Macros for errors in the vm */ /* Exit from the VM normally */ #define gst_exit(vm, r) return ((vm)->ret = (r), GST_RETURN_OK) /* Bail from the VM with an error string. */ #define gst_error(vm, e) do { (vm)->ret = gst_string_cv((vm), (e)); goto vm_error; } while (0) /* Crash. Not catchable, unlike error. */ #define gst_crash(vm, e) return ((vm)->crash = (e), GST_RETURN_CRASH) /* Error if the condition is false */ #define gst_assert(vm, cond, e) do {if (!(cond)){gst_error((vm), (e));}} while (0) static const char GST_NO_UPVALUE[] = "no upvalue"; static const char GST_EXPECTED_FUNCTION[] = "expected function"; static const char GST_EXPECTED_NUMBER_ROP[] = "expected right operand to be number"; static const char GST_EXPECTED_NUMBER_LOP[] = "expected left operand to be number"; /* Start running the VM from where it left off. Continue running * until the stack size is smaller than minStackSize. */ static int gst_continue_size(Gst *vm, uint32_t stackBase) { /* VM state */ GstValue *stack; GstValue temp, v1, v2; uint16_t *pc; /* Intialize local state */ stack = vm->thread->data + vm->thread->count; pc = gst_frame_pc(stack); /* Main interpreter loop */ for (;;) { switch (*pc) { default: gst_error(vm, "unknown opcode"); break; case GST_OP_FLS: /* Load False */ temp.type = GST_BOOLEAN; temp.data.boolean = 0; stack[pc[1]] = temp; pc += 2; continue; case GST_OP_TRU: /* Load True */ temp.type = GST_BOOLEAN; temp.data.boolean = 1; stack[pc[1]] = temp; pc += 2; continue; case GST_OP_NIL: /* Load Nil */ temp.type = GST_NIL; stack[pc[1]] = temp; pc += 2; continue; case GST_OP_I16: /* Load Small Integer */ temp.type = GST_NUMBER; temp.data.number = ((int16_t *)(pc))[2]; stack[pc[1]] = temp; pc += 3; continue; case GST_OP_UPV: /* Load Up Value */ case GST_OP_SUV: /* Set Up Value */ { GstValue *upv; GstFunction *fn; GstFuncEnv *env; uint16_t level = pc[2]; temp = gst_frame_callee(stack); gst_assert(vm, temp.type == GST_FUNCTION, GST_EXPECTED_FUNCTION); fn = temp.data.function; if (level == 0) upv = stack + pc[3]; else { while (fn && --level) fn = fn->parent; gst_assert(vm, fn, GST_NO_UPVALUE); env = fn->env; if (env->thread) upv = env->thread->data + env->stackOffset + pc[3]; else upv = env->values + pc[3]; } if (pc[0] == GST_OP_UPV) { stack[pc[1]] = *upv; } else { *upv = stack[pc[1]]; } pc += 4; } continue; case GST_OP_JIF: /* Jump If */ if (gst_truthy(stack[pc[1]])) { pc += 4; } else { pc += *((int32_t *)(pc + 2)); } continue; case GST_OP_JMP: /* Jump */ pc += *((int32_t *)(pc + 1)); continue; case GST_OP_CST: /* Load constant value */ v1 = gst_frame_callee(stack); gst_assert(vm, v1.type == GST_FUNCTION, GST_EXPECTED_FUNCTION); if (pc[2] > v1.data.function->def->literalsLen) gst_error(vm, GST_NO_UPVALUE); stack[pc[1]] = v1.data.function->def->literals[pc[2]]; pc += 3; continue; case GST_OP_I32: /* Load 32 bit integer */ temp.type = GST_NUMBER; temp.data.number = *((int32_t *)(pc + 2)); stack[pc[1]] = temp; pc += 4; continue; case GST_OP_F64: /* Load 64 bit float */ temp.type = GST_NUMBER; temp.data.number = (GstNumber) *((double *)(pc + 2)); stack[pc[1]] = temp; pc += 6; continue; case GST_OP_MOV: /* Move Values */ stack[pc[1]] = stack[pc[2]]; pc += 3; continue; case GST_OP_CLN: /* Create closure from constant FuncDef */ { GstFunction *fn; v1 = gst_frame_callee(stack); if (v1.type != GST_FUNCTION) gst_error(vm, GST_EXPECTED_FUNCTION); if (gst_frame_env(stack) == NULL) { gst_frame_env(stack) = gst_alloc(vm, sizeof(GstFuncEnv)); gst_frame_env(stack)->thread = vm->thread; gst_frame_env(stack)->stackOffset = vm->thread->count; gst_frame_env(stack)->values = NULL; } if (pc[2] > v1.data.function->def->literalsLen) gst_error(vm, GST_NO_UPVALUE); temp = v1.data.function->def->literals[pc[2]]; if (temp.type != GST_FUNCDEF) gst_error(vm, "cannot create closure"); fn = gst_alloc(vm, sizeof(GstFunction)); fn->def = temp.data.def; fn->parent = v1.data.function; fn->env = gst_frame_env(stack); temp.type = GST_FUNCTION; temp.data.function = fn; stack[pc[1]] = temp; pc += 3; } break; case GST_OP_TRY: /* Begin try block */ gst_frame_errloc(stack) = pc[1]; gst_frame_errjmp(stack) = pc + *(uint32_t *)(pc + 2); pc += 4; continue; case GST_OP_UTY: /* End try block */ gst_frame_errjmp(stack) = NULL; pc++; continue; case GST_OP_RTN: /* Return nil */ stack = gst_thread_popframe(vm, vm->thread); if (vm->thread->count < stackBase) { vm->ret.type = GST_NIL; return GST_RETURN_OK; } pc = gst_frame_pc(stack); stack[gst_frame_ret(stack)].type = GST_NIL; continue; case GST_OP_RET: /* Return */ temp = stack[pc[1]]; stack = gst_thread_popframe(vm, vm->thread); if (vm->thread->count < stackBase) { vm->ret = temp; return GST_RETURN_OK; } pc = gst_frame_pc(stack); stack[gst_frame_ret(stack)] = temp; continue; case GST_OP_CAL: /* Call */ case GST_OP_TCL: /* Tail call */ { GstValue *oldStack; temp = stack[pc[1]]; int isTCall = *pc == GST_OP_TCL; uint32_t i, arity, offset, size; uint16_t ret = pc[2]; offset = isTCall ? 3 : 4; arity = pc[offset - 1]; /* Push new frame */ if (temp.type != GST_FUNCTION && temp.type != GST_CFUNCTION) gst_error(vm, GST_EXPECTED_FUNCTION); stack = gst_thread_beginframe(vm, vm->thread, temp, arity); oldStack = stack - GST_FRAME_SIZE - gst_frame_prevsize(stack); /* Write arguments */ size = gst_frame_size(stack); for (i = 0; i < arity; ++i) stack[i + size - arity] = oldStack[pc[offset + i]]; /* Finish new frame */ gst_thread_endframe(vm, vm->thread); /* Check tail call - if so, replace frame. */ if (isTCall) { stack = gst_thread_tail(vm, vm->thread); } else { gst_frame_ret(oldStack) = ret; } /* Call function */ temp = gst_frame_callee(stack); if (temp.type == GST_FUNCTION) { /* Save pc and set new pc */ if (!isTCall) gst_frame_pc(oldStack) = pc + offset + arity; pc = temp.data.function->def->byteCode; } else { int status; gst_frame_pc(stack) = pc; vm->ret.type = GST_NIL; status = temp.data.cfunction(vm); stack = gst_thread_popframe(vm, vm->thread); if (status == GST_RETURN_OK) { if (vm->thread->count < stackBase) { return status; } else { stack[gst_frame_ret(stack)] = vm->ret; if (isTCall) pc = gst_frame_pc(stack); else pc += offset + arity; } } else { goto vm_error; } } } break; /* Faster implementations of standard functions * These opcodes are nto strictlyre required and can * be reimplemented with stanard library functions */ case GST_OP_ERR: /* Throw error */ vm->ret = stack[pc[1]]; goto vm_error; #define OP_BINARY_MATH(op) \ v1 = stack[pc[2]]; \ v2 = stack[pc[3]]; \ gst_assert(vm, v1.type == GST_NUMBER, GST_EXPECTED_NUMBER_LOP); \ gst_assert(vm, v2.type == GST_NUMBER, GST_EXPECTED_NUMBER_ROP); \ temp.type = GST_NUMBER; \ temp.data.number = v1.data.number op v2.data.number; \ stack[pc[1]] = temp; \ pc += 4; \ continue; case GST_OP_ADD: /* Addition */ OP_BINARY_MATH(+) case GST_OP_SUB: /* Subtraction */ OP_BINARY_MATH(-) case GST_OP_MUL: /* Multiplication */ OP_BINARY_MATH(*) case GST_OP_DIV: /* Division */ OP_BINARY_MATH(/) #undef OP_BINARY_MATH case GST_OP_NOT: /* Boolean unary (Boolean not) */ temp.type = GST_BOOLEAN; temp.data.boolean = !gst_truthy(stack[pc[2]]); stack[pc[1]] = temp; pc += 3; continue; case GST_OP_NEG: /* Unary negation */ v1 = stack[pc[2]]; gst_assert(vm, v1.type == GST_NUMBER, GST_EXPECTED_NUMBER_LOP); temp.type = GST_NUMBER; temp.data.number = -v1.data.number; stack[pc[1]] = temp; pc += 3; continue; case GST_OP_INV: /* Unary multiplicative inverse */ v1 = stack[pc[2]]; gst_assert(vm, v1.type == GST_NUMBER, GST_EXPECTED_NUMBER_LOP); temp.type = GST_NUMBER; temp.data.number = 1 / v1.data.number; stack[pc[1]] = temp; pc += 3; continue; case GST_OP_EQL: /* Equality */ temp.type = GST_BOOLEAN; temp.data.boolean = gst_equals(stack[pc[2]], stack[pc[3]]); stack[pc[1]] = temp; pc += 4; continue; case GST_OP_LTN: /* Less Than */ temp.type = GST_BOOLEAN; temp.data.boolean = (gst_compare(stack[pc[2]], stack[pc[3]]) == -1); stack[pc[1]] = temp; pc += 4; continue; case GST_OP_LTE: /* Less Than or Equal to */ temp.type = GST_BOOLEAN; temp.data.boolean = (gst_compare(stack[pc[2]], stack[pc[3]]) != 1); stack[pc[1]] = temp; pc += 4; continue; case GST_OP_ARR: /* Array literal */ { uint32_t i; uint32_t arrayLen = pc[2]; GstArray *array = gst_array(vm, arrayLen); array->count = arrayLen; for (i = 0; i < arrayLen; ++i) array->data[i] = stack[pc[3 + i]]; temp.type = GST_ARRAY; temp.data.array = array; stack[pc[1]] = temp; pc += 3 + arrayLen; } break; case GST_OP_DIC: /* Object literal */ { uint32_t i = 3; uint32_t kvs = pc[2]; GstObject *o = gst_object(vm, 2 * kvs + 2); kvs = kvs + 3; while (i < kvs) { v1 = stack[pc[i++]]; v2 = stack[pc[i++]]; gst_object_put(vm, o, v1, v2); } temp.type = GST_OBJECT; temp.data.object = o; stack[pc[1]] = temp; pc += kvs; } break; case GST_OP_TUP: /* Tuple literal */ { uint32_t i; uint32_t len = pc[2]; GstValue *tuple = gst_tuple_begin(vm, len); for (i = 0; i < len; ++i) tuple[i] = stack[pc[3 + i]]; temp.type = GST_TUPLE; temp.data.tuple = gst_tuple_end(vm, tuple); stack[pc[1]] = temp; pc += 3 + len; } break; case GST_OP_YLD: /* Yield from function */ temp = stack[pc[1]]; if (vm->thread->parent == NULL) { vm->ret = temp; return GST_RETURN_OK; } gst_frame_pc(stack) = pc + 2; vm->thread = vm->thread->parent; stack = vm->thread->data + vm->thread->count; pc = gst_frame_pc(stack); break; /* Handle errors from c functions and vm opcodes */ vm_error: if (stack == NULL) return GST_RETURN_ERROR; while (gst_frame_errjmp(stack) == NULL) { stack = gst_thread_popframe(vm, vm->thread); if (vm->thread->count < stackBase) return GST_RETURN_ERROR; } pc = gst_frame_errjmp(stack); stack[gst_frame_errloc(stack)] = vm->ret; break; } /* end switch */ /* Check for collection every cycle. If the instruction definitely does * not allocate memory, it can use continue instead of break to * skip this check */ gst_maybe_collect(vm); } /* end for */ } /* Continue running the VM after it has stopped */ int gst_continue(Gst *vm) { return gst_continue_size(vm, vm->thread->count); } /* Run the vm with a given function. This function is * called to start the vm. */ int gst_run(Gst *vm, GstValue callee) { int status; GstValue *stack; vm->thread = gst_thread(vm, callee, 64); if (vm->thread == NULL) return GST_RETURN_CRASH; stack = gst_thread_stack(vm->thread); /* If callee was not actually a function, get the delegate function */ callee = gst_frame_callee(stack); if (callee.type == GST_CFUNCTION) { vm->ret.type = GST_NIL; status = callee.data.cfunction(vm); gst_thread_popframe(vm, vm->thread); return status; } else { return gst_continue(vm); } } /* Get an argument from the stack */ GstValue gst_arg(Gst *vm, uint16_t index) { GstValue *stack = gst_thread_stack(vm->thread); uint16_t frameSize = gst_frame_size(stack); if (frameSize <= index) { GstValue ret; ret.type = GST_NIL; return ret; } return stack[index]; } /* Put a value on the stack */ void gst_set_arg(Gst* vm, uint16_t index, GstValue x) { GstValue *stack = gst_thread_stack(vm->thread); uint16_t frameSize = gst_frame_size(stack); if (frameSize <= index) return; stack[index] = x; } /* Get the size of the VMStack */ uint16_t gst_count_args(Gst *vm) { GstValue *stack = gst_thread_stack(vm->thread); return gst_frame_size(stack); } /* Initialize the VM */ void gst_init(Gst *vm) { vm->ret.type = GST_NIL; vm->crash = NULL; /* Garbage collection */ vm->blocks = NULL; vm->nextCollection = 0; /* Setting memoryInterval to zero currently forces * a collection pretty much every cycle, which is * obviously horrible for performance. It helps ensure * there are no memory bugs during dev */ vm->memoryInterval = 2000; vm->black = 0; /* Add thread */ vm->thread = NULL; /* Set up global env */ vm->rootenv = NULL; /* Set up scratch memory */ vm->scratch = NULL; vm->scratch_len = 0; /* Set up the cache */ vm->cache = gst_raw_calloc(1, 128 * sizeof(GstValue)); vm->cache_capacity = vm->cache == NULL ? 0 : 128; vm->cache_count = 0; vm->cache_deleted = 0; } /* Clear all memory associated with the VM */ void gst_deinit(Gst *vm) { gst_clear_memory(vm); vm->thread = NULL; vm->rootenv = NULL; vm->ret.type = GST_NIL; vm->scratch = NULL; vm->scratch_len = 0; /* Deinit the cache */ gst_raw_free(vm->cache); vm->cache = NULL; vm->cache_count = 0; vm->cache_capacity = 0; vm->cache_deleted = 0; }