1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-25 17:40:36 +00:00
hyperrogue/geometry.cpp
2019-09-12 22:50:07 +02:00

513 lines
14 KiB
C++

// Hyperbolic Rogue
// geometrical constants
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
namespace hr {
// the results are:
// hexf = 0.378077 hcrossf = 0.620672 tessf = 1.090550
// hexhexdist = 0.566256
ld hcrossf7 = 0.620672;
ld hexf7 = 0.378077;
// the distance between two hexagon centers
void geometry_information::prepare_basics() {
DEBBI(DF_INIT | DF_POLY | DF_GEOM, ("prepare_basics"));
hexshift = 0;
ld fmin, fmax;
if(archimedean)
ginf[gArchimedean].cclass = gcHyperbolic;
if(euclid) {
// dynamicval<eGeometry> g(geometry, gNormal);
// for(int i=0; i<S84; i++) spinmatrix[i] = spin(i * M_PI / S42);
if(a4 && !BITRUNCATED) {
crossf = .5;
hexf = .5;
hcrossf = crossf * sqrt(2) / 2;
hexhexdist = crossf;
hexvdist = hexf;
hepvdist = hexf;
rhexf = crossf * sqrt(2) / 2;
tessf = crossf;
}
else if(a4 && BITRUNCATED) {
ld s2 = sqrt(2);
ld xx = 1 - s2 / 2;
crossf = .5;
tessf = crossf * s2;
hexf = .5 * xx * s2;
hcrossf = crossf;
hexhexdist = crossf * s2;
hexvdist = crossf * hypot(1-xx, xx);
hepvdist = crossf;
rhexf = hexf;
tessf = crossf;
}
else {
crossf = .5;
tessf = crossf * sqrt(3);
hexf = tessf/3;
hcrossf = crossf;
hexhexdist = crossf;
hexvdist = hexf;
hepvdist = crossf;
rhexf = hexf;
}
goto finish;
}
if((sphere || hyperbolic) && WDIM == 3 && !binarytiling) {
rhexf = hexf = 0.378077;
crossf = hcrossf = 0.620672;
tessf = 1.090550;
hexhexdist = 0.566256;
goto finish;
}
tessf = edge_of_triangle_with_angles(2*M_PI/S3, M_PI/S7, M_PI/S7);
if(elliptic && S7 == 4) tessf = M_PI/2;
hcrossf = edge_of_triangle_with_angles(M_PI/2, M_PI/S7, M_PI/S3);
crossf = BITRUNCATED ? hcrossf : tessf;
fmin = 0, fmax = tessf;
for(int p=0; p<100; p++) {
ld f = (fmin+fmax) / 2;
hyperpoint H = xpush0(f);
hyperpoint H1 = spin(2*M_PI/S7) * H;
hyperpoint H2 = xpush0(tessf-f);
ld v1 = intval(H, H1), v2 = intval(H, H2);
if(v1 < v2) fmin = f; else fmax = f;
}
hexf = fmin;
rhexf = BITRUNCATED ? hexf : hcrossf;
if(!euclid && BITRUNCATED && !(S7&1))
hexshift = ALPHA/2 + ALPHA * ((S7-1)/2) + M_PI;
finish:
for(int d=0; d<S7; d++)
heptmove[d] = spin(-d * ALPHA) * xpush(tessf) * spin(M_PI);
for(int d=0; d<S7; d++)
hexmove[d] = spin(hexshift-d * ALPHA) * xpush(-crossf)* spin(M_PI);
for(int d=0; d<S7; d++) invheptmove[d] = inverse(heptmove[d]);
for(int d=0; d<S7; d++) invhexmove[d] = inverse(hexmove[d]);
hexhexdist = hdist(xpush0(crossf), xspinpush0(M_PI*2/S7, crossf));
hexvdist = hdist(xpush0(hexf), xspinpush0(ALPHA/2, hcrossf));
DEBB(DF_GEOM | DF_POLY,
(format("S7=%d S6=%d hexf = " LDF" hcross = " LDF" tessf = " LDF" hexshift = " LDF " hexhex = " LDF " hexv = " LDF "\n", S7, S6, hexf, hcrossf, tessf, hexshift,
hexhexdist, hexvdist)));
base_distlimit = ginf[geometry].distlimit[!BITRUNCATED];
#if CAP_GP
gp::compute_geometry();
#endif
#if CAP_IRR
irr::compute_geometry();
#endif
#if CAP_ARCM
if(archimedean) {
arcm::current.compute_geometry();
crossf = hcrossf7 * arcm::current.scale();
hexvdist = arcm::current.scale() * .5;
rhexf = arcm::current.scale() * .5;
}
#endif
#if CAP_BT
if(binarytiling) hexvdist = rhexf = 1, tessf = 1, scalefactor = 1, crossf = hcrossf7;
if(geometry == gHoroRec) hexvdist = rhexf = .5, tessf = .5, scalefactor = .5, crossf = hcrossf7/2;
#endif
#if CAP_BT && MAXMDIM >= 4
if(binarytiling && WDIM == 3) binary::build_tmatrix();
#endif
scalefactor = crossf / hcrossf7;
orbsize = crossf;
if(WDIM == 3) scalefactor *= vid.creature_scale;
zhexf = BITRUNCATED ? hexf : crossf* .55;
if(WDIM == 3) zhexf *= vid.creature_scale;
if(WDIM == 2 && GDIM == 3) zhexf *= 1.5, orbsize *= 1.2;
floorrad0 = hexvdist* (GDIM == 3 ? 1 : 0.92);
floorrad1 = rhexf * (GDIM == 3 ? 1 : 0.94);
if(euclid4) {
if(!BITRUNCATED)
floorrad0 = floorrad1 = rhexf * (GDIM == 3 ? 1 : .94);
else
floorrad0 = hexvdist * (GDIM == 3 ? 1 : .9),
floorrad1 = rhexf * (GDIM == 3 ? 1 : .8);
}
set_sibling_limit();
prepare_compute3();
if(hyperbolic && &currfp != &fieldpattern::fp_invalid)
currfp.analyze();
}
transmatrix xspinpush(ld dir, ld dist) {
if(euclid)
return eupush(cos(dir) * dist, -sin(dir) * dist);
else
return spin(dir) * xpush(dist) * spin(-dir);
}
purehookset hooks_swapdim;
namespace geom3 {
// Here we convert between the following parameters:
// abslev: level below the plane
// lev: level above the world (abslev = depth-lev)
// projection: projection parameter
// factor: zoom factor
ld abslev_to_projection(ld abslev) {
if(sphere || euclid) return vid.camera+abslev;
return tanh(abslev) / tanh(vid.camera);
}
ld projection_to_abslev(ld proj) {
if(sphere || euclid) return proj-vid.camera;
// tanh(abslev) / tanh(camera) = proj
return atanh(proj * tanh(vid.camera));
}
ld lev_to_projection(ld lev) {
return abslev_to_projection(vid.depth - lev);
}
ld projection_to_factor(ld proj) {
return lev_to_projection(0) / proj;
}
ld factor_to_projection(ld fac) {
return lev_to_projection(0) / fac;
}
ld lev_to_factor(ld lev) {
if(WDIM == 3) return lev;
if(GDIM == 3) return vid.depth - lev;
return projection_to_factor(lev_to_projection(lev));
}
ld factor_to_lev(ld fac) {
if(DIM == 3) return fac;
return vid.depth - projection_to_abslev(factor_to_projection(fac));
}
void do_auto_eye() {
if(!vid.auto_eye) return;
auto& cs = getcs();
if(cs.charid < 4)
vid.eye = cgi.eyelevel_human;
else if(cs.charid < 8)
vid.eye = cgi.eyelevel_dog;
else if(cs.charid == 8)
vid.eye = cgi.eyelevel_familiar;
}
// how should we scale at level lev
ld scale_at_lev(ld lev) {
if(sphere || euclid) return 1;
return cosh(vid.depth - lev);
}
string invalid;
ld actual_wall_height() {
#if CAP_GP
if(GOLDBERG && vid.gp_autoscale_heights)
return vid.wall_height * min<ld>(4 / hypot_d(2, gp::next), 1);
#endif
return vid.wall_height;
}
}
void geometry_information::prepare_compute3() {
using namespace geom3;
DEBBI(DF_INIT | DF_POLY | DF_GEOM, ("geom3::compute"));
// tanh(depth) / tanh(camera) == vid.alpha
invalid = "";
if(GDIM == 3) ;
else if(vid.tc_alpha < vid.tc_depth && vid.tc_alpha < vid.tc_camera)
vid.alpha = tan_auto(vid.depth) / tan_auto(vid.camera);
else if(vid.tc_depth < vid.tc_alpha && vid.tc_depth < vid.tc_camera) {
ld v = vid.alpha * tan_auto(vid.camera);
if(hyperbolic && (v<1e-6-12 || v>1-1e-12)) invalid = "cannot adjust depth", vid.depth = vid.camera;
else vid.depth = atan_auto(v);
}
else {
ld v = tan_auto(vid.depth) / vid.alpha;
if(hyperbolic && (v<1e-12-1 || v>1-1e-12)) invalid = "cannot adjust camera", vid.camera = vid.depth;
else vid.camera = atan_auto(v);
}
if(fabs(vid.alpha) < 1e-6) invalid = "does not work with perfect Klein";
if(invalid != "") {
INFDEEP = .7;
BOTTOM = .8;
HELLSPIKE = .85;
LAKE = .9;
FLOOR = 1;
WALL = 1.25;
SLEV[0] = 1;
SLEV[1] = 1.08;
SLEV[2] = 1.16;
SLEV[3] = 1.24;
FLATEYE = 1.03;
LEG1 = 1.025;
LEG = 1.05;
LEG3 = 1.075;
GROIN = 1.09;
GROIN1 = 1.105;
GHOST = 1.1;
BODY = 1.15;
BODY1 = 1.151;
BODY2 = 1.152;
BODY3 = 1.153;
NECK1 = 1.16;
NECK = 1.17;
NECK3 = 1.18;
HEAD = 1.188;
HEAD1= 1.189;
HEAD2= 1.190;
HEAD3= 1.191;
ABODY = 1.08;
AHEAD = 1.12;
BIRD = 1.20;
}
else {
INFDEEP = GDIM == 3 ? (sphere ? M_PI/2 : +5) : (euclid || sphere) ? 0.01 : lev_to_projection(0) * tanh(vid.camera);
ld wh = actual_wall_height();
WALL = lev_to_factor(wh);
FLOOR = lev_to_factor(0);
human_height = vid.human_wall_ratio * wh;
if(WDIM == 3) human_height = scalefactor * vid.height_width / 2;
ld reduce = (WDIM == 3 ? human_height / 2 : 0);
LEG0 = lev_to_factor(human_height * .0 - reduce);
LEG1 = lev_to_factor(human_height * .1 - reduce);
LEG = lev_to_factor(human_height * .2 - reduce);
LEG3 = lev_to_factor(human_height * .3 - reduce);
GROIN = lev_to_factor(human_height * .4 - reduce);
GROIN1= lev_to_factor(human_height * .5 - reduce);
BODY = lev_to_factor(human_height * .6 - reduce);
BODY1 = lev_to_factor(human_height * .61 - reduce);
BODY2 = lev_to_factor(human_height * .62 - reduce);
BODY3 = lev_to_factor(human_height * .63 - reduce);
NECK1 = lev_to_factor(human_height * .7 - reduce);
NECK = lev_to_factor(human_height * .8 - reduce);
NECK3 = lev_to_factor(human_height * .9 - reduce);
HEAD = lev_to_factor(human_height * .97 - reduce);
HEAD1 = lev_to_factor(human_height * .98 - reduce);
HEAD2 = lev_to_factor(human_height * .99 - reduce);
HEAD3 = lev_to_factor(human_height - reduce);
reduce = (DIM == 3 ? human_height * .3 : 0);
STUFF = lev_to_factor(0) - max(orbsize * 0.3, zhexf * .6);
ABODY = lev_to_factor(human_height * .4 - reduce);
ALEG0 = lev_to_factor(human_height * .0 - reduce);
ALEG = lev_to_factor(human_height * .2 - reduce);
AHEAD = lev_to_factor(human_height * .6 - reduce);
BIRD = lev_to_factor(WDIM == 3 ? 0 : (vid.human_wall_ratio+1)/2 * wh * .8);
GHOST = lev_to_factor(WDIM == 3 ? 0 : human_height * .5);
FLATEYE = lev_to_factor(human_height * .15);
slev = vid.rock_wall_ratio * wh / 3;
for(int s=0; s<=3; s++)
SLEV[s] = lev_to_factor(vid.rock_wall_ratio * wh * s/3);
LAKE = lev_to_factor(-vid.lake_top);
HELLSPIKE = lev_to_factor(-(vid.lake_top+vid.lake_bottom)/2);
BOTTOM = lev_to_factor(-vid.lake_bottom);
LOWSKY = lev_to_factor(2 * wh);
HIGH = LOWSKY;
HIGH2 = lev_to_factor(3 * wh);
SKY = LOWSKY - 5;
}
}
namespace geom3 {
#if MAXMDIM >= 4
void switch_always3() {
if(dual::split(switch_always3)) return;
if(rug::rugged) rug::close();
vid.always3 = !vid.always3;
swapmatrix(View);
callhooks(hooks_swapdim);
}
#endif
void switch_tpp() {
if(dual::split(switch_fpp)) return;
if(pmodel == mdDisk && vid.camera_angle) {
vid.yshift = 0;
vid.camera_angle = 0;
vid.xposition = 0;
vid.yposition = 0;
vid.scale = 1;
vid.fixed_facing = false;
}
else {
vid.yshift = -0.3;
vid.camera_angle = -45;
vid.scale = 18/16. * vid.xres / vid.yres / multi::players;
vid.xposition = 0;
vid.yposition = -0.9;
vid.fixed_facing = true;
vid.fixed_facing_dir = 90;
}
}
void switch_fpp() {
#if MAXMDIM >= 4
if(rug::rugged) rug::close();
if(dual::split(switch_fpp)) return;
check_cgi(); cgi.require_basics();
View = inverse(conformal::rotmatrix()) * View;
if(!vid.always3) {
vid.always3 = true;
ld ms = min<ld>(cgi.scalefactor, 1);
vid.wall_height = 1.5 * ms;
if(sphere) {
vid.depth = M_PI / 6;
vid.wall_height = M_PI / 3;
}
vid.human_wall_ratio = 0.8;
if(euclid && allowIncreasedSight() && vid.use_smart_range == 0) {
genrange_bonus = gamerange_bonus = sightrange_bonus = cgi.base_distlimit * 3/2;
}
vid.camera = 0;
vid.depth = ms;
if(pmodel == mdDisk) pmodel = mdPerspective;
swapmatrix(View);
callhooks(hooks_swapdim);
#if CAP_RACING
racing::player_relative = true;
#endif
}
else {
vid.always3 = false;
vid.wall_height = .3;
vid.human_wall_ratio = .7;
vid.camera = 1;
vid.depth = 1;
if(pmodel == mdPerspective) pmodel = mdDisk;
swapmatrix(View);
callhooks(hooks_swapdim);
}
View = conformal::rotmatrix() * View;
#endif
}
}
geometry_information *cgip;
map<string, geometry_information> cgis;
int last_texture_step;
int ntimestamp;
void check_cgi() {
string s;
auto V = [&] (string a, string b) { s += a; s += ": "; s += b; s += "; "; };
V("GEO", its(int(geometry)));
V("VAR", its(int(variation)));
if(GOLDBERG) V("GP", its(gp::param.first) + "," + its(gp::param.second));
if(IRREGULAR) V("IRR", its(irr::irrid));
if(geometry == gArchimedean) V("ARCM", arcm::current.symbol);
if(geometry == gCrystal) V("CRYSTAL", its(ginf[gCrystal].sides) + its(ginf[gCrystal].vertex));
if(binarytiling || DIM == 3) V("WQ", its(vid.texture_step));
if(binarytiling) V("BT", fts(vid.binary_width));
if(GDIM == 2) {
V("CAMERA", fts(vid.camera));
}
if(WDIM == 2) {
V("WH", fts(vid.wall_height));
V("HW", fts(vid.human_wall_ratio));
V("RW", fts(vid.rock_wall_ratio));
V("DEPTH", fts(vid.depth));
V("ASH", ONOFF(vid.gp_autoscale_heights));
V("LT", fts(vid.lake_top));
V("LB", fts(vid.lake_bottom));
}
V("3D", ONOFF(vid.always3));
if(WDIM == 3) {
V("CS", fts(vid.creature_scale));
V("HTW", fts(vid.height_width));
}
V("LQ", its(vid.linequality));
cgip = &cgis[s];
cgi.timestamp = ++ntimestamp;
if(isize(cgis) > 4) {
cgi.timestamp = ticks;
vector<pair<int, string>> timestamps;
for(auto& t: cgis) timestamps.emplace_back(-t.second.timestamp, t.first);
sort(timestamps.begin(), timestamps.end());
while(isize(timestamps) > 4) {
println(hlog, "erasing geometry ", timestamps.back().second);
cgis.erase(timestamps.back().second);
timestamps.pop_back();
}
}
if(floor_textures && last_texture_step != vid.texture_step) {
println(hlog, "changed ", last_texture_step, " to ", vid.texture_step);
delete floor_textures;
floor_textures = NULL;
}
if(!floor_textures && DIM == 3 && (cgi.state & 2))
make_floor_textures();
}
void clear_cgis() {
printf("clear_cgis\n");
for(auto& p: cgis) if(&p.second != &cgi) { cgis.erase(p.first); return; }
}
auto ah_clear_geo = addHook(hooks_clear_cache, 0, clear_cgis);
}