1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-24 05:17:17 +00:00
hyperrogue/rug.cpp

734 lines
19 KiB
C++

// Hyperbolic Rogue
// Copyright (C) 2011-2016 Zeno Rogue, see 'hyper.cpp' for details
// implementation of the Hypersian Rug mode
#if CAP_RUG
#define TEXTURESIZE (texturesize)
#define HTEXTURESIZE (texturesize/2)
#if !CAP_GLEW
#if ISLINUX
extern "C" {
GLAPI void APIENTRY glGenFramebuffers (GLsizei n, GLuint *framebuffers);
GLAPI void APIENTRY glBindFramebuffer (GLenum target, GLuint framebuffer);
GLAPI void APIENTRY glFramebufferTexture (GLenum target, GLenum attachment, GLuint texture, GLint level);
GLAPI GLenum APIENTRY glCheckFramebufferStatus (GLenum target);
GLAPI void APIENTRY glDrawBuffers (GLsizei n, const GLenum *bufs);
GLAPI void APIENTRY glGenRenderbuffers (GLsizei n, GLuint *renderbuffers);
GLAPI void APIENTRY glBindRenderbuffer (GLenum target, GLuint renderbuffer);
GLAPI void APIENTRY glRenderbufferStorage (GLenum target, GLenum internalformat, GLsizei width, GLsizei height);
GLAPI void APIENTRY glFramebufferRenderbuffer (GLenum target, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer);
GLAPI void APIENTRY glDeleteRenderbuffers (GLsizei n, const GLuint *renderbuffers);
GLAPI void APIENTRY glDeleteFramebuffers (GLsizei n, const GLuint *framebuffers);
}
#endif
#if ISMAC
#define glFramebufferTexture glFramebufferTextureEXT
#endif
#endif
namespace rug {
// hypersian rug datatypes and globals
//-------------------------------------
bool rugged = false;
bool genrug = false;
bool glew = false;
bool renderonce = false;
bool rendernogl = false;
int texturesize = 1024;
ld scale = 1;
int queueiter, qvalid, dt;
double err;
struct edge {
struct rugpoint *target;
double len;
};
struct rugpoint {
double x1, y1;
bool valid;
bool inqueue;
double dist;
hyperpoint h;
hyperpoint flat;
vector<edge> edges;
};
struct triangle {
rugpoint *m[3];
triangle(rugpoint *m1, rugpoint *m2, rugpoint *m3) {
m[0] = m1; m[1] = m2; m[2] = m3;
}
};
vector<rugpoint*> points;
vector<triangle> triangles;
// construct the graph
//---------------------
int hyprand;
rugpoint *addRugpoint(hyperpoint h, double dist) {
rugpoint *m = new rugpoint;
m->h = h;
ld tz = vid.alphax+h[2];
m->x1 = (1 + h[0] / tz) / 2;
m->y1 = (1 + h[1] / tz) / 2;
m->flat = // hpxyz(h[0], h[1], sin(atan2(h[0], h[1]) * 3 + hyprand) * (h[2]-1) / 1000);
hpxyz(h[0], h[1], (h[2]-1) * (rand() % 1000 - rand() % 1000) / 1000);
m->valid = false;
m->inqueue = false;
m->dist = dist;
points.push_back(m);
return m;
}
rugpoint *findRugpoint(hyperpoint h, double dist) {
for(int i=0; i<size(points); i++)
if(intval(points[i]->h, h) < 1e-5) return points[i];
return addRugpoint(h, dist);
}
void addNewEdge(rugpoint *e1, rugpoint *e2) {
edge e; e.target = e2; e1->edges.push_back(e);
e.target = e1; e2->edges.push_back(e);
}
void addEdge(rugpoint *e1, rugpoint *e2) {
for(int i=0; i<size(e1->edges); i++)
if(e1->edges[i].target == e2) return;
addNewEdge(e1, e2);
}
void addTriangle(rugpoint *t1, rugpoint *t2, rugpoint *t3) {
addEdge(t1, t2); addEdge(t2, t3); addEdge(t3, t1);
triangles.push_back(triangle(t1,t2,t3));
}
void addTriangle1(rugpoint *t1, rugpoint *t2, rugpoint *t3) {
rugpoint *t12 = findRugpoint(mid(t1->h, t2->h), (t1->dist+ t2->dist)/2);
rugpoint *t23 = findRugpoint(mid(t2->h, t3->h), (t1->dist+ t2->dist)/2);
rugpoint *t31 = findRugpoint(mid(t3->h, t1->h), (t1->dist+ t2->dist)/2);
addTriangle(t1, t12, t31);
addTriangle(t12, t2, t23);
addTriangle(t23, t3, t31);
addTriangle(t23, t31, t12);
}
bool psort(rugpoint *a, rugpoint *b) {
return a->h[2] < b->h[2];
}
void calcLengths() {
for(int i=0; i<size(points); i++) for(int j=0; j<size(points[i]->edges); j++)
points[i]->edges[j].len = hdist(points[i]->h, points[i]->edges[j].target->h);
}
void buildRug() {
map<cell*, rugpoint *> vptr;
for(int i=0; i<size(dcal); i++)
if(gmatrix.count(dcal[i]))
vptr[dcal[i]] = addRugpoint(gmatrix[dcal[i]]*C0, dcal[i]->cpdist);
for(int i=0; i<size(dcal); i++) {
cell *c = dcal[i];
rugpoint *v = vptr[c];
if(!v) continue;
for(int j=0; j<c->type; j++) {
cell *c2 = c->mov[j];
rugpoint *w = vptr[c2];
if(!w) continue;
// if(v<w) addEdge(v, w);
cell *c3 = c->mov[(j+1) % c->type];
rugpoint *w2 = vptr[c3];
if(!w2) continue;
if(ctof(c)) addTriangle(v, w, w2);
}
}
printf("vertices = %d triangles= %d\n", size(points), size(triangles));
calcLengths();
sort(points.begin(), points.end(), psort);
}
// rug physics
queue<rugpoint*> pqueue;
void enqueue(rugpoint *m) {
if(m->inqueue) return;
pqueue.push(m);
m->inqueue = true;
}
void force(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) {
if(!m1.valid || !m2.valid) return;
// double rd = hdist(m1.h, m2.h) * xd;
// if(rd > rdz +1e-6 || rd< rdz-1e-6) printf("%lf %lf\n", rd, rdz);
double t = 0;
for(int i=0; i<3; i++) t += (m1.flat[i] - m2.flat[i]) * (m1.flat[i] - m2.flat[i]);
t = sqrt(t);
// printf("%lf %lf\n", t, rd);
err += (t-rd) * (t-rd);
bool nonzero = t < rd-1e-9 || t > rd+1e-9;
double force = (t - rd) / t / 2; // 20.0;
for(int i=0; i<3; i++) {
double di = (m2.flat[i] - m1.flat[i]) * force;
m1.flat[i] += di * d1;
m2.flat[i] -= di * d2;
if(nonzero && d2>0) enqueue(&m2);
}
}
void preset(rugpoint *m) {
int q = 0;
hyperpoint h;
for(int i=0; i<3; i++) h[i] = 0;
using namespace hyperpoint_vec;
for(int j=0; j<size(m->edges); j++)
for(int k=0; k<j; k++) {
rugpoint *a = m->edges[j].target;
rugpoint *b = m->edges[k].target;
if(!a->valid) continue;
if(!b->valid) continue;
double blen = -1;
for(int j2=0; j2<size(a->edges); j2++)
if(a->edges[j2].target == b) blen = a->edges[j2].len;
if(blen <= 0) continue;
for(int j2=0; j2<size(a->edges); j2++)
for(int k2=0; k2<size(b->edges); k2++)
if(a->edges[j2].target == b->edges[k2].target && a->edges[j2].target != m) {
rugpoint *c = a->edges[j2].target;
if(!c->valid) continue;
double a1 = m->edges[j].len/blen;
double a2 = m->edges[k].len/blen;
double c1 = a->edges[j2].len/blen;
double c2 = b->edges[k2].len/blen;
double cz = (c1*c1-c2*c2+1) / 2;
double ch = sqrt(c2*c2 - cz*cz);
double az = (a1*a1-a2*a2+1) / 2;
double ah = sqrt(a2*a2 - az*az);
// c->h = a->h + (b->h-a->h) * cz + ch * ort
hyperpoint ort = (c->flat - a->flat - cz * (b->flat-a->flat)) / ch;
// m->h = a->h + (b->h-a->h) * az - ah * ort
hyperpoint res = a->flat + (b->flat-a->flat) * az - ah * ort;
for(int i=0; i<3; i++) h[i] += res[i];
q++;
}
}
if(q>0) for(int i=0; i<3; i++) m->flat[i] = h[i]/q;
}
int divides = 0;
bool stop = false;
void subdivide() {
int N = size(points);
if(divides > 4) {stop = true; return; }
printf("subdivide (%d,%d)\n", N, size(triangles));
divides++;
vector<triangle> otriangles = triangles;
triangles.clear();
// subdivide edges
for(int i=0; i<N; i++) {
rugpoint *m = points[i];
for(int j=0; j<size(m->edges); j++) {
rugpoint *m2 = m->edges[j].target;
rugpoint *mm = addRugpoint(mid(m->h, m2->h), (m->dist+m2->dist)/2);
using namespace hyperpoint_vec;
mm->flat = (m->flat + m2->flat) / 2;
mm->valid = true; qvalid++;
mm->inqueue = false; enqueue(mm);
}
m->edges.clear();
}
for(int i=0; i<size(otriangles); i++)
addTriangle1(otriangles[i].m[0], otriangles[i].m[1], otriangles[i].m[2]);
calcLengths();
printf("result (%d,%d)\n", size(points), size(triangles));
}
void addNewPoints() {
if(qvalid == size(points)) {
subdivide();
return;
}
double dist = points[qvalid]->h[2] + .1e-6;
int oqvalid = qvalid;
for(int i=0; i<size(points); i++) {
rugpoint& m = *points[i];
bool wasvalid = m.valid;
m.valid = wasvalid || (m.h[2] >= .5 && m.h[2] < dist);
if(m.valid && !wasvalid) {
qvalid++;
if(i > 7) preset(&m);
for(int it=0; it<50; it++)
for(int j=0; j<size(m.edges); j++)
force(m, *m.edges[j].target, m.edges[j].len, 1, 0);
enqueue(&m);
}
}
if(qvalid != oqvalid) { printf("%4d %4d %4d %.9lf %9d %9d\n", oqvalid, qvalid, size(points), dist, dt, queueiter); }
}
void physics() {
for(int it=0; it<10000 && !stop; it++)
if(pqueue.empty()) addNewPoints();
else {
queueiter++;
rugpoint *m = pqueue.front();
pqueue.pop();
m->inqueue = false;
for(int j=0; j<size(m->edges); j++)
force(*m, *m->edges[j].target, m->edges[j].len);
}
}
// drawing the Rug
//-----------------
int eyemod;
void getco(rugpoint& m, double& x, double& y, double& z) {
x = m.flat[0];
y = m.flat[1];
z = m.flat[2];
if(eyemod) x += eyemod * z * vid.eye;
}
extern int besti;
void drawTriangle(triangle& t) {
rugpoint& m1 = *t.m[0];
rugpoint& m2 = *t.m[1];
rugpoint& m3 = *t.m[2];
if(!m1.valid || !m2.valid || !m3.valid) return;
if(m1.dist >= sightrange+.51 || m2.dist >= sightrange+.51 || m3.dist >= sightrange+.51)
return;
dt++;
double x1, y1, z1;
double x2, y2, z2;
double x3, y3, z3;
getco(m1,x1,y1,z1);
getco(m2,x2,y2,z2);
getco(m3,x3,y3,z3);
double xa = x2-x1, ya = y2-y1, za = z2-z1;
double xb = x3-x1, yb = y3-y1, zb = z3-z1;
double xn = ya * zb - za * yb;
double yn = za * xb - xa * zb;
double zn = xa * yb - ya * xb;
double h = sqrt(xn*xn+yn*yn+zn*zn);
glNormal3f(xn/h,yn/h,zn/h);
glTexCoord2f(m1.x1, m1.y1);
glVertex3f(x1, y1, z1);
glTexCoord2f(m2.x1, m2.y1);
glVertex3f(x2, y2, z2);
glTexCoord2f(m3.x1, m3.y1);
glVertex3f(x3, y3, z3);
}
void setVidParam() {
vid.xres = vid.yres = TEXTURESIZE; vid.scale = 1;
vid.radius = HTEXTURESIZE; vid.xcenter = HTEXTURESIZE; vid.ycenter = HTEXTURESIZE;
vid.beta = 2; vid.alphax = 1; vid.eye = 0; vid.goteyes = false;
}
GLuint FramebufferName = 0;
GLuint renderedTexture = 0;
GLuint depth_stencil_rb = 0;
SDL_Surface *texture;
Uint32 *expanded_data;
void initTexture() {
if(!rendernogl) {
#if !ISPANDORA
FramebufferName = 0;
glGenFramebuffers(1, &FramebufferName);
glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName);
glGenTextures(1, &renderedTexture);
glBindTexture(GL_TEXTURE_2D, renderedTexture);
glTexImage2D(GL_TEXTURE_2D, 0,GL_RGB, TEXTURESIZE, TEXTURESIZE, 0,GL_RGB, GL_UNSIGNED_BYTE, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
#ifdef TEX
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, renderedTexture, 0);
#else
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, renderedTexture, 0);
#endif
GLenum DrawBuffers[1] = {GL_COLOR_ATTACHMENT0};
glDrawBuffers(1, DrawBuffers);
glGenRenderbuffers(1, &depth_stencil_rb);
glBindRenderbuffer(GL_RENDERBUFFER, depth_stencil_rb);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, TEXTURESIZE, TEXTURESIZE);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depth_stencil_rb);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, depth_stencil_rb);
if(glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
addMessage("Failed to initialize the framebuffer");
rugged = false;
}
#endif
}
else {
texture = SDL_CreateRGBSurface(SDL_SWSURFACE,TEXTURESIZE,TEXTURESIZE,32,0,0,0,0);
glGenTextures( 1, &renderedTexture );
glBindTexture( GL_TEXTURE_2D, renderedTexture);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
expanded_data = new Uint32[TEXTURESIZE * TEXTURESIZE];
}
}
void prepareTexture() {
videopar svid = vid;
setVidParam();
if(rendernogl) {
vid.usingGL = false;
SDL_Surface *sav = s;
s = texture;
SDL_FillRect(s, NULL, 0);
drawfullmap();
s = sav;
for(int y=0; y<TEXTURESIZE; y++) for(int x=0; x<TEXTURESIZE; x++)
expanded_data[y*TEXTURESIZE + x] = qpixel(texture, x, TEXTURESIZE-1-y) | 0xFF000000;
glBindTexture( GL_TEXTURE_2D, renderedTexture);
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, TEXTURESIZE, TEXTURESIZE, 0, GL_BGRA, GL_UNSIGNED_BYTE, expanded_data );
}
else {
#if !ISPANDORA
glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName);
glViewport(0,0,TEXTURESIZE,TEXTURESIZE);
setGLProjection();
ptds.clear();
drawthemap();
if(!renderonce) queueline(C0, mouseh, 0xFF00FF);
drawqueue();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
#endif
}
vid = svid;
if(!rendernogl) glViewport(0,0,vid.xres,vid.yres);
}
void closeTexture() {
if(rendernogl) {
SDL_FreeSurface(texture);
glDeleteTextures(1, &renderedTexture);
delete[] expanded_data;
}
else {
#if !ISPANDORA
glDeleteTextures(1, &renderedTexture);
glDeleteRenderbuffers(1, &depth_stencil_rb);
glDeleteFramebuffers(1, &FramebufferName);
#endif
}
}
double xview, yview;
void glcolorClear(int color) {
unsigned char *c = (unsigned char*) (&color);
glClearColor(c[3] / 255.0, c[2] / 255.0, c[1]/255.0, c[0] / 255.0);
}
void drawRugScene() {
GLfloat light_ambient[] = { 3.5, 3.5, 3.5, 1.0 };
GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_position[] = { 0.0, 0.0, 0.0, 1.0 };
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
GLERR("lighting");
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glBindTexture(GL_TEXTURE_2D, renderedTexture);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if(backcolor == 0)
glClearColor(0.05,0.05,0.05,1);
else
glcolorClear(backcolor << 8 | 0xFF);
glClearDepth(1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDisable(GL_BLEND);
glEnable(GL_TEXTURE_2D);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
xview = vid.xres/(vid.radius*scale);
yview = vid.yres/(vid.radius*scale);
glOrtho(-xview, xview, -yview, yview, -1000, 1000);
glColor4f(1,1,1,1);
if(vid.eye > .001 || vid.eye < -.001) {
selectEyeMask(1);
glClear(GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES);
eyemod = 1;
for(int t=0; t<size(triangles); t++)
drawTriangle(triangles[t]);
glEnd();
selectEyeMask(-1);
eyemod = -1;
glClear(GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES);
for(int t=0; t<size(triangles); t++)
drawTriangle(triangles[t]);
glEnd();
selectEyeMask(0);
}
else {
glBegin(GL_TRIANGLES);
for(int t=0; t<size(triangles); t++)
drawTriangle(triangles[t]);
glEnd();
}
glDisable(GL_TEXTURE_2D);
glDisable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glEnable(GL_BLEND);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
selectEyeGL(0);
}
// organization
//--------------
transmatrix rotmatrix(double rotation, int c0, int c1) {
transmatrix t = Id;
t[c0][c0] = cos(rotation);
t[c1][c1] = cos(rotation);
t[c0][c1] = sin(rotation);
t[c1][c0] = -sin(rotation);
return t;
}
transmatrix currentrot;
void init() {
#if CAP_GLEW
if(!glew) {
glew = true;
GLenum err = glewInit();
if (GLEW_OK != err) {
addMessage("Failed to initialize GLEW");
return;
}
}
#endif
if(rugged) return;
rugged = true;
if(scale < .01 || scale > 100) scale = 1;
initTexture();
if(renderonce) prepareTexture();
if(!rugged) return;
genrug = true;
drawthemap();
genrug = false;
buildRug();
qvalid = 0; dt = 0; queueiter = 0;
currentrot = Id;
}
void close() {
if(!rugged) return;
rugged = false;
closeTexture();
triangles.clear();
for(int i=0; i<size(points); i++) delete points[i];
points.clear();
pqueue = queue<rugpoint*> ();
}
int lastticks;
void actDraw() {
if(!renderonce) prepareTexture();
physics();
drawRugScene();
Uint8 *keystate = SDL_GetKeyState(NULL);
int qm = 0;
transmatrix t = Id;
double alpha = (ticks - lastticks) / 1000.0;
lastticks = ticks;
if(keystate[SDLK_HOME]) qm++, t = inverse(currentrot);
if(keystate[SDLK_END]) qm++, t = currentrot * rotmatrix(alpha, 0, 1) * inverse(currentrot);
if(keystate[SDLK_DOWN]) qm++, t = t * rotmatrix(alpha, 1, 2);
if(keystate[SDLK_UP]) qm++, t = t * rotmatrix(alpha, 2, 1);
if(keystate[SDLK_LEFT]) qm++, t = t * rotmatrix(alpha, 0, 2);
if(keystate[SDLK_RIGHT]) qm++, t = t * rotmatrix(alpha, 2, 0);
if(keystate[SDLK_PAGEUP]) scale *= exp(alpha);
if(keystate[SDLK_PAGEDOWN]) scale /= exp(alpha);
if(qm) {
currentrot = t * currentrot;
for(int i=0; i<size(points); i++) points[i]->flat = t * points[i]->flat;
}
}
int besti;
hyperpoint gethyper(ld x, ld y) {
double mx = ((x*2 / vid.xres)-1) * xview;
double my = (1-(y*2 / vid.yres)) * yview;
double bdist = 1e12;
besti = 0;
for(int i=0; i<size(points); i++) {
rugpoint& m = *points[i];
double dist = hypot(m.flat[0]-mx, m.flat[1]-my);
if(dist < bdist) bdist = dist, besti = i;
}
double px = points[besti]->x1 * TEXTURESIZE, py = (1-points[besti]->y1) * TEXTURESIZE;
videopar svid = vid;
setVidParam();
hyperpoint h = ::gethyper(px, py);
vid = svid;
return h;
}
void show() {
dialog::init(XLAT("hypersian rug mode"), iinf[itPalace].color, 150, 100);
if(euclid || sphere) {
dialog::addInfo("This makes sense only in hyperbolic geometry.");
dialog::addBreak(50);
}
dialog::addItem(XLAT("what's this?"), 'h');
dialog::addItem(XLAT("take me back"), 'q');
dialog::addItem(XLAT("enable the Hypersian Rug mode"), 'u');
dialog::addBoolItem(XLAT("render the texture only once"), (renderonce), 'o');
dialog::addBoolItem(XLAT("render texture without OpenGL"), (rendernogl), 'g');
dialog::addSelItem(XLAT("texture size"), its(texturesize)+"x"+its(texturesize), 's');
dialog::display();
keyhandler = [] (int sym, int uni) {
#if ISPANDORA
rendernogl = true;
#endif
dialog::handleNavigation(sym, uni);
if(uni == 'h') gotoHelp(
"In this mode, HyperRogue is played on a 3D model of a part of the hyperbolic plane, "
"similar to one you get from the 'paper model creator' or by hyperbolic crocheting.\n\n"
"This requires some OpenGL extensions and may crash or not work correctly -- enabling "
"the 'render texture without OpenGL' options may be helpful in this case. Also the 'render once' option "
"will make the rendering faster, but the surface will be rendered only once, so "
"you won't be able to play a game on it.\n\n"
"Use arrow keys to rotate, Page Up/Down to zoom."
);
else if(uni == 'u') {
if(euclid || sphere)
addMessage("This makes sense only in hyperbolic geometry.");
else {
rug::init();
popScreen();
}
}
else if(uni == 'o')
renderonce = !renderonce;
#if !ISPANDORA
else if(uni == 'g')
rendernogl = !rendernogl;
#endif
else if(uni == 's') {
texturesize *= 2;
if(texturesize == 8192) texturesize = 128;
dialog::scaleLog();
}
else if(doexiton(sym, uni)) popScreen();
};
}
void select() {
if(rug::rugged) rug::close();
else pushScreen(rug::show);
}
}
#else
// fake for mobile
namespace rug {
bool rugged = false;
bool renderonce = false;
bool rendernogl = true;
int texturesize = 512;
ld scale = 1.0f;
}
#endif