mirror of
				https://github.com/zenorogue/hyperrogue.git
				synced 2025-10-30 21:42:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			662 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			662 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // flocking simulations
 | |
| // Copyright (C) 2018 Zeno and Tehora Rogue, see 'hyper.cpp' for details
 | |
| 
 | |
| // based on Flocking by Daniel Shiffman (which in turn implements Boids by Craig Reynold)
 | |
| // https://processing.org/examples/flocking.html
 | |
| 
 | |
| // Our implementation simplifies some equations a bit.
 | |
| 
 | |
| // example parameters: 
 | |
| 
 | |
| // flocking on a torus:
 | |
| //    -t2 3 0 0 3 0 -geo 1 -flocking 10 -rvshape 3
 | |
| 
 | |
| // flocking on the Zebra quotient:
 | |
| //    -geo 4 -flocking 10 -rvshape 3 -zoom .9
 | |
| 
 | |
| // press 'o' when flocking active to change the parameters.
 | |
| 
 | |
| #include "rogueviz.h"
 | |
| 
 | |
| namespace rogueviz {
 | |
| 
 | |
| namespace flocking {
 | |
| 
 | |
|   void init();
 | |
| 
 | |
|   int N;
 | |
|   
 | |
|   bool draw_lines = false, draw_tails = false;
 | |
|   
 | |
|   int follow = 0;
 | |
|   string follow_names[3] = {"nothing", "specific boid", "center of mass"};
 | |
|   
 | |
|   ld follow_dist = 0;
 | |
|   
 | |
|   map<cell*, map<cell*, transmatrix>> relmatrices;
 | |
| 
 | |
|   ld ini_speed = .5;
 | |
|   ld max_speed = 1;
 | |
| 
 | |
|   ld sep_factor = 1.5;
 | |
|   ld sep_range = .25;
 | |
| 
 | |
|   ld align_factor = 1;
 | |
|   ld align_range = .5;
 | |
|   
 | |
|   ld coh_factor = 1;
 | |
|   ld coh_range = 2.5;
 | |
|   
 | |
|   ld check_range = 2.5;
 | |
|   
 | |
|   bool swarm;
 | |
|   
 | |
|   char shape = 'b';
 | |
|   
 | |
|   vector<tuple<shiftpoint, shiftpoint, color_t> > lines;
 | |
|   
 | |
|   // parameters of each boid
 | |
|   // m->base: the cell it is currently on
 | |
|   // m->vel: velocity
 | |
|   // m->at: determines the position and speed:
 | |
|   //        m->at * (0, 0, 1) is the current position (in Minkowski hyperboloid coordinates relative to m->base)
 | |
|   //        m->at * (m->vel, 0, 0) is the current velocity vector (tangent to the Minkowski hyperboloid)
 | |
|   // m->pat: like m->at but relative to the screen
 | |
| 
 | |
|   int precision = 10;
 | |
|   
 | |
|   void simulate(int delta) {
 | |
|     int iter = 0;
 | |
|     while(delta > precision && iter < (swarm ? 10000 : 100)) { 
 | |
|       simulate(precision); delta -= precision; 
 | |
|       iter++;
 | |
|       }      
 | |
|     ld d = delta / 1000.;
 | |
|     int N = isize(vdata);
 | |
|     vector<transmatrix> pats(N);
 | |
|     vector<transmatrix> oris(N);
 | |
|     vector<ld> vels(N);
 | |
|     using shmup::monster;
 | |
|     
 | |
|     map<cell*, vector<monster*>> monsat;
 | |
| 
 | |
|     for(int i=0; i<N; i++) {
 | |
|       vertexdata& vd = vdata[i];
 | |
|       auto m = vd.m;
 | |
|       monsat[m->base].push_back(m);
 | |
|       }
 | |
|     
 | |
|     lines.clear();
 | |
|     
 | |
|     if(swarm) for(int i=0; i<N; i++) {
 | |
|       vertexdata& vd = vdata[i];
 | |
|       auto m = vd.m;
 | |
|       
 | |
|       apply_shift_object(m->at, m->ori, xtangent(0.01)); // max_speed * d));
 | |
|       
 | |
|       fixmatrix(m->at);
 | |
| 
 | |
|       virtualRebase(m);
 | |
|       }
 | |
|     
 | |
|     if(!swarm) parallelize(N, [&monsat, &d, &vels, &pats, &oris] (int a, int b) { for(int i=a; i<b; i++) {
 | |
|       vertexdata& vd = vdata[i];
 | |
|       auto m = vd.m;
 | |
|       
 | |
|       transmatrix I, Rot;
 | |
|       bool use_rot = true;
 | |
|       
 | |
|       if(mproduct) {
 | |
|         I = inverse(m->at);
 | |
|         Rot = inverse(m->ori);
 | |
|         }
 | |
|       else if(nonisotropic) {
 | |
|         I = gpushxto0(tC0(m->at));
 | |
|         Rot = inverse(I * m->at);
 | |
|         }
 | |
|       else {
 | |
|         I = inverse(m->at);
 | |
|         Rot = Id;
 | |
|         use_rot = false;
 | |
|         }
 | |
|       
 | |
|       // we do all the computations here in the frame of reference
 | |
|       // where m is at (0,0,1) and its velocity is (m->vel,0,0)
 | |
|       
 | |
|       hyperpoint velvec = hpxyz(m->vel, 0, 0);
 | |
|       
 | |
|       hyperpoint sep = hpxyz(0, 0, 0);
 | |
|       int sep_count = 0;
 | |
| 
 | |
|       hyperpoint align = hpxyz(0, 0, 0);
 | |
|       int align_count = 0;
 | |
|       
 | |
|       hyperpoint coh = hpxyz(0, 0, 0);
 | |
|       int coh_count = 0;
 | |
|       
 | |
|       for(auto& p: relmatrices[m->base]) {
 | |
|         auto f = monsat.find(p.first);
 | |
|         if(f != monsat.end()) for(auto m2: f->second) if(m != m2) {
 | |
|           ld vel2 = m2->vel;
 | |
|           transmatrix at2 = I * p.second * m2->at;
 | |
| 
 | |
|           // at2 is like m2->at but relative to m->at
 | |
|           
 | |
|           // m2's position relative to m (tC0 means *(0,0,1))
 | |
|           hyperpoint ac = inverse_exp(shiftless(tC0(at2)));
 | |
|           if(use_rot) ac = Rot * ac;
 | |
|           
 | |
|           // distance and azimuth to m2
 | |
|           ld di = hypot_d(WDIM, ac);
 | |
| 
 | |
|           color_t col = 0;
 | |
|             
 | |
|           if(di < align_range) {
 | |
|             // we need to transfer m2's velocity vector to m's position
 | |
|             // this is done by applying an isometry which sends m2 to m1
 | |
|             // and maps the straight line on which m1 and m2 are to itself
 | |
|             
 | |
|             // note: in nonisotropic it is not clear whether we should
 | |
|             // use gpushxto0, or parallel transport along the shortest geodesic
 | |
|             align += gpushxto0(tC0(at2)) * at2 * hpxyz(vel2, 0, 0);
 | |
|             align_count++;
 | |
|             col |= 0xFF0040;
 | |
|             }
 | |
|           
 | |
|           if(di < coh_range) {
 | |
|             coh += tangent_length(ac, di);
 | |
|             coh_count++;
 | |
|             col |= 0xFF40;
 | |
|             }
 | |
|           
 | |
|           if(di < sep_range && di > 0) {
 | |
|             sep -= tangent_length(ac, 1 / di);
 | |
|             sep_count++;
 | |
|             col |= 0xFF000040;
 | |
|             }
 | |
|           
 | |
|           if(col && draw_lines)
 | |
|             lines.emplace_back(m->pat * C0, m->pat * at2 * C0, col);          
 | |
|           }
 | |
|         }
 | |
|       
 | |
|       // a bit simpler rules than original
 | |
|       
 | |
|       if(sep_count) velvec += sep * (d * sep_factor / sep_count);
 | |
|       if(align_count) velvec += align * (d * align_factor / align_count);
 | |
|       if(coh_count) velvec += coh * (d * coh_factor / coh_count);
 | |
|       
 | |
|       // hypot2 is the length of a vector in R^2
 | |
|       vels[i] = hypot_d(2, velvec);
 | |
|       
 | |
|       transmatrix alphaspin = rspintox(velvec); // spin(-atan2(velvec));
 | |
| 
 | |
|       if(vels[i] > max_speed) { 
 | |
|         velvec = velvec * (max_speed / vels[i]);
 | |
|         vels[i] = max_speed;
 | |
|         }      
 | |
|       
 | |
|       pats[i] = m->at;
 | |
|       oris[i] = m->ori;
 | |
|       rotate_object(pats[i], oris[i], alphaspin);
 | |
|       
 | |
|       apply_shift_object(pats[i], oris[i], xtangent(vels[i] * d));
 | |
|       fixmatrix(pats[i]);
 | |
|       
 | |
|       /* RogueViz does not correctly rotate them */
 | |
|       if(mproduct) {
 | |
|         hyperpoint h = oris[i] * xtangent(1);
 | |
|         pats[i] = pats[i] * spin(-atan2(h[1], h[0]));
 | |
|         oris[i] = spin(+atan2(h[1], h[0])) * oris[i];
 | |
|         }
 | |
|       
 | |
|       } return 0; });
 | |
|       
 | |
|     if(!swarm) for(int i=0; i<N; i++) {
 | |
|       vertexdata& vd = vdata[i];
 | |
|       auto m = vd.m;
 | |
|       // these two functions compute new base and at, based on pats[i]
 | |
|       m->at = pats[i];
 | |
|       m->ori = oris[i];
 | |
|       virtualRebase(m);
 | |
|       m->vel = vels[i];
 | |
|       }
 | |
|     shmup::fixStorage();
 | |
|     
 | |
|     }
 | |
| 
 | |
|   bool turn(int delta) {
 | |
|     simulate(delta), timetowait = 0;
 | |
|     
 | |
|     if(follow) {
 | |
| 
 | |
|       if(follow == 1) {
 | |
|         gmatrix.clear();
 | |
|         vdata[0].m->pat = shiftless(View * calc_relative_matrix(vdata[0].m->base, centerover, C0) * vdata[0].m->at);
 | |
|         View = inverse(vdata[0].m->pat.T) * View;
 | |
|         if(mproduct) {
 | |
|           NLP = inverse(vdata[0].m->ori);
 | |
|           
 | |
|           NLP = hr::cspin90(1, 2) * spin90() * NLP;
 | |
| 
 | |
|           if(NLP[0][2]) {
 | |
|             auto downspin = -atan2(NLP[0][2], NLP[1][2]);
 | |
|             NLP = spin(downspin) * NLP;
 | |
|             }
 | |
|           }          
 | |
|         else {
 | |
|           View =spin90() * View;
 | |
|           if(GDIM == 3) {
 | |
|             View = hr::cspin90(1, 2) * View;
 | |
|             }
 | |
|           shift_view(ztangent(follow_dist));
 | |
|           }        
 | |
|         }
 | |
| 
 | |
|       if(follow == 2) {
 | |
|         // we take the average in R^3 of all the boid positions of the Minkowski hyperboloid
 | |
|         // (in quotient spaces, the representants closest to the current view
 | |
|         // are taken), and normalize the result to project it back to the hyperboloid
 | |
|         // (the same method is commonly used on the sphere AFAIK)
 | |
|         hyperpoint h = Hypc;
 | |
|         int cnt = 0;
 | |
|         ld lev = 0;
 | |
|         for(int i=0; i<N; i++) if(gmatrix.count(vdata[i].m->base)) {
 | |
|           vdata[i].m->pat = gmatrix[vdata[i].m->base] * vdata[i].m->at;
 | |
|           auto h1 = unshift(tC0(vdata[i].m->pat));
 | |
|           cnt++;          
 | |
|           if(mproduct) {
 | |
|             auto d1 = product_decompose(h1);
 | |
|             lev += d1.first;
 | |
|             h += d1.second;
 | |
|             }
 | |
|           else
 | |
|             h += h1;
 | |
|           }
 | |
|         if(cnt) {
 | |
|           h = cgi.emb->normalize_flat(h);
 | |
|           if(mproduct) h = orthogonal_move(h, lev / cnt);
 | |
|           View = inverse(actual_view_transform) * gpushxto0(h) * actual_view_transform * View;
 | |
|           shift_view(ztangent(follow_dist));
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       optimizeview();
 | |
|       compute_graphical_distance();
 | |
|       gmatrix.clear();
 | |
|       playermoved = false;
 | |
|       }
 | |
| 
 | |
|     return false;
 | |
|     // shmup::pc[0]->rebase();
 | |
|     }
 | |
|   
 | |
|   #if CAP_COMMANDLINE
 | |
|   int readArgs() {
 | |
|     using namespace arg;
 | |
|              
 | |
|   // options before reading
 | |
|     if(0) ;
 | |
|     else if(argis("-flocking")) {
 | |
|       PHASEFROM(2);
 | |
|       shift(); N = argi(); swarm = false;
 | |
|       init();
 | |
|       }
 | |
|     else if(argis("-swarming")) {
 | |
|       PHASEFROM(2);
 | |
|       shift(); N = argi(); swarm = true;
 | |
|       init();
 | |
|       }
 | |
|     else if(argis("-flocktails")) {
 | |
|       PHASEFROM(2);
 | |
|       draw_tails = true;
 | |
|       init();
 | |
|       }
 | |
|     else if(argis("-cohf")) {
 | |
|       shift(); coh_factor = argf();
 | |
|       }
 | |
|     else if(argis("-alignf")) {
 | |
|       shift(); align_factor = argf();
 | |
|       }
 | |
|     else if(argis("-sepf")) {
 | |
|       shift(); sep_factor = argf();
 | |
|       }
 | |
|     else if(argis("-checkr")) {
 | |
|       shift(); check_range = argf();
 | |
|       }
 | |
|     else if(argis("-cohr")) {
 | |
|       shift(); coh_range = argf();
 | |
|       }
 | |
|     else if(argis("-alignr")) {
 | |
|       shift(); align_range = argf();
 | |
|       }
 | |
|     else if(argis("-sepr")) {
 | |
|       shift(); sep_range = argf();
 | |
|       }
 | |
|     else if(argis("-flockfollow")) {
 | |
|       shift(); follow = argi();
 | |
|       }
 | |
|     else if(argis("-flockprec")) {
 | |
|       shift(); precision = argi();
 | |
|       }
 | |
|     else if(argis("-flockshape")) {
 | |
|       shift(); shape = argcs()[0];
 | |
|       for(int i=0; i<N; i++) 
 | |
|         vdata[i].cp.shade = shape;
 | |
|       }
 | |
|     else if(argis("-flockspd")) {
 | |
|       shift(); ini_speed = argf();
 | |
|       shift(); max_speed = argf();
 | |
|       }
 | |
|     else if(argis("-threads")) {
 | |
|       shift(); threads = argi();
 | |
|       }
 | |
|     else return 1;
 | |
|     return 0;
 | |
|     }
 | |
|   
 | |
|   void flock_marker() {
 | |
|     if(draw_lines)
 | |
|       for(auto p: lines) queueline(get<0>(p), get<1>(p), get<2>(p), 0);
 | |
|     }
 | |
| 
 | |
|   void show() {
 | |
|     cmode = sm::SIDE | sm::MAYDARK;
 | |
|     gamescreen();
 | |
|     dialog::init(XLAT("flocking"), iinf[itPalace].color, 150, 0);
 | |
|     
 | |
|     dialog::addSelItem("initial speed", fts(ini_speed), 'i');
 | |
|     dialog::add_action([]() {
 | |
|       dialog::editNumber(ini_speed, 0, 2, .1, .5, "", "");
 | |
|       });
 | |
|   
 | |
|     dialog::addSelItem("max speed", fts(max_speed), 'm');
 | |
|     dialog::add_action([]() {
 | |
|       dialog::editNumber(max_speed, 0, 2, .1, .5, "", "");
 | |
|       });
 | |
| 
 | |
|     dialog::addSelItem("separation factor", fts(sep_factor), 's');
 | |
|     dialog::add_action([]() {
 | |
|       dialog::editNumber(sep_factor, 0, 2, .1, 1.5, "", "");
 | |
|       });
 | |
|     
 | |
|     string rangehelp = "Increasing this parameter may also require increasing the 'check range' parameter.";
 | |
|   
 | |
|     dialog::addSelItem("separation range", fts(sep_range), 'S');
 | |
|     dialog::add_action([rangehelp]() {
 | |
|       dialog::editNumber(sep_range, 0, 2, .1, .5, "", rangehelp);
 | |
|       });
 | |
|   
 | |
|     dialog::addSelItem("alignment factor", fts(align_factor), 'a');
 | |
|     dialog::add_action([]() {
 | |
|       dialog::editNumber(align_factor, 0, 2, .1, 1.5, "", "");
 | |
|       });
 | |
|   
 | |
|     dialog::addSelItem("alignment range", fts(align_range), 'A');
 | |
|     dialog::add_action([rangehelp]() {
 | |
|       dialog::editNumber(align_range, 0, 2, .1, .5, "", rangehelp);
 | |
|       });
 | |
|   
 | |
|     dialog::addSelItem("cohesion factor", fts(coh_factor), 'c');
 | |
|     dialog::add_action([]() {
 | |
|       dialog::editNumber(coh_factor, 0, 2, .1, 1.5, "", "");
 | |
|       });
 | |
|   
 | |
|     dialog::addSelItem("cohesion range", fts(coh_range), 'C');
 | |
|     dialog::add_action([rangehelp]() {
 | |
|       dialog::editNumber(coh_range, 0, 2, .1, .5, "", rangehelp);
 | |
|       });
 | |
|   
 | |
|     dialog::addSelItem("check range", fts(check_range), 't');
 | |
|     dialog::add_action([]() {
 | |
|       ld radius = 0;
 | |
|       for(cell *c: currentmap->allcells())
 | |
|       for(int i=0; i<c->degree(); i++) {
 | |
|         hyperpoint h = nearcorner(c, i);
 | |
|         radius = max(radius, hdist0(h));
 | |
|         }
 | |
|       dialog::editNumber(check_range, 0, 2, .1, .5, "", 
 | |
|         "Value used in the algorithm: "
 | |
|         "only other boids in cells whose centers are at most 'check range' from the center of the current cell are considered. "
 | |
|         "Should be more than the other ranges by at least double the cell radius (in the current geometry, double the radius is " + fts(radius*2) + "); "
 | |
|         "but too large values slow the simulation down.\n\n"
 | |
|         "Restart the simulation to apply the changes to this parameter. In quotient spaces, the simulation may not work correctly when the same cell is in range check_range "
 | |
|         "in multiple directions."
 | |
|         );
 | |
|       });
 | |
|   
 | |
|     dialog::addSelItem("number of boids", its(N), 'n');
 | |
|     dialog::add_action([]() {
 | |
|       dialog::editNumber(N, 0, 1000, 1, 20, "", "");
 | |
|       });
 | |
| 
 | |
|     dialog::addSelItem("precision", its(precision), 'p');
 | |
|     dialog::add_action([]() {
 | |
|       dialog::editNumber(precision, 0, 1000, 1, 10, "", "smaller number = more precise simulation");
 | |
|       });
 | |
| 
 | |
|     dialog::addSelItem("change geometry", XLAT(ginf[geometry].shortname), 'g');
 | |
|     hr::showquotients = true;
 | |
|     dialog::add_action(runGeometryExperiments);
 | |
| 
 | |
|     dialog::addBoolItem_action("draw forces", draw_lines, 'l');
 | |
| 
 | |
|     dialog::addBoolItem_action("draw tails", draw_tails, 't');
 | |
|   
 | |
|     dialog::addSelItem("follow", follow_names[follow], 'f');
 | |
|     dialog::add_action([] () { follow++; follow %= 3; });
 | |
| 
 | |
|     dialog::addSelItem("follow distance", fts(follow_dist), 'd');
 | |
|     dialog::add_action([] () { 
 | |
|       dialog::editNumber(follow_dist, -1, 1, 0.1, 0, "follow distance", "");
 | |
|       follow++; follow %= 3; 
 | |
|       });
 | |
|   
 | |
|     dialog::addBreak(100);
 | |
| 
 | |
|     dialog::addItem("restart", 'r');
 | |
|     dialog::add_action(init);
 | |
| 
 | |
|     dialog::addBack();
 | |
|     dialog::display();
 | |
|     }
 | |
|     
 | |
|   void o_key(o_funcs& v) {
 | |
|     v.push_back(named_dialog("flocking", show));
 | |
|     }
 | |
| 
 | |
| bool drawVertex(const shiftmatrix &V, cell *c, shmup::monster *m) {
 | |
|   if(draw_tails) {
 | |
|     int i = m->pid;
 | |
|     vertexdata& vd = vdata[i];
 | |
|     vid.linewidth *= 3;
 | |
|     queueline(V * m->at * C0, V * m->at * xpush0(-3), vd.cp.color2 & 0xFFFFFFF3F, 6);
 | |
|     vid.linewidth /= 3;
 | |
|     }
 | |
|   return false;
 | |
|   }
 | |
|   
 | |
|   void init() {
 | |
|     if(!closed_manifold) {
 | |
|       addMessage("Flocking simulation needs a closed manifold.");
 | |
|       return;
 | |
|       }
 | |
|     stop_game();
 | |
|     rogueviz::init(RV_GRAPH);
 | |
|     rv_hook(shmup::hooks_turn, 100, turn);
 | |
|     rv_hook(hooks_frame, 100, flock_marker);
 | |
|     rv_hook(hooks_o_key, 80, o_key);
 | |
|     rv_hook(shmup::hooks_draw, 90, drawVertex);
 | |
|     
 | |
|     vdata.resize(N);
 | |
|     
 | |
|     const auto v = currentmap->allcells();
 | |
|     
 | |
|     printf("computing relmatrices...\n");
 | |
|     // relmatrices[c1][c2] is the matrix we have to multiply by to 
 | |
|     // change from c1-relative coordinates to c2-relative coordinates
 | |
|     for(cell* c1: v) {
 | |
|       manual_celllister cl;
 | |
|       cl.add(c1);
 | |
|       for(int i=0; i<isize(cl.lst); i++) {
 | |
|         cell *c2 = cl.lst[i];
 | |
|         transmatrix T = calc_relative_matrix(c2, c1, C0);
 | |
|         if(hypot_d(WDIM, inverse_exp(shiftless(tC0(T)))) <= check_range) {
 | |
|           relmatrices[c1][c2] = T;
 | |
|           forCellEx(c3, c2) cl.add(c3);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     
 | |
|     ld angle;
 | |
|     if(swarm) angle = hrand(1000);
 | |
| 
 | |
|     printf("setting up...\n");
 | |
|     for(int i=0; i<N; i++) {
 | |
|       vertexdata& vd = vdata[i];
 | |
|       // set initial base and at to random cell and random position there 
 | |
|       
 | |
|       
 | |
|       createViz(i, v[swarm ? 0 : hrand(isize(v))], Id);
 | |
|       vd.m->pat.T = Id;
 | |
|       
 | |
|       if(swarm) {
 | |
|         rotate_object(vd.m->pat.T, vd.m->ori, spin(angle));
 | |
|         apply_shift_object(vd.m->pat.T, vd.m->ori, xtangent(i * -0.015));
 | |
|         }
 | |
|       else {
 | |
|         rotate_object(vd.m->pat.T, vd.m->ori, random_spin());
 | |
|         apply_shift_object(vd.m->pat.T, vd.m->ori, xtangent(hrandf() / 2));
 | |
|         rotate_object(vd.m->pat.T, vd.m->ori, random_spin());
 | |
|         }
 | |
|       
 | |
|       vd.name = its(i+1);
 | |
|       vd.cp = dftcolor;
 | |
|       
 | |
|       if(swarm)
 | |
|         vd.cp.color2 = 
 | |
|           (rainbow_color(0.5, i * 1. / N) << 8) | 0xFF;
 | |
|       else
 | |
|         vd.cp.color2 = 
 | |
|           ((hrand(0x1000000) << 8) + 0xFF) | 0x808080FF;
 | |
| 
 | |
|       vd.cp.shade = shape;
 | |
|       vd.m->vel = ini_speed;
 | |
|       vd.m->at = vd.m->pat.T;
 | |
|       }
 | |
|   
 | |
|     storeall();
 | |
|     printf("done\n");
 | |
|     }  
 | |
| 
 | |
|   void set_follow() { 
 | |
|     follow = (1+follow) % 3;
 | |
|     addMessage("following: " + follow_names[follow]);
 | |
|     }
 | |
|   
 | |
|   void flock_slide(tour::presmode mode, int _N, reaction_t t) {
 | |
|     using namespace tour;
 | |
|     setWhiteCanvas(mode);
 | |
|     if(mode == pmStart) {
 | |
|       slide_backup(mapeditor::drawplayer);
 | |
|       t();
 | |
|       slide_backup(rogueviz::vertex_shape, 3);
 | |
|       N = _N; start_game(); init();
 | |
|       }
 | |
|     if(mode == pmKey) set_follow();
 | |
|     }
 | |
| 
 | |
|   auto hooks = addHook(hooks_args, 100, readArgs)
 | |
|   + addHook_rvslides(187, [] (string s, vector<tour::slide>& v) {
 | |
|       if(s != "mixed") return;
 | |
|       using namespace tour;
 | |
|       string cap = "flocking simulation/";
 | |
|       string help = "\n\nPress '5' to make the camera follow boids, or 'o' to change more parameters.";
 | |
| 
 | |
|       v.push_back(slide{
 | |
|         cap+"Euclidean flocking", 10, LEGAL::NONE | QUICKGEO,
 | |
|         "This is an Euclidean flocking simulation. Boids move according to the following rules:\n\n"
 | |
|         "- separation: they avoid running into other boids\n"
 | |
|         "- alignment: steer toward the average heading of local flockmates\n"
 | |
|         "- cohesion: steer toward the average position of local flockmates\n\n"
 | |
|         "In the Euclidean space, these rules will cause all the boids to align, and fly in the same direction in a nice flock."+help
 | |
|         ,
 | |
|         [] (presmode mode) {
 | |
|           slide_url(mode, 'w', "Wikipedia link", "https://en.wikipedia.org/wiki/Boids");
 | |
|           flock_slide(mode, 50, [] {
 | |
|             set_geometry(gEuclid);
 | |
|             set_variation(eVariation::bitruncated);
 | |
|             auto& T0 = euc::eu_input.user_axes;
 | |
|             restorers.push_back([] { euc::build_torus3(); });
 | |
|             slide_backup(euc::eu_input);
 | |
|             T0[0][0] = T0[1][1] = 3;
 | |
|             T0[1][0] = T0[0][1] = 0;
 | |
|             euc::eu_input.twisted = 0;
 | |
|             euc::build_torus3();
 | |
|             });
 | |
|           }});
 | |
| 
 | |
|       v.push_back(slide{
 | |
|         cap+"spherical flocking", 10, LEGAL::NONE | QUICKGEO,
 | |
|         "Same parameters, but in spherical geometry.\n\n"
 | |
|         "Since parallel lines work differently, the boids do not align that nicely. "
 | |
|         "However, the curvature helps them to maintain a coherent flock."
 | |
|         +help
 | |
|         ,
 | |
|         [] (presmode mode) {
 | |
|           flock_slide(mode, 50, [] {
 | |
|             set_geometry(gSphere);
 | |
|             set_variation(eVariation::bitruncated);
 | |
|             });
 | |
|           }});
 | |
|       v.push_back(slide{
 | |
|         cap+"Hyperbolic flocking", 10, LEGAL::NONE | QUICKGEO,
 | |
|         "Same parameters, but the geometry is hyperbolic. Our boids fly in the Klein quartic.\n"
 | |
|         "This time, negative curvature prevents our boids from maintaining a coherent flock."
 | |
|         +help
 | |
|         ,
 | |
|         [] (presmode mode) {
 | |
|           flock_slide(mode, 50, [] {
 | |
|             set_geometry(gKleinQuartic);
 | |
|             set_variation(eVariation::bitruncated);
 | |
|             });
 | |
|           }});
 | |
|       v.push_back(slide{
 | |
|         cap+"Hyperbolic flocking again", 10, LEGAL::NONE | QUICKGEO,
 | |
|         "Our boids still fly in the Klein quartic, but now the parameters are changed to "
 | |
|         "make the alignment and cohesion stronger."
 | |
|         ,
 | |
|         [] (presmode mode) {
 | |
|           slide_url(mode, 't', "Twitter link", "https://twitter.com/ZenoRogue/status/1064660283581505536");
 | |
|           flock_slide(mode, 50, [] {
 | |
|             set_geometry(gKleinQuartic);
 | |
|             set_variation(eVariation::bitruncated);
 | |
|             slide_backup(align_factor, 2);
 | |
|             slide_backup(align_range, 2);
 | |
|             slide_backup(coh_factor, 2);
 | |
|             });
 | |
|           }});
 | |
|       v.push_back(slide{
 | |
|         cap+"Hyperbolic flocking in 3D", 10, LEGAL::NONE | QUICKGEO,
 | |
|         "Let's try a three-dimensional hyperbolic manifold. Alignment and cohesion are strong again."
 | |
|         ,
 | |
|         [] (presmode mode) {
 | |
|           slide_url(mode, 'y', "YouTube link", "https://www.youtube.com/watch?v=kng_4lE0uzo");
 | |
|           flock_slide(mode, 50, [] {
 | |
|             set_geometry(gSpace534);
 | |
|             field_quotient_3d(5, 0x72414D0C);
 | |
|             slide_backup(align_factor, 2);
 | |
|             slide_backup(align_range, 2);
 | |
|             slide_backup(coh_factor, 2);
 | |
|             slide_backup(vid.grid, true);
 | |
|             slide_backup(follow_dist, 1);
 | |
|             });
 | |
|           }});
 | |
| 
 | |
|       });
 | |
|   #endif
 | |
| 
 | |
|   }
 | |
| 
 | |
| }
 | 
