# Copyright (c) 2018 Calvin Rose # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. (import test.helper :prefix "" :exit true) (start-suite 0) (assert (= 10 (+ 1 2 3 4)) "addition") (assert (= -8 (- 1 2 3 4)) "subtraction") (assert (= 24 (* 1 2 3 4)) "multiplication") (assert (= 4 (<< 1 2)) "left shift") (assert (= 1 (>> 4 2)) "right shift") (assert (< 1 2 3 4 5 6) "less than integers") (assert (< 1.0 2.0 3.0 4.0 5.0 6.0) "less than reals") (assert (> 6 5 4 3 2 1) "greater than integers") (assert (> 6.0 5.0 4.0 3.0 2.0 1.0) "greater than reals") (assert (<= 1 2 3 3 4 5 6) "less than or equal to integers") (assert (<= 1.0 2.0 3.0 3.0 4.0 5.0 6.0) "less than or equal to reals") (assert (>= 6 5 4 4 3 2 1) "greater than or equal to integers") (assert (>= 6.0 5.0 4.0 4.0 3.0 2.0 1.0) "greater than or equal to reals") (assert (= 7 (% 20 13)) "modulo 1") (assert (= -7 (% -20 13)) "modulo 2") (assert (order< nil false true (fiber.new (fn [x] x)) 1 1.0 "hi" (quote hello) (array 1 2 3) (tuple 1 2 3) (table "a" "b" "c" "d") (struct 1 2 3 4) (buffer "hi") (fn [x] (+ x x)) print) "type ordering") (assert (= (string (buffer "123" "456")) (string @"123456")) "buffer literal") (assert (= (get {} 1) nil) "get nil from empty struct") (assert (= (get @{} 1) nil) "get nil from empty table") (assert (= (get {:boop :bap} :boop) :bap) "get non nil from struct") (assert (= (get @{:boop :bap} :boop) :bap) "get non nil from table") (assert (put @{} :boop :bap) "can add to empty table") (assert (put @{1 3} :boop :bap) "can add to non-empty table") (assert (not false) "false literal") (assert true "true literal") (assert (not nil) "nil literal") (assert (= 7 (| 3 4)) "bit or") (assert (= 0 (& 3 4)) "bit and") (assert (= 0xFF (^ 0x0F 0xF0)) "bit xor") (assert (= 0xF0 (^ 0xFF 0x0F)) "bit xor 2") # Set global variables to prevent some possible compiler optimizations that defeat point of the test (var zero 0) (var one 1) (var two 2) (var three 3) (var plus +) (assert (= 22 (plus one (plus 1 2 two) (plus 8 (plus zero 1) 4 three))) "nested function calls") # String literals (assert (= "abcd" "\x61\x62\x63\x64") "hex escapes") (assert (= "\e" "\x1B") "escape character") (assert (= "\x09" "\t") "tab character") # Mcarthy's 91 function (var f91 nil) (:= f91 (fn [n] (if (> n 100) (- n 10) (f91 (f91 (+ n 11)))))) (assert (= 91 (f91 10)), "f91(10) = 91") (assert (= 91 (f91 11)), "f91(11) = 91") (assert (= 91 (f91 20)), "f91(20) = 91") (assert (= 91 (f91 31)), "f91(31) = 91") (assert (= 91 (f91 100)), "f91(100) = 91") (assert (= 91 (f91 101)), "f91(101) = 91") (assert (= 92 (f91 102)), "f91(102) = 92") (assert (= 93 (f91 103)), "f91(103) = 93") (assert (= 94 (f91 104)), "f91(104) = 94") # Fibonacci (def fib (do (var fib nil) (:= fib (fn [n] (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2)))))))) (def fib2 (fn fib2 [n] (if (< n 2) n (+ (fib2 (- n 1)) (fib2 (- n 2)))))) (assert (= (fib 0) (fib2 0) 0) "fib(0)") (assert (= (fib 1) (fib2 1) 1) "fib(1)") (assert (= (fib 2) (fib2 2) 1) "fib(2)") (assert (= (fib 3) (fib2 3) 2) "fib(3)") (assert (= (fib 4) (fib2 4) 3) "fib(4)") (assert (= (fib 5) (fib2 5) 5) "fib(5)") (assert (= (fib 6) (fib2 6) 8) "fib(6)") (assert (= (fib 7) (fib2 7) 13) "fib(7)") (assert (= (fib 8) (fib2 8) 21) "fib(8)") (assert (= (fib 9) (fib2 9) 34) "fib(9)") (assert (= (fib 10) (fib2 10) 55) "fib(10)") # Closure in non function scope (def outerfun (fn [x y] (def c (do (def someval (+ 10 y)) (def ctemp (if x (fn [] someval) (fn [] y))) ctemp )) (+ 1 2 3 4 5 6 7) c)) (assert (= ((outerfun 1 2)) 12) "inner closure 1") (assert (= ((outerfun nil 2)) 2) "inner closure 2") (assert (= ((outerfun false 3)) 3) "inner closure 3") (assert (= '(1 2 3) (quote (1 2 3)) (tuple 1 2 3)) "quote shorthand") ((fn [] (var accum 1) (var count 0) (while (< count 16) (:= accum (<< accum 1)) (:= count (+ 1 count))) (assert (= accum 65536) "loop in closure"))) (var accum 1) (var count 0) (while (< count 16) (:= accum (<< accum 1)) (:= count (+ 1 count))) (assert (= accum 65536) "loop globally") (assert (= (struct 1 2 3 4 5 6 7 8) (struct 7 8 5 6 3 4 1 2)) "struct order does not matter 1") (assert (= (struct :apple 1 6 :bork '(1 2 3) 5) (struct 6 :bork '(1 2 3) 5 :apple 1)) "struct order does not matter 2") # Symbol function (assert (= (symbol "abc" 1 2 3) 'abc123) "symbol function") # Fiber tests (def afiber (fiber.new (fn [x] (error (string "hello, " x))) :e)) (def afiber-result (resume afiber "world!")) (assert (= afiber-result "hello, world!") "fiber error result") (assert (= (fiber.status afiber) :error) "fiber error status") # yield tests (def t (fiber.new (fn [&] (yield 1) (yield 2) 3))) (assert (= 1 (resume t)) "initial transfer to new fiber") (assert (= 2 (resume t)) "second transfer to fiber") (assert (= 3 (resume t)) "return from fiber") (assert (= (fiber.status t) :dead) "finished fiber is dead") # Var arg tests (def vargf (fn [more] (apply + more))) (assert (= 0 (vargf @[])) "var arg no arguments") (assert (= 1 (vargf @[1])) "var arg no packed arguments") (assert (= 3 (vargf @[1 2])) "var arg tuple size 1") (assert (= 10 (vargf @[1 2 3 4])) "var arg tuple size 2, 2 normal args") (assert (= 110 (vargf @[1 2 3 4 10 10 10 10 10 10 10 10 10 10])) "var arg large tuple") # Higher order functions (def compose (fn [f g] (fn [& xs] (f (apply g xs))))) (def -+ (compose - +)) (def +- (compose + -)) (assert (= (-+ 1 2 3 4) -10) "compose - +") (assert (= (+- 1 2 3 4) -8) "compose + -") (assert (= ((compose -+ +-) 1 2 3 4) 8) "compose -+ +-") (assert (= ((compose +- -+) 1 2 3 4) 10) "compose +- -+") # UTF-8 #🐙🐙🐙🐙 (def 🦊 :fox) (def 🐮 :cow) (assert (= (string "🐼" 🦊 🐮) "🐼:fox:cow") "emojis 🙉 :)") (assert (not= 🦊 "🦊") "utf8 strings are not symbols and vice versa") # Symbols with @ character (def @ 1) (assert (= @ 1) "@ symbol") (def @@ 2) (assert (= @@ 2) "@@ symbol") (def @hey 3) (assert (= @hey 3) "@hey symbol") # Merge sort # Imperative merge sort merge (def merge (fn [xs ys] (def ret @[]) (def xlen (length xs)) (def ylen (length ys)) (var i 0) (var j 0) # Main merge (while (if (< i xlen) (< j ylen)) (def xi (get xs i)) (def yj (get ys j)) (if (< xi yj) (do (array.push ret xi) (:= i (+ i 1))) (do (array.push ret yj) (:= j (+ j 1))))) # Push rest of xs (while (< i xlen) (def xi (get xs i)) (array.push ret xi) (:= i (+ i 1))) # Push rest of ys (while (< j ylen) (def yj (get ys j)) (array.push ret yj) (:= j (+ j 1))) ret)) (assert (apply <= (merge @[1 3 5] @[2 4 6])) "merge sort merge 1") (assert (apply <= (merge @[1 2 3] @[4 5 6])) "merge sort merge 2") (assert (apply <= (merge @[1 3 5] @[2 4 6 6 6 9])) "merge sort merge 3") (assert (apply <= (merge '(1 3 5) @[2 4 6 6 6 9])) "merge sort merge 4") # Gensym tests (assert (not= (gensym) (gensym)) "two gensyms not equal") ((fn [] (def syms (table)) (var count 0) (while (< count 128) (put syms (gensym) true) (:= count (+ 1 count))) (assert (= (length syms) 128) "many symbols"))) # Let (assert (= (let [a 1 b 2] (+ a b)) 3), "simple let") (assert (= (let [[a b] @[1 2]] (+ a b)) 3), "destructured let") (assert (= (let [[a [c d] b] @[1 (tuple 4 3) 2]] (+ a b c d)) 10), "double destructured let") # Macros (defn dub [x] (+ x x)) (assert (= 2 (dub 1)) "defn macro") (do (defn trip [x] (+ x x x)) (assert (= 3 (trip 1)) "defn macro triple")) (do (var i 0) (when true (++ i) (++ i) (++ i) (++ i) (++ i) (++ i)) (assert (= i 6) "when macro")) (end-suite)