1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-22 15:07:24 +00:00
hyperrogue/rogueviz/impossible-ring.cpp
2020-09-13 06:32:18 +02:00

328 lines
9.0 KiB
C++

#include "rogueviz.h"
// Impossible Ring visualization
// used in:
// https://youtu.be/3WejR74o6II
// https://youtu.be/ztodGQDK810
// usage: -cylon
namespace rogueviz {
namespace cylon {
bool on;
ld cscale = .2;
ld cylball;
struct iring {
geometry_information *icgi;
static const int frames = 32;
static const int cols = 256;
static const int steps = 2048;
array<array<hpcshape, cols>, frames> ptriangle[2];
vector<color_t> huess[2];
vector<transmatrix> path;
hpcshape ball;
void init() {
icgi = &cgi;
unsigned difh = 256;
int mh = 255;
color_t base = 0xFF;
auto& hues = huess[0];
for(unsigned y=0; y<difh; y++)
hues.push_back(base + 0x1000000*mh + 0x10000 * y);
for(unsigned y=0; y<difh; y++)
hues.push_back(base + 0x1010000*mh - 0x1000000 * y);
for(unsigned y=0; y<difh; y++)
hues.push_back(base + 0x0010000*mh + 0x100 * y);
for(unsigned y=0; y<difh; y++)
hues.push_back(base + 0x0010100*mh - 0x10000 * y);
for(unsigned y=0; y<difh; y++)
hues.push_back(base + 0x0000100*mh + 0x1000000 * y);
for(unsigned y=0; y<difh; y++)
hues.push_back(base + 0x1000100*mh - 0x100 * y);
for(color_t h: hues) huess[1].push_back(((h & 0xFEFEFE00) >> 1) | 0xFF);
ld delta = 0.004;
transmatrix T = cspin(1, 2, 45*degree);
int switchat = nil ? 1024 : 2048;
auto step = [&] (int id) {
ld alpha = id * 1. / steps * 2 * M_PI;
if(id < switchat)
return T * point3(cos(alpha) * delta, sin(alpha) * delta, 0);
else
return T * point3(cos(alpha) * delta, 0, sin(alpha) * delta);
};
ld dmin = 0, dmax = 1;
auto shift = [&] (ld d) {
delta = d;
hyperpoint start = C0;
for(int a=0; a<steps; a++) {
hyperpoint s = step(a);
start = rgpushxto0(start) * (C0+s);
}
println(hlog, "start[", delta, "] = ", kz(start));
return start[2];
};
println(hlog, shift(0.0001), shift(1));
if(nil) for(int it=0; it<50; it++) {
delta = (dmin + dmax) / 2;
ld val = shift(delta);
if(val > 0) dmax = delta;
else dmin = delta;
}
println(hlog, "delta = ", delta);
vector<array<hyperpoint, 4> > pipe;
hyperpoint start = C0;
path.resize(2 * steps);
for(int a=0; a<steps; a++) {
hyperpoint uds[3];
ld alpha = a * 1. / steps * 2 * M_PI;
if(a < switchat) {
uds[0] = T * point31(sin(alpha) * cscale, -cos(alpha) * cscale, 0) - C0;
uds[1] = T * point31(0, 0, cscale) - C0;
uds[2] = T * point31(-cos(alpha) * cscale, -sin(alpha) * cscale, 0) - C0;
}
else {
uds[0] = T * point31(0, cscale, 0) - C0;
uds[1] = T * point31(sin(alpha) * cscale, 0, -cos(alpha) * cscale) - C0;
uds[2] = T * point31(-cos(alpha) * cscale, 0, -sin(alpha) * cscale) - C0;
}
// compute cube vertices
array<hyperpoint, 4> verts;
for(int a=0; a<4; a++) {
verts[a] = C0;
for(int k=0; k<2; k++)
verts[a] += (a&(1<<k)) ? uds[k] : -uds[k];
verts[a] = nisot::translate(start) * verts[a];
}
pipe.push_back(verts);
path[a] = inverse(build_matrix(uds[0], uds[1], uds[2], C0)) * inverse(rgpushxto0(start));
path[a+steps] = inverse(build_matrix(-uds[0], -uds[1], uds[2], C0)) * inverse(rgpushxto0(start));
// println(hlog, "gs = ", gpushxto0(start));
println(hlog, "start @ ", inverse(rgpushxto0(start)) * start);
hyperpoint s = step(a);
start = rgpushxto0(start) * (C0 + s);
// * );
}
pipe.resize(steps + frames);
for(int i=0; i<frames; i++)
for(int j=0; j<4; j++)
pipe[i+steps][j] = pipe[i][j^3];
for(int fr=0; fr<frames; fr++)
for(int sa=0; sa<2; sa++)
for(int si=0; si<cols; si++) {
auto textured_square = [&] (auto f) {
texture_order([&] (ld ix, ld iy) { f(.5 + ix/2 + iy/2, .5 + ix/2 - iy/2); });
texture_order([&] (ld ix, ld iy) { f(.5 - ix/2 - iy/2, .5 - ix/2 + iy/2); });
texture_order([&] (ld ix, ld iy) { f(.5 + ix/2 - iy/2, .5 - ix/2 - iy/2); });
texture_order([&] (ld ix, ld iy) { f(.5 - ix/2 + iy/2, .5 + ix/2 + iy/2); });
};
auto pipesquare = [&] (hyperpoint a00, hyperpoint a01, hyperpoint a10, hyperpoint a11) {
textured_square( [&] (ld ix, ld iy) {
hyperpoint shf = lerp(lerp(a00, a01, ix), lerp(a10, a11, ix), iy);
// if(cscale) shf = shf * cscale - C0 * (cscale-1);
cgi.hpcpush(shf);
});
};
cgi.bshape(ptriangle[sa][fr][si], PPR::WALL);
for(int i=fr; i<steps; i+=frames) {
auto& pi = pipe[i];
auto& pj = pipe[i+frames];
int val = i * cols / steps / 2;
if(si == val && sa == 0) pipesquare(pi[0], pi[2], pj[0], pj[2]);
if(si == (val+cols/2)%cols && sa == 0) pipesquare(pi[1], pi[3], pj[1], pj[3]);
if(si == (val+cols/4)%cols && sa == 1) pipesquare(pi[0], pi[1], pj[0], pj[1]);
if(si == (val+cols*3/4)%cols && sa == 1) pipesquare(pi[2], pi[3], pj[2], pj[3]);
}
cgi.last->flags |= POLY_TRIANGLES;
cgi.last->tinf = &floor_texture_vertices[0];
cgi.last->texture_offset = 0;
cgi.finishshape();
cgi.extra_vertices();
}
if(cylball) {
ball.prio = PPR::WALL;
cgi.make_ball(ball, cylball, 2);
cgi.finishshape();
cgi.extra_vertices();
}
}
};
iring *ir;
void reset() {
if(ir) delete ir;
ir = nullptr;
}
bool draw_ptriangle(cell *c, const shiftmatrix& V) {
if(!on) return false;
if(ir && ir->icgi != &cgi) reset();
if(!ir) { ir = new iring; ir->init();
// growthrate();
}
if(c == cwt.at) {
int frid = (ticks % 1000) * ir->frames / 1000;
for(int sa: {0, 1})
for(int side=0; side<ir->cols; side++) {
auto &s = queuepoly(V, ir->ptriangle[sa][frid][side], ir->huess[sa][256*6/ir->cols * side]);
ensure_vertex_number(*s.tinf, s.cnt);
/* auto& s1 = queuepoly(V * nisot::translate(td.at), ir->pcube[side], gradient(tcolors[td.tcolor], magiccolors[side], 0, .2, 1));
ensure_vertex_number(*s1.tinf, s1.cnt); */
}
if(cylball) {
long long isp = isize(ir->path);
transmatrix T = ir->path[isp-1 - (ticks * isp / int(anims::period)) % isp];
T = nisot::parallel_transport(inverse(T), -point3(0, cscale + cylball, 0));
queuepoly(V * T, ir->ball, 0xFFFFFFFF);
}
}
return false;
}
bool cylanim = false;
void o_key(o_funcs& v) {
if(on) v.push_back(named_functionality("ring size", [] {
dialog::editNumber(cscale, 0, 1, .01, .1, "", "");
dialog::reaction = reset;
}));
}
auto hchook = addHook(hooks_drawcell, 100, draw_ptriangle)
#if CAP_COMMANDLINE
+ addHook(hooks_args, 100, [] {
using namespace arg;
if(0) ;
else if(argis("-cylon")) {
on = true;
}
else if(argis("-cyls")) {
shift_arg_formula(cscale);
}
else if(argis("-cylanim")) {
cylanim = !cylanim;
}
else if(argis("-cylball")) {
shift_arg_formula(cylball);
}
else return 1;
return 0;
})
#endif
+ addHook(anims::hooks_anim, 100, [] {
if(!ir || !cylanim || !on) return;
centerover = currentmap->gamestart();
long long isp = isize(ir->path);
View = ir->path[isp-1 - (ticks * isp / int(anims::period)) % isp];
shift_view(point3(0, 0.3, 0));
anims::moved();
})
+ addHook(hooks_o_key, 80, o_key)
+ addHook(pres::hooks_build_rvtour, 167, [] (vector<tour::slide>& v) {
using namespace tour;
v.push_back(
tour::slide{"non-isotropic geometries/Impossible architecture in Nil/impossible ring", 18, LEGAL::NONE | QUICKGEO,
"Ring with a square cross-section. Cut it in half. Rotate one of the two halves by 90°, "
"keeping one of the two ends connected to the other half. Do this in Nil geometry, so the other pair of ends remains connected too.\n\n"
"Move with mouse/arrows/PgUpDn. Press '5' to enable animation, 'o' to change ring size.\n\n",
[] (presmode mode) {
setCanvas(mode, '0');
slidecommand = "animation";
if(mode == pmKey) {
tour::slide_backup(cylanim, !cylanim);
}
if(mode == pmStart) {
stop_game();
set_geometry(gNil);
tour::slide_backup(mapeditor::drawplayer, false);
tour::slide_backup(on, true);
tour::slide_backup(smooth_scrolling, true);
tour::on_restore(nilv::set_flags);
tour::slide_backup(nilv::nilperiod, make_array(3, 3, 3));
nilv::set_flags();
start_game();
playermoved = false;
}
}}
);
});
}}