/* * Copyright (c) 2017 Calvin Rose * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "opcodes.h" #include "gc.h" #include "sourcemap.h" /* Bytecode op argument types */ typedef enum DstOpArgType DstOpArgType; enum DstOpArgType { DST_OAT_SLOT, DST_OAT_ENVIRONMENT, DST_OAT_CONSTANT, DST_OAT_INTEGER, DST_OAT_TYPE, DST_OAT_SIMPLETYPE, DST_OAT_LABEL, DST_OAT_FUNCDEF }; /* Convert a slot to to an integer for bytecode */ /* Types of instructions (some of them) */ /* _0arg - op.---.--.-- (return-nil, noop, vararg arguments) * _s - op.src.--.-- (push1) * _l - op.XX.XX.XX (jump) * _ss - op.dest.XX.XX (move, swap) * _sl - op.check.XX.XX (jump-if) * _st - op.check.TT.TT (typecheck) * _si - op.dest.XX.XX (load-integer) * _sss - op.dest.op1.op2 (add, subtract, arithmetic, comparison) * _ses - op.dest.up.which (load-upvalue, save-upvalue) * _sc - op.dest.CC.CC (load-constant, closure) */ /* Various types of instructions */ typedef enum DstInstructionType DstInstructionType; enum DstInstructionType { DIT_0, /* No args */ DIT_S, /* One slot */ DIT_L, /* One label */ DIT_SS, /* Two slots */ DIT_SL, DIT_ST, DIT_SI, DIT_SD, /* Closures (D for funcDef) */ DIT_SU, /* Unsigned */ DIT_SSS, DIT_SSI, DIT_SSU, DIT_SES, DIT_SC }; /* Definition for an instruction in the assembler */ typedef struct DstInstructionDef DstInstructionDef; struct DstInstructionDef { const char *name; DstInstructionType type; DstOpCode opcode; }; /* Hold all state needed during assembly */ typedef struct DstAssembler DstAssembler; struct DstAssembler { DstAssembler *parent; DstFuncDef *def; jmp_buf on_error; const uint8_t *errmessage; const uint8_t *name; int32_t environments_capacity; int32_t bytecode_count; /* Used for calculating labels */ DstTable labels; /* symbol -> bytecode index */ DstTable constants; /* symbol -> constant index */ DstTable slots; /* symbol -> slot index */ DstTable envs; /* symbol -> environment index */ DstTable defs; /* symbol -> funcdefs index */ }; /* Dst opcode descriptions in lexographic order. This * allows a binary search over the elements to find the * correct opcode given a name. This works in reasonable * time and is easier to setup statically than a hash table or * prefix tree. */ static const DstInstructionDef dst_ops[] = { {"add", DIT_SSS, DOP_ADD}, {"add-immediate", DIT_SSI, DOP_ADD_IMMEDIATE}, {"add-integer", DIT_SSS, DOP_ADD_INTEGER}, {"add-real", DIT_SSS, DOP_ADD_REAL}, {"band", DIT_SSS, DOP_BAND}, {"bnot", DIT_SS, DOP_BNOT}, {"bor", DIT_SSS, DOP_BOR}, {"bxor", DIT_SSS, DOP_BXOR}, {"call", DIT_SS, DOP_CALL}, {"closure", DIT_SD, DOP_CLOSURE}, {"compare", DIT_SSS, DOP_COMPARE}, {"divide", DIT_SSS, DOP_DIVIDE}, {"divide-immediate", DIT_SSI, DOP_DIVIDE_IMMEDIATE}, {"divide-integer", DIT_SSS, DOP_DIVIDE_INTEGER}, {"divide-real", DIT_SSS, DOP_DIVIDE_REAL}, {"equals", DIT_SSS, DOP_EQUALS}, {"error", DIT_S, DOP_ERROR}, {"get", DIT_SSS, DOP_GET}, {"get-index", DIT_SSU, DOP_GET_INDEX}, {"greater-than", DIT_SSS, DOP_GREATER_THAN}, {"jump", DIT_L, DOP_JUMP}, {"jump-if", DIT_SL, DOP_JUMP_IF}, {"jump-if-not", DIT_SL, DOP_JUMP_IF_NOT}, {"less-than", DIT_SSS, DOP_LESS_THAN}, {"load-constant", DIT_SC, DOP_LOAD_CONSTANT}, {"load-false", DIT_S, DOP_LOAD_FALSE}, {"load-integer", DIT_SI, DOP_LOAD_INTEGER}, {"load-nil", DIT_S, DOP_LOAD_NIL}, {"load-self", DIT_S, DOP_LOAD_SELF}, {"load-true", DIT_S, DOP_LOAD_TRUE}, {"load-upvalue", DIT_SES, DOP_LOAD_UPVALUE}, {"move-far", DIT_SS, DOP_MOVE_FAR}, {"move-near", DIT_SS, DOP_MOVE_NEAR}, {"multiply", DIT_SSS, DOP_MULTIPLY}, {"multiply-immediate", DIT_SSI, DOP_MULTIPLY_IMMEDIATE}, {"multiply-integer", DIT_SSS, DOP_MULTIPLY_INTEGER}, {"multiply-real", DIT_SSS, DOP_MULTIPLY_REAL}, {"noop", DIT_0, DOP_NOOP}, {"push", DIT_S, DOP_PUSH}, {"push2", DIT_SS, DOP_PUSH_2}, {"push3", DIT_SSS, DOP_PUSH_3}, {"put", DIT_SSS, DOP_PUT}, {"put-index", DIT_SSU, DOP_PUT_INDEX}, {"return", DIT_S, DOP_RETURN}, {"return-nil", DIT_0, DOP_RETURN_NIL}, {"set-upvalue", DIT_SES, DOP_SET_UPVALUE}, {"shift-left", DIT_SSS, DOP_SHIFT_LEFT}, {"shift-left-immediate", DIT_SSI, DOP_SHIFT_LEFT_IMMEDIATE}, {"shift-right", DIT_SSS, DOP_SHIFT_RIGHT}, {"shift-right-immediate", DIT_SSI, DOP_SHIFT_RIGHT_IMMEDIATE}, {"shift-right-unsigned", DIT_SSS, DOP_SHIFT_RIGHT_UNSIGNED}, {"shift-right-unsigned-immediate", DIT_SSS, DOP_SHIFT_RIGHT_UNSIGNED_IMMEDIATE}, {"subtract", DIT_SSS, DOP_SUBTRACT}, {"tailcall", DIT_S, DOP_TAILCALL}, {"transfer", DIT_SSS, DOP_TRANSFER}, {"typecheck", DIT_ST, DOP_TYPECHECK}, }; /* Compare a DST string to a native 0 terminated c string. Used in the * binary search for the instruction definition. */ static int dst_strcompare(const uint8_t *str, const char *other) { int32_t len = dst_string_length(str); int32_t index; for (index = 0; index < len; index++) { uint8_t c = str[index]; uint8_t k = ((const uint8_t *)other)[index]; if (c < k) return -1; if (c > k) return 1; if (k == '\0') break; } return (other[index] == '\0') ? 0 : -1; } /* Find an instruction definition given its name */ static const DstInstructionDef *dst_findi(const uint8_t *key) { const DstInstructionDef *low = dst_ops; const DstInstructionDef *hi = dst_ops + (sizeof(dst_ops) / sizeof(DstInstructionDef)); while (low < hi) { const DstInstructionDef *mid = low + ((hi - low) / 2); int comp = dst_strcompare(key, mid->name); if (comp < 0) { hi = mid; } else if (comp > 0) { low = mid + 1; } else { return mid; } } return NULL; } /* Check a dst string against a bunch of test_strings. Return the * index of the matching test_string, or -1 if not found. */ static int32_t strsearch(const uint8_t *str, const char **test_strings) { int32_t len = dst_string_length(str); int index; for (index = 0; ; index++) { int32_t i; const char *testword = test_strings[index]; if (NULL == testword) break; for (i = 0; i < len; i++) { if (testword[i] != str[i]) goto nextword; } return index; nextword: continue; } return -1; } /* Deinitialize an Assembler. Does not deinitialize the parents. */ static void dst_asm_deinit(DstAssembler *a) { dst_table_deinit(&a->slots); dst_table_deinit(&a->labels); dst_table_deinit(&a->envs); dst_table_deinit(&a->constants); dst_table_deinit(&a->defs); } /* Throw some kind of assembly error */ static void dst_asm_error(DstAssembler *a, const char *message) { a->errmessage = dst_cstring(message); longjmp(a->on_error, 1); } #define dst_asm_assert(a, c, m) do { if (!(c)) dst_asm_error((a), (m)); } while (0) /* Throw some kind of assembly error */ static void dst_asm_errorv(DstAssembler *a, const uint8_t *m) { a->errmessage = m; longjmp(a->on_error, 1); } /* Add a closure environment to the assembler. Sub funcdefs may need * to reference outer function environments, and may change the outer environment. * Returns the index of the environment in the assembler's environments, or -1 * if not found. */ /*static int32_t dst_asm_addenv(DstAssembler *a, DstValue envname) {*/ /*DstValue check;*/ /*DstFuncDef *def = a->def;*/ /*int32_t oldlen;*/ /*int64_t res;*/ /*[> Check for memoized value <]*/ /*check = dst_table_get(&a->envs, envname);*/ /*if (!dst_checktype(check, DST_NIL)) return dst_unwrap_integer(check);*/ /*if (NULL == a->parent) return -1;*/ /*res = dst_asm_addenv(a->parent, envname);*/ /*if (res < 0)*/ /*return res;*/ /*oldlen = def->environments_length;*/ /*dst_table_put(&a->envs, envname, dst_wrap_integer(def->environments_length));*/ /*if (oldlen >= a->environments_capacity) {*/ /*int32_t newcap = 2 + 2 * oldlen;*/ /*def->environments = realloc(def->environments, newcap * sizeof(int32_t));*/ /*if (NULL == def->environments) {*/ /*DST_OUT_OF_MEMORY;*/ /*}*/ /*a->environments_capacity = newcap;*/ /*}*/ /*def->environments[def->environments_length++] = (int32_t) res;*/ /*return (int32_t) oldlen;*/ /*}*/ /* Parse an argument to an assembly instruction, and return the result as an * integer. This integer will need to be bounds checked. */ static int32_t doarg_1( DstAssembler *a, DstOpArgType argtype, DstValue x) { int32_t ret = -1; DstTable *c; switch (argtype) { case DST_OAT_SLOT: c = &a->slots; break; case DST_OAT_ENVIRONMENT: c = &a->envs; break; case DST_OAT_CONSTANT: c = &a->constants; break; case DST_OAT_INTEGER: c = NULL; break; case DST_OAT_TYPE: case DST_OAT_SIMPLETYPE: c = NULL; break; case DST_OAT_LABEL: c = &a->labels; break; case DST_OAT_FUNCDEF: c = &a->defs; break; } switch (dst_type(x)) { default: goto error; break; case DST_INTEGER: ret = dst_unwrap_integer(x); break; case DST_TUPLE: { const DstValue *t = dst_unwrap_tuple(x); if (argtype == DST_OAT_TYPE) { int32_t i = 0; ret = 0; for (i = 0; i < dst_tuple_length(t); i++) { ret |= doarg_1(a, DST_OAT_SIMPLETYPE, t[i]); } } else { goto error; } break; } case DST_SYMBOL: { if (NULL != c) { DstValue result = dst_table_get(c, x); if (dst_checktype(result, DST_INTEGER)) { if (argtype == DST_OAT_LABEL) { ret = dst_unwrap_integer(result) - a->bytecode_count; } else { ret = dst_unwrap_integer(result); } } else { dst_asm_errorv(a, dst_formatc("unknown name %q", x)); } } else if (argtype == DST_OAT_TYPE || argtype == DST_OAT_SIMPLETYPE) { int32_t index = strsearch(dst_unwrap_symbol(x), dst_type_names); if (index != -1) { ret = index; } else { dst_asm_errorv(a, dst_formatc("unknown type %q", x)); } } else { goto error; } break; } } if (argtype == DST_OAT_SLOT && ret >= a->def->slotcount) a->def->slotcount = (int32_t) ret + 1; return ret; error: dst_asm_errorv(a, dst_formatc("error parsing instruction argument %v", x)); return 0; } /* Parse a single argument to an instruction. Trims it as well as * try to convert arguments to bit patterns */ static uint32_t doarg( DstAssembler *a, DstOpArgType argtype, int nth, int nbytes, int hassign, DstValue x) { int32_t arg = doarg_1(a, argtype, x); /* Calculate the min and max values that can be stored given * nbytes, and whether or not the storage is signed */ int32_t min = (-hassign) << ((nbytes << 3) - 1); int32_t max = ~((-1) << ((nbytes << 3) - hassign)); if (arg < min) dst_asm_errorv(a, dst_formatc("instruction argument %v is too small, must be %d byte%s", x, nbytes, nbytes > 1 ? "s" : "")); if (arg > max) dst_asm_errorv(a, dst_formatc("instruction argument %v is too large, must be %d byte%s", x, nbytes, nbytes > 1 ? "s" : "")); return ((uint32_t) arg) << (nth << 3); } /* Provide parsing methods for the different kinds of arguments */ static uint32_t read_instruction( DstAssembler *a, const DstInstructionDef *idef, const DstValue *argt) { uint32_t instr = idef->opcode; switch (idef->type) { case DIT_0: { if (dst_tuple_length(argt) != 1) dst_asm_error(a, "expected 0 arguments: (op)"); break; } case DIT_S: { if (dst_tuple_length(argt) != 2) dst_asm_error(a, "expected 1 argument: (op, slot)"); instr |= doarg(a, DST_OAT_SLOT, 1, 3, 0, argt[1]); break; } case DIT_L: { if (dst_tuple_length(argt) != 2) dst_asm_error(a, "expected 1 argument: (op, label)"); instr |= doarg(a, DST_OAT_LABEL, 1, 3, 1, argt[1]); break; } case DIT_SS: { if (dst_tuple_length(argt) != 3) dst_asm_error(a, "expected 2 arguments: (op, slot, slot)"); instr |= doarg(a, DST_OAT_SLOT, 1, 1, 0, argt[1]); instr |= doarg(a, DST_OAT_SLOT, 2, 2, 0, argt[2]); break; } case DIT_SL: { if (dst_tuple_length(argt) != 3) dst_asm_error(a, "expected 2 arguments: (op, slot, label)"); instr |= doarg(a, DST_OAT_SLOT, 1, 1, 0, argt[1]); instr |= doarg(a, DST_OAT_LABEL, 2, 2, 1, argt[2]); break; } case DIT_ST: { if (dst_tuple_length(argt) != 3) dst_asm_error(a, "expected 2 arguments: (op, slot, type)"); instr |= doarg(a, DST_OAT_SLOT, 1, 1, 0, argt[1]); instr |= doarg(a, DST_OAT_TYPE, 2, 2, 0, argt[2]); break; } case DIT_SI: case DIT_SU: { if (dst_tuple_length(argt) != 3) dst_asm_error(a, "expected 2 arguments: (op, slot, integer)"); instr |= doarg(a, DST_OAT_SLOT, 1, 1, 0, argt[1]); instr |= doarg(a, DST_OAT_INTEGER, 2, 2, idef->type == DIT_SI, argt[2]); break; } case DIT_SD: { if (dst_tuple_length(argt) != 3) dst_asm_error(a, "expected 2 arguments: (op, slot, funcdef)"); instr |= doarg(a, DST_OAT_SLOT, 1, 1, 0, argt[1]); instr |= doarg(a, DST_OAT_FUNCDEF, 2, 2, 0, argt[2]); break; } case DIT_SSS: { if (dst_tuple_length(argt) != 4) dst_asm_error(a, "expected 3 arguments: (op, slot, slot, slot)"); instr |= doarg(a, DST_OAT_SLOT, 1, 1, 0, argt[1]); instr |= doarg(a, DST_OAT_SLOT, 2, 1, 0, argt[2]); instr |= doarg(a, DST_OAT_SLOT, 3, 1, 0, argt[3]); break; } case DIT_SSI: case DIT_SSU: { if (dst_tuple_length(argt) != 4) dst_asm_error(a, "expected 3 arguments: (op, slot, slot, integer)"); instr |= doarg(a, DST_OAT_SLOT, 1, 1, 0, argt[1]); instr |= doarg(a, DST_OAT_SLOT, 2, 1, 0, argt[2]); instr |= doarg(a, DST_OAT_INTEGER, 3, 1, idef->type == DIT_SSI, argt[3]); break; } case DIT_SES: { DstAssembler *b = a; uint32_t env; if (dst_tuple_length(argt) != 4) dst_asm_error(a, "expected 3 arguments: (op, slot, environment, envslot)"); instr |= doarg(a, DST_OAT_SLOT, 1, 1, 0, argt[1]); env = doarg(a, DST_OAT_ENVIRONMENT, 0, 1, 0, argt[2]); instr |= env << 16; for (env += 1; env > 0; env--) { b = b->parent; if (NULL == b) dst_asm_error(a, "invalid environment index"); } instr |= doarg(b, DST_OAT_SLOT, 3, 1, 0, argt[3]); break; } case DIT_SC: { if (dst_tuple_length(argt) != 3) dst_asm_error(a, "expected 2 arguments: (op, slot, constant)"); instr |= doarg(a, DST_OAT_SLOT, 1, 1, 0, argt[1]); instr |= doarg(a, DST_OAT_CONSTANT, 2, 2, 0, argt[2]); break; } } return instr; } /* Helper to assembly. Return the assembly result */ static DstAssembleResult dst_asm1(DstAssembler *parent, DstAssembleOptions opts) { DstAssembleResult result; DstAssembler a; DstValue s = opts.source; DstFuncDef *def; int32_t count, i; const DstValue *arr; DstValue x; /* Initialize funcdef */ def = dst_gcalloc(DST_MEMORY_FUNCDEF, sizeof(DstFuncDef)); def->environments = NULL; def->constants = NULL; def->bytecode = NULL; def->flags = 0; def->slotcount = 0; def->arity = 0; def->source = NULL; def->sourcepath = NULL; def->sourcemap = NULL; def->defs = NULL; def->defs_length = 0; def->constants_length = 0; def->bytecode_length = 0; def->environments_length = 1; /* Initialize Assembler */ a.def = def; a.parent = parent; a.errmessage = NULL; a.name = NULL; a.environments_capacity = 0; a.bytecode_count = 0; dst_table_init(&a.labels, 10); dst_table_init(&a.constants, 10); dst_table_init(&a.slots, 10); dst_table_init(&a.envs, 10); dst_table_init(&a.defs, 10); /* Set error jump */ if (setjmp(a.on_error)) { if (NULL != a.parent) { dst_asm_deinit(&a); longjmp(a.parent->on_error, 1); } result.error = a.errmessage; result.status = DST_ASSEMBLE_ERROR; dst_asm_deinit(&a); return result; } dst_asm_assert(&a, dst_checktype(s, DST_STRUCT) || dst_checktype(s, DST_TABLE), "expected struct or table for assembly source"); /* Check for function name */ x = dst_get(s, dst_csymbolv("name")); if (dst_checktype(x, DST_SYMBOL)) a.name = dst_unwrap_symbol(x); /* Set function arity */ x = dst_get(s, dst_csymbolv("arity")); def->arity = dst_checktype(x, DST_INTEGER) ? dst_unwrap_integer(x) : 0; /* Check vararg */ x = dst_get(s, dst_csymbolv("vararg")); if (dst_truthy(x)) def->flags |= DST_FUNCDEF_FLAG_VARARG; /* Check source */ x = dst_get(s, dst_csymbolv("source")); if (dst_checktype(x, DST_STRING)) def->source = dst_unwrap_string(x); /* Check source path */ x = dst_get(s, dst_csymbolv("sourcepath")); if (dst_checktype(x, DST_STRING)) def->sourcepath = dst_unwrap_string(x); /* Create slot aliases */ x = dst_get(s, dst_csymbolv("slots")); if (dst_seq_view(x, &arr, &count)) { for (i = 0; i < count; i++) { DstValue v = arr[i]; if (dst_checktype(v, DST_TUPLE)) { const DstValue *t = dst_unwrap_tuple(v); int32_t j; for (j = 0; j < dst_tuple_length(t); j++) { if (!dst_checktype(t[j], DST_SYMBOL)) dst_asm_error(&a, "slot names must be symbols"); dst_table_put(&a.slots, t[j], dst_wrap_integer(i)); } } else if (dst_checktype(v, DST_SYMBOL)) { dst_table_put(&a.slots, v, dst_wrap_integer(i)); } else { dst_asm_error(&a, "slot names must be symbols or tuple of symbols"); } } } /* Parse constants */ x = dst_get(s, dst_csymbolv("constants")); if (dst_seq_view(x, &arr, &count)) { def->constants_length = count; def->constants = malloc(sizeof(DstValue) * count); if (NULL == def->constants) { DST_OUT_OF_MEMORY; } for (i = 0; i < count; i++) { DstValue ct = arr[i]; if (dst_checktype(ct, DST_TUPLE) && dst_tuple_length(dst_unwrap_tuple(ct)) > 1 && dst_checktype(dst_unwrap_tuple(ct)[0], DST_SYMBOL)) { const DstValue *t = dst_unwrap_tuple(ct); int32_t tcount = dst_tuple_length(t); const uint8_t *macro = dst_unwrap_symbol(t[0]); if (0 == dst_strcompare(macro, "quote")) { def->constants[i] = t[1]; } else if (tcount == 3 && dst_checktype(t[1], DST_SYMBOL) && 0 == dst_strcompare(macro, "def")) { def->constants[i] = t[2]; dst_table_put(&a.constants, t[1], dst_wrap_integer(i)); } else { dst_asm_errorv(&a, dst_formatc("could not parse constant \"%v\"", ct)); } } else { def->constants[i] = ct; } } } else { def->constants = NULL; def->constants_length = 0; } /* Parse sub funcdefs */ /*x = dst_get(s, dst_csymbolv("closures"));*/ /*if (dst_seq_view(x, &arr, &count)) {*/ /*}*/ /* Parse bytecode and labels */ x = dst_get(s, dst_csymbolv("bytecode")); if (dst_seq_view(x, &arr, &count)) { /* Do labels and find length */ int32_t blength = 0; for (i = 0; i < count; ++i) { DstValue instr = arr[i]; if (dst_checktype(instr, DST_SYMBOL)) { dst_table_put(&a.labels, instr, dst_wrap_integer(blength)); } else if (dst_checktype(instr, DST_TUPLE)) { blength++; } else { dst_asm_error(&a, "expected assembly instruction"); } } /* Allocate bytecode array */ def->bytecode_length = blength; def->bytecode = malloc(sizeof(int32_t) * blength); if (NULL == def->bytecode) { DST_OUT_OF_MEMORY; } /* Do bytecode */ for (i = 0; i < count; ++i) { DstValue instr = arr[i]; if (dst_checktype(instr, DST_SYMBOL)) { continue; } else { uint32_t op; const DstInstructionDef *idef; const DstValue *t; dst_asm_assert(&a, dst_checktype(instr, DST_TUPLE), "expected tuple"); t = dst_unwrap_tuple(instr); if (dst_tuple_length(t) == 0) { op = 0; } else { dst_asm_assert(&a, dst_checktype(t[0], DST_SYMBOL), "expected symbol in assembly instruction"); idef = dst_findi(dst_unwrap_symbol(t[0])); if (NULL == idef) dst_asm_errorv(&a, dst_formatc("unknown instruction %v", instr)); op = read_instruction(&a, idef, t); } def->bytecode[a.bytecode_count++] = op; } } } else { dst_asm_error(&a, "bytecode expected"); } /* Check for source mapping */ x = dst_get(s, dst_csymbolv("sourcemap")); if (dst_seq_view(x, &arr, &count)) { dst_asm_assert(&a, count != 2 * def->bytecode_length, "sourcemap must have twice the length of the bytecode"); def->sourcemap = malloc(sizeof(int32_t) * 2 * count); for (i = 0; i < count; i += 2) { DstValue start = arr[i]; DstValue end = arr[i + 1]; if (!(dst_checktype(start, DST_INTEGER) || dst_unwrap_integer(start) < 0)) { dst_asm_error(&a, "expected positive integer"); } if (!(dst_checktype(end, DST_INTEGER) || dst_unwrap_integer(end) < 0)) { dst_asm_error(&a, "expected positive integer"); } def->sourcemap[i] = dst_unwrap_integer(start); def->sourcemap[i+1] = dst_unwrap_integer(end); } } /* Finish everything and return funcdef */ dst_asm_deinit(&a); def->environments = realloc(def->environments, def->environments_length * sizeof(int32_t)); result.funcdef = def; result.status = DST_ASSEMBLE_OK; return result; } /* Assemble a function */ DstAssembleResult dst_asm(DstAssembleOptions opts) { return dst_asm1(NULL, opts); } /* Build a function from the result */ DstFunction *dst_asm_func(DstAssembleResult result) { if (result.status != DST_ASSEMBLE_OK) { return NULL; } DstFunction *func = dst_gcalloc(DST_MEMORY_FUNCTION, sizeof(DstFunction)); func->def = result.funcdef; func->envs = NULL; return func; } /* Disassembly */ /* Find the deinfintion of an instruction given the instruction word. Return * NULL if not found. */ static const DstInstructionDef *dst_asm_reverse_lookup(uint32_t instr) { size_t i; uint32_t opcode = instr & 0xFF; for (i = 0; i < sizeof(dst_ops)/sizeof(DstInstructionDef); i++) { const DstInstructionDef *def = dst_ops + i; if (def->opcode == opcode) return def; } return NULL; } /* Create some constant sized tuples */ static DstValue tup1(DstValue x) { DstValue *tup = dst_tuple_begin(1); tup[0] = x; return dst_wrap_tuple(dst_tuple_end(tup)); } static DstValue tup2(DstValue x, DstValue y) { DstValue *tup = dst_tuple_begin(2); tup[0] = x; tup[1] = y; return dst_wrap_tuple(dst_tuple_end(tup)); } static DstValue tup3(DstValue x, DstValue y, DstValue z) { DstValue *tup = dst_tuple_begin(3); tup[0] = x; tup[1] = y; tup[2] = z; return dst_wrap_tuple(dst_tuple_end(tup)); } static DstValue tup4(DstValue w, DstValue x, DstValue y, DstValue z) { DstValue *tup = dst_tuple_begin(4); tup[0] = w; tup[1] = x; tup[2] = y; tup[3] = z; return dst_wrap_tuple(dst_tuple_end(tup)); } /* Given an argument, convert it to the appriate integer or symbol */ DstValue dst_asm_decode_instruction(uint32_t instr) { const DstInstructionDef *def = dst_asm_reverse_lookup(instr); DstValue name; if (NULL == def) { return dst_wrap_integer((int32_t)instr); } name = dst_csymbolv(def->name); #define oparg(shift, mask) ((instr >> ((shift) << 3)) & (mask)) switch (def->type) { case DIT_0: return tup1(name); case DIT_S: return tup2(name, dst_wrap_integer(oparg(1, 0xFFFFFF))); case DIT_L: return tup2(name, dst_wrap_integer((int32_t)instr >> 8)); case DIT_SS: case DIT_ST: case DIT_SC: case DIT_SU: case DIT_SD: return tup3(name, dst_wrap_integer(oparg(1, 0xFF)), dst_wrap_integer(oparg(2, 0xFFFF))); case DIT_SI: case DIT_SL: return tup3(name, dst_wrap_integer(oparg(1, 0xFF)), dst_wrap_integer((int32_t)instr >> 16)); case DIT_SSS: case DIT_SES: case DIT_SSU: return tup4(name, dst_wrap_integer(oparg(1, 0xFF)), dst_wrap_integer(oparg(2, 0xFF)), dst_wrap_integer(oparg(3, 0xFF))); case DIT_SSI: return tup4(name, dst_wrap_integer(oparg(1, 0xFF)), dst_wrap_integer(oparg(2, 0xFF)), dst_wrap_integer((int32_t)instr >> 24)); } #undef oparg } DstValue dst_disasm(DstFuncDef *def) { int32_t i; DstArray *bcode = dst_array(def->bytecode_length); DstArray *constants; DstTable *ret = dst_table(10); if (def->arity) dst_table_put(ret, dst_csymbolv("arity"), dst_wrap_integer(def->arity)); dst_table_put(ret, dst_csymbolv("bytecode"), dst_wrap_array(bcode)); if (NULL != def->sourcepath) { dst_table_put(ret, dst_csymbolv("sourcepath"), dst_wrap_string(def->sourcepath)); } if (NULL != def->source) { dst_table_put(ret, dst_csymbolv("source"), dst_wrap_string(def->source)); } if (def->flags & DST_FUNCDEF_FLAG_VARARG) { dst_table_put(ret, dst_csymbolv("vararg"), dst_wrap_true()); } /* Add constants */ if (def->constants_length > 0) { constants = dst_array(def->constants_length); dst_table_put(ret, dst_csymbolv("constants"), dst_wrap_array(constants)); for (i = 0; i < def->constants_length; i++) { DstValue src = def->constants[i]; DstValue dest; if (dst_checktype(src, DST_TUPLE)) { dest = tup2(dst_csymbolv("quote"), src); } else { dest = src; } constants->data[i] = dest; } constants->count = def->constants_length; } /* Add bytecode */ for (i = 0; i < def->bytecode_length; i++) { bcode->data[i] = dst_asm_decode_instruction(def->bytecode[i]); } bcode->count = def->bytecode_length; /* Add source map */ if (NULL != def->sourcemap) { DstArray *sourcemap = dst_array(def->bytecode_length * 2); for (i = 0; i < def->bytecode_length * 2; i++) { sourcemap->data[i] = dst_wrap_integer(def->sourcemap[i]); } sourcemap->count = def->bytecode_length * 2; dst_table_put(ret, dst_csymbolv("sourcemap"), dst_wrap_array(sourcemap)); } /* Add environments */ if (NULL != def->environments) { DstArray *envs = dst_array(def->environments_length); for (i = 0; i < def->environments_length; i++) { envs->data[i] = dst_wrap_integer(def->environments[i]); } envs->count = def->environments_length; dst_table_put(ret, dst_csymbolv("environments"), dst_wrap_array(envs)); } /* Add closures */ /* Funcdefs cannot be recursive */ if (NULL != def->defs) { DstArray *defs = dst_array(def->defs_length); for (i = 0; i < def->defs_length; i++) { defs->data[i] = dst_disasm(def->defs[i]); } defs->count = def->defs_length; dst_table_put(ret, dst_csymbolv("defs"), dst_wrap_array(defs)); } /* Add slotcount */ dst_table_put(ret, dst_csymbolv("slotcount"), dst_wrap_integer(def->slotcount)); return dst_wrap_struct(dst_table_to_struct(ret)); }