# Copyright (c) 2020 Calvin Rose # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. (import ./helper :prefix "" :exit true) (start-suite 0) (assert (= 10 (+ 1 2 3 4)) "addition") (assert (= -8 (- 1 2 3 4)) "subtraction") (assert (= 24 (* 1 2 3 4)) "multiplication") (assert (= 4 (blshift 1 2)) "left shift") (assert (= 1 (brshift 4 2)) "right shift") (assert (< 1 2 3 4 5 6) "less than integers") (assert (< 1.0 2.0 3.0 4.0 5.0 6.0) "less than reals") (assert (> 6 5 4 3 2 1) "greater than integers") (assert (> 6.0 5.0 4.0 3.0 2.0 1.0) "greater than reals") (assert (<= 1 2 3 3 4 5 6) "less than or equal to integers") (assert (<= 1.0 2.0 3.0 3.0 4.0 5.0 6.0) "less than or equal to reals") (assert (>= 6 5 4 4 3 2 1) "greater than or equal to integers") (assert (>= 6.0 5.0 4.0 4.0 3.0 2.0 1.0) "greater than or equal to reals") (assert (= 7 (% 20 13)) "modulo 1") (assert (= -7 (% -20 13)) "modulo 2") (assert (< 1.0 nil false true (fiber/new (fn [] 1)) "hi" (quote hello) :hello (array 1 2 3) (tuple 1 2 3) (table "a" "b" "c" "d") (struct 1 2 3 4) (buffer "hi") (fn [x] (+ x x)) print) "type ordering") (assert (= (string (buffer "123" "456")) (string @"123456")) "buffer literal") (assert (= (get {} 1) nil) "get nil from empty struct") (assert (= (get @{} 1) nil) "get nil from empty table") (assert (= (get {:boop :bap} :boop) :bap) "get non nil from struct") (assert (= (get @{:boop :bap} :boop) :bap) "get non nil from table") (assert (= (get @"\0" 0) 0) "get non nil from buffer") (assert (= (get @"\0" 1) nil) "get nil from buffer oob") (assert (put @{} :boop :bap) "can add to empty table") (assert (put @{1 3} :boop :bap) "can add to non-empty table") (assert (not false) "false literal") (assert true "true literal") (assert (not nil) "nil literal") (assert (= 7 (bor 3 4)) "bit or") (assert (= 0 (band 3 4)) "bit and") (assert (= 0xFF (bxor 0x0F 0xF0)) "bit xor") (assert (= 0xF0 (bxor 0xFF 0x0F)) "bit xor 2") # Set global variables to prevent some possible compiler optimizations that defeat point of the test (var zero 0) (var one 1) (var two 2) (var three 3) (var plus +) (assert (= 22 (plus one (plus 1 2 two) (plus 8 (plus zero 1) 4 three))) "nested function calls") # String literals (assert (= "abcd" "\x61\x62\x63\x64") "hex escapes") (assert (= "\e" "\x1B") "escape character") (assert (= "\x09" "\t") "tab character") # McCarthy's 91 function (var f91 nil) (set f91 (fn [n] (if (> n 100) (- n 10) (f91 (f91 (+ n 11)))))) (assert (= 91 (f91 10)) "f91(10) = 91") (assert (= 91 (f91 11)) "f91(11) = 91") (assert (= 91 (f91 20)) "f91(20) = 91") (assert (= 91 (f91 31)) "f91(31) = 91") (assert (= 91 (f91 100)) "f91(100) = 91") (assert (= 91 (f91 101)) "f91(101) = 91") (assert (= 92 (f91 102)) "f91(102) = 92") (assert (= 93 (f91 103)) "f91(103) = 93") (assert (= 94 (f91 104)) "f91(104) = 94") # Fibonacci (def fib (do (var fib nil) (set fib (fn [n] (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2)))))))) (def fib2 (fn fib2 [n] (if (< n 2) n (+ (fib2 (- n 1)) (fib2 (- n 2)))))) (assert (= (fib 0) (fib2 0) 0) "fib(0)") (assert (= (fib 1) (fib2 1) 1) "fib(1)") (assert (= (fib 2) (fib2 2) 1) "fib(2)") (assert (= (fib 3) (fib2 3) 2) "fib(3)") (assert (= (fib 4) (fib2 4) 3) "fib(4)") (assert (= (fib 5) (fib2 5) 5) "fib(5)") (assert (= (fib 6) (fib2 6) 8) "fib(6)") (assert (= (fib 7) (fib2 7) 13) "fib(7)") (assert (= (fib 8) (fib2 8) 21) "fib(8)") (assert (= (fib 9) (fib2 9) 34) "fib(9)") (assert (= (fib 10) (fib2 10) 55) "fib(10)") # Closure in non function scope (def outerfun (fn [x y] (def c (do (def someval (+ 10 y)) (def ctemp (if x (fn [] someval) (fn [] y))) ctemp )) (+ 1 2 3 4 5 6 7) c)) (assert (= ((outerfun 1 2)) 12) "inner closure 1") (assert (= ((outerfun nil 2)) 2) "inner closure 2") (assert (= ((outerfun false 3)) 3) "inner closure 3") (assert (= '(1 2 3) (quote (1 2 3)) (tuple 1 2 3)) "quote shorthand") ((fn [] (var accum 1) (var count 0) (while (< count 16) (set accum (blshift accum 1)) (set count (+ 1 count))) (assert (= accum 65536) "loop in closure"))) (var accum 1) (var count 0) (while (< count 16) (set accum (blshift accum 1)) (set count (+ 1 count))) (assert (= accum 65536) "loop globally") (assert (= (struct 1 2 3 4 5 6 7 8) (struct 7 8 5 6 3 4 1 2)) "struct order does not matter 1") (assert (= (struct :apple 1 6 :bork '(1 2 3) 5) (struct 6 :bork '(1 2 3) 5 :apple 1)) "struct order does not matter 2") # Symbol function (assert (= (symbol "abc" 1 2 3) 'abc123) "symbol function") # Fiber tests (def afiber (fiber/new (fn [] (def x (yield)) (error (string "hello, " x))) :ye)) (resume afiber) # first resume to prime (def afiber-result (resume afiber "world!")) (assert (= afiber-result "hello, world!") "fiber error result") (assert (= (fiber/status afiber) :error) "fiber error status") # yield tests (def t (fiber/new (fn [&] (yield 1) (yield 2) 3))) (assert (= 1 (resume t)) "initial transfer to new fiber") (assert (= 2 (resume t)) "second transfer to fiber") (assert (= 3 (resume t)) "return from fiber") (assert (= (fiber/status t) :dead) "finished fiber is dead") # Var arg tests (def vargf (fn [more] (apply + more))) (assert (= 0 (vargf @[])) "var arg no arguments") (assert (= 1 (vargf @[1])) "var arg no packed arguments") (assert (= 3 (vargf @[1 2])) "var arg tuple size 1") (assert (= 10 (vargf @[1 2 3 4])) "var arg tuple size 2, 2 normal args") (assert (= 110 (vargf @[1 2 3 4 10 10 10 10 10 10 10 10 10 10])) "var arg large tuple") # Higher order functions (def compose (fn [f g] (fn [& xs] (f (apply g xs))))) (def -+ (compose - +)) (def +- (compose + -)) (assert (= (-+ 1 2 3 4) -10) "compose - +") (assert (= (+- 1 2 3 4) -8) "compose + -") (assert (= ((compose -+ +-) 1 2 3 4) 8) "compose -+ +-") (assert (= ((compose +- -+) 1 2 3 4) 10) "compose +- -+") # UTF-8 #🐙🐙🐙🐙 (def 🦊 :fox) (def 🐮 :cow) (assert (= (string "🐼" 🦊 🐮) "🐼foxcow") "emojis 🙉 :)") (assert (not= 🦊 "🦊") "utf8 strings are not symbols and vice versa") (assert (= "\U01F637" "😷") "unicode escape 1") (assert (= "\u2623" "\U002623" "☣") "unicode escape 2") (assert (= "\u24c2" "\U0024c2" "Ⓜ") "unicode escape 3") (assert (= "\u0061" "a") "unicode escape 4") # Symbols with @ character (def @ 1) (assert (= @ 1) "@ symbol") (def @-- 2) (assert (= @-- 2) "@-- symbol") (def @hey 3) (assert (= @hey 3) "@hey symbol") # Merge sort # Imperative (and verbose) merge sort merge (defn merge [xs ys] (def ret @[]) (def xlen (length xs)) (def ylen (length ys)) (var i 0) (var j 0) # Main merge (while (if (< i xlen) (< j ylen)) (def xi (get xs i)) (def yj (get ys j)) (if (< xi yj) (do (array/push ret xi) (set i (+ i 1))) (do (array/push ret yj) (set j (+ j 1))))) # Push rest of xs (while (< i xlen) (def xi (get xs i)) (array/push ret xi) (set i (+ i 1))) # Push rest of ys (while (< j ylen) (def yj (get ys j)) (array/push ret yj) (set j (+ j 1))) ret) (assert (apply <= (merge @[1 3 5] @[2 4 6])) "merge sort merge 1") (assert (apply <= (merge @[1 2 3] @[4 5 6])) "merge sort merge 2") (assert (apply <= (merge @[1 3 5] @[2 4 6 6 6 9])) "merge sort merge 3") (assert (apply <= (merge '(1 3 5) @[2 4 6 6 6 9])) "merge sort merge 4") (assert (deep= @[1 2 3 4 5] (sort @[5 3 4 1 2])) "sort 1") (assert (deep= @[{:a 1} {:a 4} {:a 7}] (sort-by |($ :a) @[{:a 4} {:a 7} {:a 1}])) "sort 2") (assert (deep= @[1 2 3 4 5] (sorted [5 3 4 1 2])) "sort 3") (assert (deep= @[{:a 1} {:a 4} {:a 7}] (sorted-by |($ :a) [{:a 4} {:a 7} {:a 1}])) "sort 4") # Gensym tests (assert (not= (gensym) (gensym)) "two gensyms not equal") ((fn [] (def syms (table)) (var count 0) (while (< count 128) (put syms (gensym) true) (set count (+ 1 count))) (assert (= (length syms) 128) "many symbols"))) # Let (assert (= (let [a 1 b 2] (+ a b)) 3) "simple let") (assert (= (let [[a b] @[1 2]] (+ a b)) 3) "destructured let") (assert (= (let [[a [c d] b] @[1 (tuple 4 3) 2]] (+ a b c d)) 10) "double destructured let") # Macros (defn dub [x] (+ x x)) (assert (= 2 (dub 1)) "defn macro") (do (defn trip [x] (+ x x x)) (assert (= 3 (trip 1)) "defn macro triple")) (do (var i 0) (when true (++ i) (++ i) (++ i) (++ i) (++ i) (++ i)) (assert (= i 6) "when macro")) # Denormal tables and structs (assert (= (length {1 2 nil 3}) 1) "nil key struct literal") (assert (= (length @{1 2 nil 3}) 1) "nil key table literal") (assert (= (length (struct 1 2 nil 3)) 1) "nil key struct ctor") (assert (= (length (table 1 2 nil 3)) 1) "nil key table ctor") (assert (= (length (struct (/ 0 0) 2 1 3)) 1) "nan key struct ctor") (assert (= (length (table (/ 0 0) 2 1 3)) 1) "nan key table ctor") (assert (= (length {1 2 nil 3}) 1) "nan key struct literal") (assert (= (length @{1 2 nil 3}) 1) "nan key table literal") (assert (= (length (struct 2 1 3 nil)) 1) "nil value struct ctor") (assert (= (length (table 2 1 3 nil)) 1) "nil value table ctor") (assert (= (length {1 2 3 nil}) 1) "nil value struct literal") (assert (= (length @{1 2 3 nil}) 1) "nil value table literal") # Regression Test (assert (= 1 (((compile '(fn [] 1) @{})))) "regression test") # Regression Test #137 (def [a b c] (range 10)) (assert (= a 0) "regression #137 (1)") (assert (= b 1) "regression #137 (2)") (assert (= c 2) "regression #137 (3)") (var [x y z] (range 10)) (assert (= x 0) "regression #137 (4)") (assert (= y 1) "regression #137 (5)") (assert (= z 2) "regression #137 (6)") (assert (= true ;(map truthy? [0 "" true @{} {} [] '()])) "truthy values") (assert (= false ;(map truthy? [nil false])) "non-truthy values") # Struct and Table duplicate elements (assert (= {:a 3 :b 2} {:a 1 :b 2 :a 3}) "struct literal duplicate keys") (assert (= {:a 3 :b 2} (struct :a 1 :b 2 :a 3)) "struct constructor duplicate keys") (assert (deep= @{:a 3 :b 2} @{:a 1 :b 2 :a 3}) "table literal duplicate keys") (assert (deep= @{:a 3 :b 2} (table :a 1 :b 2 :a 3)) "table constructor duplicate keys") ## Polymorphic comparison -- Issue #272 # confirm delegation to primitive comparators: (assert (= 0 (compare-primitive 3 3)) "compare-primitive integers (1)") (assert (= -1 (compare-primitive 3 5)) "compare-primitive integers (2)") (assert (= 1 (compare-primitive "foo" "bar")) "compare-primitive strings") (assert (= 0 (compare 1 1)) "compare integers (1)") (assert (= -1 (compare 1 2)) "compare integers (2)") (assert (= 1 (compare "foo" "bar")) "compare strings (1)") (assert (compare< 1 2 3 4 5 6) "compare less than integers") (assert (compare< 1.0 2.0 3.0 4.0 5.0 6.0) "compare less than reals") (assert (compare> 6 5 4 3 2 1) "compare greater than integers") (assert (compare> 6.0 5.0 4.0 3.0 2.0 1.0) "compare greater than reals") (assert (compare<= 1 2 3 3 4 5 6) "compare less than or equal to integers") (assert (compare<= 1.0 2.0 3.0 3.0 4.0 5.0 6.0) "compare less than or equal to reals") (assert (compare>= 6 5 4 4 3 2 1) "compare greater than or equal to integers") (assert (compare>= 6.0 5.0 4.0 4.0 3.0 2.0 1.0) "compare greater than or equal to reals") (assert (compare< 1.0 nil false true (fiber/new (fn [] 1)) "hi" (quote hello) :hello (array 1 2 3) (tuple 1 2 3) (table "a" "b" "c" "d") (struct 1 2 3 4) (buffer "hi") (fn [x] (+ x x)) print) "compare type ordering") # test polymorphic (def mynum @{:type :mynum :v 0 :compare (fn [self other] (case (type other) :number (compare-primitive (self :v) other)) :table (when (= (get other :type) :mynum) (compare-primitive (self :v) (other :v))))}) (let [n3 (table/setproto @{:v 3} mynum)] (assert (= 0 (compare 3 n3)) "compare num to object (1)") (assert (= -1 (compare n3 4)) "compare object to num (2)") (assert (= 1 (compare (table/setproto @{:v 4} mynum) n3)) "compare object to object") (assert (compare< 2 n3 4) "compare< poly") (assert (compare> 4 n3 2) "compare> poly") (assert (compare<= 2 3 n3 4) "compare<= poly") (assert (compare= 3 n3 (table/setproto @{:v 3} mynum)) "compare= poly") (assert (deep= (sorted @[4 5 n3 2] compare<) @[2 n3 4 5]) "polymorphic sort")) (end-suite)