mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-05 05:36:17 +00:00
1064 lines
30 KiB
C++
1064 lines
30 KiB
C++
// Hyperbolic Rogue -- advanced geometry
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file geometry2.cpp
|
|
* \brief Matrices to transform between coordinates of various cells, coordinates of cell corners, etc.
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
namespace hr {
|
|
|
|
shiftmatrix &ggmatrix(cell *c);
|
|
|
|
EX void fixelliptic(transmatrix& at) {
|
|
if(elliptic && at[LDIM][LDIM] < 0) {
|
|
for(int i=0; i<MXDIM; i++) for(int j=0; j<MXDIM; j++)
|
|
at[i][j] = -at[i][j];
|
|
}
|
|
}
|
|
|
|
EX void fixelliptic(hyperpoint& h) {
|
|
if(elliptic && h[LDIM] < 0)
|
|
for(int i=0; i<MXDIM; i++) h[i] = -h[i];
|
|
}
|
|
|
|
/** find relative_matrix via recursing the tree structure */
|
|
EX transmatrix relative_matrix_recursive(heptagon *h2, heptagon *h1) {
|
|
if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7))
|
|
return inverse_shift(gmatrix0[h1->c7], gmatrix0[h2->c7]);
|
|
transmatrix gm = Id, where = Id;
|
|
while(h1 != h2) {
|
|
for(int i=0; i<h1->type; i++) {
|
|
if(h1->move(i) == h2) {
|
|
return gm * currentmap->adj(h1, i) * where;
|
|
}
|
|
}
|
|
if(h1->distance > h2->distance) {
|
|
for(int i=0; i<h1->type; i++) if(h1->move(i) && h1->move(i)->distance < h1->distance) {
|
|
gm = gm * currentmap->adj(h1, i);
|
|
h1 = h1->move(i);
|
|
goto again;
|
|
}
|
|
}
|
|
else {
|
|
for(int i=0; i<h2->type; i++) if(h2->move(i) && h2->move(i)->distance < h2->distance) {
|
|
where = currentmap->iadj(h2, 0) * where;
|
|
h2 = h2->move(i);
|
|
goto again;
|
|
}
|
|
}
|
|
again: ;
|
|
}
|
|
return gm * where;
|
|
}
|
|
|
|
transmatrix hrmap_standard::master_relative(cell *c, bool get_inverse) {
|
|
if(0) ;
|
|
#if CAP_IRR
|
|
else if(IRREGULAR) {
|
|
int id = irr::cellindex[c];
|
|
ld alpha = TAU / S7 * irr::periodmap[c->master].base.spin;
|
|
return get_inverse ? irr::cells[id].rpusher * spin(-alpha-master_to_c7_angle()): spin(alpha + master_to_c7_angle()) * irr::cells[id].pusher;
|
|
}
|
|
#endif
|
|
#if CAP_GP
|
|
else if(GOLDBERG) {
|
|
if(c == c->master->c7) {
|
|
return spin((get_inverse?-1:1) * master_to_c7_angle());
|
|
}
|
|
else {
|
|
auto li = gp::get_local_info(c);
|
|
transmatrix T = spin(master_to_c7_angle()) * cgi.gpdata->Tf[li.last_dir][li.relative.first&GOLDBERG_MASK][li.relative.second&GOLDBERG_MASK][gp::fixg6(li.total_dir)];
|
|
if(get_inverse) T = iso_inverse(T);
|
|
return T;
|
|
}
|
|
}
|
|
#endif
|
|
else if(BITRUNCATED) {
|
|
if(c == c->master->c7)
|
|
return Id;
|
|
return (get_inverse?cgi.invhexmove:cgi.hexmove)[c->c.spin(0)];
|
|
}
|
|
else if(WDIM == 3)
|
|
return Id;
|
|
else if(dont_inverse())
|
|
return Id;
|
|
else
|
|
return pispin * Id;
|
|
}
|
|
|
|
EX transmatrix calc_relative_matrix(cell *c2, cell *c1, const hyperpoint& hint) {
|
|
return currentmap->relative_matrix(c2, c1, hint);
|
|
}
|
|
|
|
// target, source, direction from source to target
|
|
|
|
#if CAP_GP
|
|
namespace gp { extern gp::local_info draw_li; }
|
|
#endif
|
|
|
|
transmatrix hrmap_standard::adj(heptagon *h, int d) {
|
|
if(inforder::mixed()) {
|
|
int t0 = h->type;
|
|
int t1 = h->cmove(d)->type;
|
|
int sp = h->c.spin(d);
|
|
return spin(-d * TAU / t0) * lxpush(spacedist(h->c7, d)) * spin(M_PI + TAU * sp / t1);
|
|
}
|
|
transmatrix T = cgi.heptmove[d];
|
|
if(h->c.mirror(d)) T = T * Mirror;
|
|
int sp = h->c.spin(d);
|
|
if(sp) T = T * spin(TAU*sp/S7);
|
|
return T;
|
|
}
|
|
|
|
EX transmatrix relative_matrix_via_masters(cell *c2, cell *c1, const hyperpoint& hint) {
|
|
heptagon *h1 = c1->master;
|
|
transmatrix gm = currentmap->master_relative(c1, true);
|
|
heptagon *h2 = c2->master;
|
|
transmatrix where = currentmap->master_relative(c2);
|
|
|
|
transmatrix U = currentmap->relative_matrix(h2, h1, hint);
|
|
|
|
return gm * U * where;
|
|
}
|
|
|
|
transmatrix hrmap_standard::relative_matrixc(cell *c2, cell *c1, const hyperpoint& hint) {
|
|
return relative_matrix_via_masters(c2, c1, hint);
|
|
}
|
|
|
|
transmatrix hrmap_standard::relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) {
|
|
|
|
transmatrix gm = Id, where = Id;
|
|
// always add to last!
|
|
//bool hsol = false;
|
|
//transmatrix sol;
|
|
|
|
set<heptagon*> visited;
|
|
map<ld, vector<pair<heptagon*, transmatrix>>> hbdist;
|
|
|
|
int steps = 0;
|
|
while(h1 != h2) {
|
|
steps++; if(steps > 10000) {
|
|
println(hlog, "not found"); return Id;
|
|
}
|
|
if(closed_manifold) {
|
|
transmatrix T;
|
|
ld bestdist = 1e9;
|
|
for(int d=0; d<S7; d++) {
|
|
auto hm = h1->move(d);
|
|
if(!hm) continue;
|
|
transmatrix S = adj(h1, d);
|
|
if(hm == h2) {
|
|
transmatrix T1 = gm * S * where;
|
|
auto curdist = hdist(tC0(T1), hint);
|
|
if(curdist < bestdist) T = T1, bestdist = curdist;
|
|
}
|
|
if(geometry != gMinimal) for(int e=0; e<S7; e++) if(hm->move(e) == h2) {
|
|
transmatrix T1 = gm * S * adj(hm, e) * where;
|
|
auto curdist = hdist(tC0(T1), hint);
|
|
if(curdist < bestdist) T = T1, bestdist = curdist;
|
|
}
|
|
}
|
|
if(bestdist < 1e8) return T;
|
|
}
|
|
for(int d=0; d<h1->type; d++) if(h1->move(d) == h2) {
|
|
return gm * adj(h1, d) * where;
|
|
}
|
|
if(among(geometry, gFieldQuotient, gBring, gMacbeath)) {
|
|
int bestdist = 1000000, bestd = 0;
|
|
for(int d=0; d<S7; d++) {
|
|
int dist = celldistance(h1->cmove(d)->c7, h2->c7);
|
|
if(dist < bestdist) bestdist = dist, bestd = d;
|
|
}
|
|
gm = gm * adj(h1, bestd);
|
|
h1 = h1->move(bestd);
|
|
}
|
|
#if CAP_CRYSTAL
|
|
else if(cryst) {
|
|
for(int d3=0; d3<S7; d3++) {
|
|
auto hm = h1->cmove(d3);
|
|
if(visited.count(hm)) continue;
|
|
visited.insert(hm);
|
|
ld dist = crystal::space_distance(hm->c7, h2->c7);
|
|
hbdist[dist].emplace_back(hm, gm * adj(h1, d3));
|
|
}
|
|
auto &bestv = hbdist.begin()->second;
|
|
tie(h1, gm) = bestv.back();
|
|
bestv.pop_back();
|
|
if(bestv.empty()) hbdist.erase(hbdist.begin());
|
|
}
|
|
#endif
|
|
else if(h1->distance < h2->distance) {
|
|
where = iadj(h2, 0) * where;
|
|
h2 = h2->move(0);
|
|
}
|
|
else {
|
|
gm = gm * adj(h1, 0);
|
|
h1 = h1->move(0);
|
|
}
|
|
}
|
|
return gm * where;
|
|
}
|
|
|
|
EX shiftmatrix &ggmatrix(cell *c) {
|
|
shiftmatrix& t = gmatrix[c];
|
|
if(t[LDIM][LDIM] == 0) {
|
|
t.T = actual_view_transform * View * calc_relative_matrix(c, centerover, C0);
|
|
t.shift = 0;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
#if HDR
|
|
struct horo_distance {
|
|
ld a, b;
|
|
|
|
void become(hyperpoint h1);
|
|
horo_distance(hyperpoint h) { become(h); }
|
|
horo_distance(shiftpoint h1, const shiftmatrix& T);
|
|
bool operator < (const horo_distance z) const;
|
|
friend void print(hstream& hs, horo_distance x) { print(hs, "[", x.a, ":", x.b, "]"); }
|
|
};
|
|
#endif
|
|
|
|
void horo_distance::become(hyperpoint h1) {
|
|
#if CAP_SOLV
|
|
if(sn::in()) {
|
|
a = abs(h1[2]);
|
|
if(asonov::in()) h1 = asonov::straighten * h1;
|
|
b = hypot_d(2, h1);
|
|
}
|
|
#else
|
|
if(0) {}
|
|
#endif
|
|
#if CAP_BT
|
|
else if(bt::in()) {
|
|
b = intval(h1, C0);
|
|
a = abs(bt::horo_level(h1));
|
|
}
|
|
#endif
|
|
else if(mhybrid)
|
|
a = 0, b = hdist(h1, C0);
|
|
else
|
|
a = 0, b = intval(h1, tile_center());
|
|
}
|
|
|
|
horo_distance::horo_distance(shiftpoint h1, const shiftmatrix& T) {
|
|
#if CAP_BT
|
|
if(bt::in()) become(inverse_shift(T, h1));
|
|
else
|
|
#endif
|
|
if(sn::in() || mhybrid || nil) become(inverse_shift(T, h1));
|
|
else
|
|
a = 0, b = intval(h1.h, unshift(tC0(T), h1.shift));
|
|
}
|
|
|
|
bool horo_distance::operator < (const horo_distance z) const {
|
|
#if CAP_BT
|
|
if(bt::in() || sn::in()) {
|
|
if(a < z.a-1e-6) return true;
|
|
if(a > z.a+1e-6) return false;
|
|
}
|
|
#endif
|
|
return b < z.b - 1e-4;
|
|
}
|
|
|
|
template<class T, class U>
|
|
void virtualRebase_cell(cell*& base, T& at, const U& check) {
|
|
horo_distance currz(check(at));
|
|
T best_at = at;
|
|
while(true) {
|
|
cell *newbase = NULL;
|
|
forCellIdCM(c2, i, base) {
|
|
transmatrix V2 = currentmap->iadj(base, i);
|
|
T cand_at = V2 * at;
|
|
horo_distance newz(check(cand_at));
|
|
if(newz < currz) {
|
|
currz = newz;
|
|
best_at = cand_at;
|
|
newbase = c2;
|
|
}
|
|
if(arb::in()) forCellIdCM(c3, j, c2) {
|
|
transmatrix V3 = currentmap->iadj(c2, j);
|
|
T cand_at3 = V3 * cand_at;
|
|
horo_distance newz3(check(cand_at3));
|
|
if(newz3 < currz) {
|
|
currz = newz3;
|
|
best_at = cand_at3;
|
|
newbase = c3;
|
|
}
|
|
}
|
|
}
|
|
if(!newbase) break;
|
|
base = newbase;
|
|
at = best_at;
|
|
}
|
|
#if MAXMDIM >= 4
|
|
if(reg3::ultra_mirror_in()) {
|
|
again:
|
|
for(auto& v: cgi.ultra_mirrors) {
|
|
T cand_at = v * at;
|
|
horo_distance newz(check(cand_at));
|
|
if(newz < currz) {
|
|
currz = newz;
|
|
at = cand_at;
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
template<class T, class U>
|
|
void virtualRebase(cell*& base, T& at, const U& check) {
|
|
|
|
if(nil && WDIM == 3) {
|
|
hyperpoint h = check(at);
|
|
auto step = [&] (int i) {
|
|
at = currentmap->adj(base, (i+S7/2) % S7) * at;
|
|
base = base->cmove(i);
|
|
h = check(at);
|
|
};
|
|
|
|
auto& nw = nilv::nilwidth;
|
|
|
|
bool ss = S7 == 6;
|
|
|
|
while(h[1] < -0.5 * nw) step(ss ? 1 : 2);
|
|
while(h[1] >= 0.5 * nw) step(ss ? 4 : 6);
|
|
while(h[0] < -0.5 * nw) step(0);
|
|
while(h[0] >= 0.5 * nw) step(ss ? 3 : 4);
|
|
while(h[2] < -0.5 * nw * nw) step(ss ? 2 : 3);
|
|
while(h[2] >= 0.5 * nw * nw) step(ss ? 5 : 7);
|
|
return;
|
|
}
|
|
|
|
if(geometry == gSol) {
|
|
/** the general algorithm sometimes makes much more iterations than needed... try to approximate the geodesic */
|
|
hyperpoint h = check(at);
|
|
auto step = [&] (int i) {
|
|
at = currentmap->iadj(base, i) * at;
|
|
base = base->cmove(i);
|
|
h = check(at);
|
|
};
|
|
|
|
auto nw = vid.binary_width * log(2);
|
|
while(abs(h[0]) > 2) step(6);
|
|
while(h[0] < -0.5 * nw) step(4);
|
|
while(h[0] > +0.5 * nw) step(0);
|
|
while(abs(h[1]) > 2) {
|
|
step(2);
|
|
while(h[0] < -0.5 * nw) step(4);
|
|
while(h[0] > +0.5 * nw) step(0);
|
|
}
|
|
while(h[1] < -0.5 * nw) step(5);
|
|
while(h[1] > +0.5 * nw) step(1);
|
|
while(h[2] > 1) {
|
|
step(2);
|
|
while(h[0] < -0.5 * nw) step(4);
|
|
while(h[0] > +0.5 * nw) step(0);
|
|
while(h[1] < -0.5 * nw) step(5);
|
|
while(h[1] > +0.5 * nw) step(1);
|
|
}
|
|
while(h[2] < -1) {
|
|
step(6);
|
|
while(h[0] < -0.5 * nw) step(4);
|
|
while(h[0] > +0.5 * nw) step(0);
|
|
while(h[1] < -0.5 * nw) step(5);
|
|
while(h[1] > +0.5 * nw) step(1);
|
|
}
|
|
}
|
|
/* todo variants of sol */
|
|
|
|
if(mproduct) {
|
|
auto d = product_decompose(check(at)).first;
|
|
while(d > cgi.plevel / 2) {
|
|
at = currentmap->iadj(base, base->type-1) * at;
|
|
base = base->cmove(base->type-1); d -= cgi.plevel;
|
|
}
|
|
while(d < -cgi.plevel / 2) {
|
|
at = currentmap->iadj(base, base->type-2) * at;
|
|
base = base->cmove(base->type-2); d += cgi.plevel;
|
|
}
|
|
auto w = hybrid::get_where(base);
|
|
at = orthogonal_move(at, -d);
|
|
PIU( virtualRebase(w.first, at, check) );
|
|
at = orthogonal_move(at, +d);
|
|
base = hybrid::get_at(w.first, w.second);
|
|
return;
|
|
}
|
|
|
|
virtualRebase_cell(base, at, check);
|
|
}
|
|
|
|
EX void virtualRebase(cell*& base, transmatrix& at) {
|
|
virtualRebase(base, at, tC0_t);
|
|
}
|
|
|
|
EX void virtualRebase(cell*& base, hyperpoint& h) {
|
|
// we perform fixing in check, so that it works with larger range
|
|
virtualRebase(base, h, [] (const hyperpoint& h) {
|
|
if(hyperbolic && GDIM == 2) return hpxy(h[0], h[1]);
|
|
if(hyperbolic && GDIM == 3) return hpxy3(h[0], h[1], h[2]);
|
|
return h;
|
|
});
|
|
}
|
|
|
|
void hrmap_hyperbolic::virtualRebase(heptagon*& base, transmatrix& at) {
|
|
|
|
while(true) {
|
|
|
|
double currz = at[LDIM][LDIM];
|
|
|
|
heptagon *h = base;
|
|
|
|
heptagon *newbase = NULL;
|
|
|
|
transmatrix bestV {};
|
|
|
|
for(int d=0; d<S7; d++) {
|
|
heptspin hs(h, d, false);
|
|
heptspin hs2 = hs + wstep;
|
|
transmatrix V2 = iadj(h, d) * at;
|
|
double newz = V2[LDIM][LDIM];
|
|
if(newz < currz) {
|
|
currz = newz;
|
|
bestV = V2;
|
|
newbase = hs2.at;
|
|
}
|
|
}
|
|
|
|
if(newbase) {
|
|
base = newbase;
|
|
at = bestV;
|
|
continue;
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
EX bool no_easy_spin() {
|
|
return NONSTDVAR || arcm::in() || WDIM == 3 || bt::in() || kite::in();
|
|
}
|
|
|
|
EX bool dont_inverse() { return geometry == 1 && PURE && geom3::euc_in_noniso(); }
|
|
|
|
ld hrmap_standard::spin_angle(cell *c, int d) {
|
|
if(WDIM == 3) return SPIN_NOT_AVAILABLE;
|
|
ld hexshift = 0;
|
|
if(c == c->master->c7 && (S7 % 2 == 0) && BITRUNCATED) hexshift = cgi.hexshift + TAU/c->type;
|
|
else if(cgi.hexshift && c == c->master->c7) hexshift = cgi.hexshift;
|
|
#if CAP_IRR
|
|
if(IRREGULAR) {
|
|
auto id = irr::cellindex[c];
|
|
auto& vs = irr::cells[id];
|
|
if(d < 0 || d >= c->type) return 0;
|
|
auto& p = vs.jpoints[vs.neid[d]];
|
|
return -atan2(p[1], p[0]) - hexshift;
|
|
}
|
|
#endif
|
|
if(dont_inverse()) return - d * TAU / c->type;
|
|
return M_PI - d * TAU / c->type - hexshift;
|
|
}
|
|
|
|
EX transmatrix ddspin(cell *c, int d, ld bonus IS(0)) { return currentmap->spin_to(c, d, bonus); }
|
|
EX transmatrix iddspin(cell *c, int d, ld bonus IS(0)) { return currentmap->spin_from(c, d, bonus); }
|
|
EX ld cellgfxdist(cell *c, int d) { return currentmap->spacedist(c, d); }
|
|
|
|
EX transmatrix ddspin_side(cell *c, int d, ld bonus IS(0)) {
|
|
if(kite::in()) {
|
|
hyperpoint h1 = get_corner_position(c, gmod(d, c->type), 3);
|
|
hyperpoint h2 = get_corner_position(c, gmod(d+1, c->type) , 3);
|
|
hyperpoint hm = mid(h1, h2);
|
|
return rspintox(hm) * spin(bonus);
|
|
}
|
|
return currentmap->spin_to(c, d, bonus);
|
|
}
|
|
|
|
EX transmatrix iddspin_side(cell *c, int d, ld bonus IS(0)) {
|
|
if(kite::in()) {
|
|
hyperpoint h1 = get_corner_position(c, gmod(d, c->type), 3);
|
|
hyperpoint h2 = get_corner_position(c, gmod(d+1, c->type) , 3);
|
|
hyperpoint hm = mid(h1, h2);
|
|
return spintox(hm) * spin(bonus);
|
|
}
|
|
return currentmap->spin_from(c, d, bonus);
|
|
}
|
|
|
|
double hrmap_standard::spacedist(cell *c, int i) {
|
|
if(NONSTDVAR || WDIM == 3) return hrmap::spacedist(c, i);
|
|
if(inforder::mixed()) {
|
|
int t0 = c->type;
|
|
int t1 = c->cmove(i)->type;
|
|
auto halfmove = [] (int i) {
|
|
if(i == 1) return 0.0;
|
|
if(i == 2) return 0.1;
|
|
return edge_of_triangle_with_angles(0, M_PI/i, M_PI/i);
|
|
};
|
|
ld tessf0 = halfmove(t0);
|
|
ld tessf1 = halfmove(t1);
|
|
return (tessf0 + tessf1) / 2;
|
|
}
|
|
if(!BITRUNCATED) return cgi.tessf;
|
|
if(c->type == S6 && (i&1)) return cgi.hexhexdist;
|
|
return cgi.crossf;
|
|
}
|
|
|
|
int neighborId(heptagon *h1, heptagon *h2) {
|
|
for(int i=0; i<h1->type; i++) if(h1->move(i) == h2) return i;
|
|
return -1;
|
|
}
|
|
|
|
transmatrix hrmap_standard::adj(cell *c, int i) {
|
|
if(GOLDBERG) {
|
|
transmatrix T = master_relative(c, true);
|
|
transmatrix U = master_relative(c->cmove(i), false);
|
|
heptagon *h = c->master, *h1 = c->cmove(i)->master;
|
|
static bool first = true;
|
|
if(h == h1)
|
|
return T * U;
|
|
else if(gp::do_adjm) {
|
|
if(gp::gp_adj.count(make_pair(c,i))) {
|
|
return T * gp::get_adj(c,i) * U;
|
|
}
|
|
if(first) { first = false; println(hlog, "no gp_adj"); }
|
|
}
|
|
else for(int i=0; i<h->type; i++) if(h->move(i) == h1)
|
|
return T * adj(h, i) * U;
|
|
if(first) {
|
|
first = false;
|
|
println(hlog, "not adjacent");
|
|
}
|
|
}
|
|
if(NONSTDVAR || WDIM == 3) {
|
|
return calc_relative_matrix(c->cmove(i), c, C0);
|
|
}
|
|
double d = cellgfxdist(c, i);
|
|
transmatrix T = ddspin(c, i) * lxpush(d);
|
|
if(c->c.mirror(i)) T = T * Mirror;
|
|
cell *c1 = c->cmove(i);
|
|
T = T * iddspin(c1, c->c.spin(i), M_PI);
|
|
return T;
|
|
}
|
|
|
|
EX double randd() { return (rand() + .5) / (RAND_MAX + 1.); }
|
|
|
|
EX hyperpoint randomPointIn(int t) {
|
|
if(NONSTDVAR || arcm::in() || kite::in()) {
|
|
// Let these geometries be less confusing.
|
|
// Also easier to implement ;)
|
|
return xspinpush0(TAU * randd(), asinh(randd() / 20));
|
|
}
|
|
while(true) {
|
|
hyperpoint h = xspinpush0(TAU * (randd()-.5)/t, asinh(randd()));
|
|
double d =
|
|
PURE ? cgi.tessf : t == 6 ? cgi.hexhexdist : cgi.crossf;
|
|
if(hdist0(h) < hdist0(xpush(-d) * h))
|
|
return spin(TAU / t * (rand() % t)) * h;
|
|
}
|
|
}
|
|
|
|
/** /brief get the coordinates of the vertex of cell c indexed with cid
|
|
* the two vertices c and c->move(cid) share are indexed cid and gmod(cid+1, c->type)
|
|
* cf=3 is the vertex itself; larger values are closer to the center
|
|
*/
|
|
|
|
EX hyperpoint get_corner_position(cell *c, int cid, ld cf IS(3)) {
|
|
return currentmap->get_corner(c, cid, cf);
|
|
}
|
|
|
|
hyperpoint hrmap_standard::get_corner(cell *c, int cid, ld cf) {
|
|
#if CAP_GP
|
|
if(GOLDBERG) return gp::get_corner_position(c, cid, cf);
|
|
#endif
|
|
#if CAP_IRR
|
|
if(IRREGULAR) {
|
|
auto& vs = irr::cells[irr::cellindex[c]];
|
|
return mid_at_actual(vs.vertices[cid], 3/cf);
|
|
}
|
|
#endif
|
|
if(PURE) {
|
|
if(geom3::euc_in_nil()) {
|
|
return lspinpush0(spin_angle(c, cid) + M_PI/S7, cgi.hcrossf * 3 / cf);
|
|
}
|
|
return ddspin(c,cid,M_PI/S7) * lxpush0(cgi.hcrossf * 3 / cf);
|
|
}
|
|
if(BITRUNCATED) {
|
|
if(!ishept(c))
|
|
return ddspin(c,cid,M_PI/S6) * lxpush0(cgi.hexvdist * 3 / cf);
|
|
else
|
|
return ddspin(c,cid,M_PI/S7) * lxpush0(cgi.rhexf * 3 / cf);
|
|
}
|
|
return tile_center();
|
|
}
|
|
|
|
EX bool approx_nearcorner = false;
|
|
|
|
/** /brief get the coordinates of the center of c->move(i) */
|
|
|
|
EX hyperpoint nearcorner(cell *c, int i) {
|
|
if(GOLDBERG_INV) {
|
|
i = gmod(i, c->type);
|
|
cellwalker cw(c, i);
|
|
cw += wstep;
|
|
transmatrix cwm = currentmap->adj(c, i);
|
|
if(elliptic && cwm[2][2] < 0) cwm = centralsym * cwm;
|
|
return cwm * C0;
|
|
}
|
|
#if CAP_IRR
|
|
if(IRREGULAR) {
|
|
auto& vs = irr::cells[irr::cellindex[c]];
|
|
hyperpoint nc = vs.jpoints[vs.neid[i]];
|
|
return mid_at(C0, nc, .94);
|
|
}
|
|
#endif
|
|
#if CAP_ARCM
|
|
if(arcm::in()) {
|
|
if(PURE) {
|
|
auto &ac = arcm::current;
|
|
auto& t = ac.get_triangle(c->master, i-1);
|
|
int id = arcm::id_of(c->master);
|
|
int id1 = ac.get_adj(ac.get_adj(c->master, i-1), -2).first;
|
|
return xspinpush0(-t.first - M_PI / c->type, ac.inradius[id/2] + ac.inradius[id1/2] + (ac.real_faces == 0 ? TAU / (ac.N == 2 ? 2.1 : ac.N) : 0));
|
|
}
|
|
if(BITRUNCATED) {
|
|
auto &ac = arcm::current;
|
|
auto& t = ac.get_triangle(c->master, i);
|
|
return xspinpush0(-t.first, t.second);
|
|
}
|
|
if(DUAL) {
|
|
auto &ac = arcm::current;
|
|
auto& t = ac.get_triangle(c->master, i * 2);
|
|
return xspinpush0(-t.first, t.second);
|
|
}
|
|
}
|
|
#endif
|
|
#if CAP_BT
|
|
if(geometry == gBinary4) {
|
|
ld yx = log(2) / 2;
|
|
ld yy = yx;
|
|
hyperpoint neis[5];
|
|
neis[0] = bt::get_horopoint(2*yy, -0.5);
|
|
neis[1] = bt::get_horopoint(2*yy, +0.5);
|
|
neis[2] = bt::get_horopoint(0, 1);
|
|
neis[3] = bt::get_horopoint(-2*yy, c->master->zebraval ? -0.25 : +0.25);
|
|
neis[4] = bt::get_horopoint(0, -1);
|
|
return neis[i];
|
|
}
|
|
if(geometry == gTernary) {
|
|
ld yx = log(3) / 2;
|
|
ld yy = yx;
|
|
hyperpoint neis[6];
|
|
neis[0] = bt::get_horopoint(2*yy, -1);
|
|
neis[1] = bt::get_horopoint(2*yy, +0);
|
|
neis[2] = bt::get_horopoint(2*yy, +1);
|
|
neis[3] = bt::get_horopoint(0, 1);
|
|
neis[4] = bt::get_horopoint(-2*yy, c->master->zebraval / 3.);
|
|
neis[5] = bt::get_horopoint(0, -1);
|
|
return neis[i];
|
|
}
|
|
if(kite::in()) {
|
|
if(approx_nearcorner)
|
|
return currentmap->get_corner(c, i, 3) + currentmap->get_corner(c, i+1, 3) - C0;
|
|
else
|
|
return calc_relative_matrix(c->cmove(i), c, C0) * C0;
|
|
}
|
|
if(bt::in()) {
|
|
if(WDIM == 3) {
|
|
println(hlog, "nearcorner called");
|
|
return Hypc;
|
|
}
|
|
ld yx = log(2) / 2;
|
|
ld yy = yx;
|
|
// ld xx = 1 / sqrt(2)/2;
|
|
hyperpoint neis[7];
|
|
neis[0] = bt::get_horopoint(0, 1);
|
|
neis[1] = bt::get_horopoint(yy*2, 1);
|
|
neis[2] = bt::get_horopoint(yy*2, 0);
|
|
neis[3] = bt::get_horopoint(yy*2, -1);
|
|
neis[4] = bt::get_horopoint(0, -1);
|
|
if(c->type == 7)
|
|
neis[5] = bt::get_horopoint(-yy*2, -.5),
|
|
neis[6] = bt::get_horopoint(-yy*2, +.5);
|
|
else
|
|
neis[5] = bt::get_horopoint(-yy*2, 0);
|
|
return neis[i];
|
|
}
|
|
#endif
|
|
double d = cellgfxdist(c, i);
|
|
return ddspin(c, i) * lxpush0(d);
|
|
}
|
|
|
|
/** /brief get the coordinates of the another vertex of c->move(i)
|
|
* this is useful for tessellation remapping TODO COMMENT
|
|
*/
|
|
|
|
EX hyperpoint farcorner(cell *c, int i, int which) {
|
|
#if CAP_GP
|
|
if(GOLDBERG_INV) {
|
|
cellwalker cw(c, i);
|
|
cw += wstep;
|
|
if(!cw.mirrored) cw += (which?-1:2);
|
|
else cw += (which?2:-1);
|
|
transmatrix cwm = currentmap->adj(c, i);
|
|
if(gp::variation_for(gp::param) == eVariation::goldberg) {
|
|
auto li1 = gp::get_local_info(cw.at);
|
|
return cwm * get_corner_position(li1, cw.spin);
|
|
}
|
|
else {
|
|
return cwm * get_corner_position(cw.at, cw.spin, 3);
|
|
}
|
|
}
|
|
#endif
|
|
#if CAP_IRR
|
|
if(IRREGULAR) {
|
|
auto& vs = irr::cells[irr::cellindex[c]];
|
|
int neid = vs.neid[i];
|
|
int spin = vs.spin[i];
|
|
auto &vs2 = irr::cells[neid];
|
|
int cor2 = isize(vs2.vertices);
|
|
transmatrix rel = vs.rpusher * vs.relmatrices[vs2.owner] * vs2.pusher;
|
|
|
|
if(which == 0) return rel * vs2.vertices[(spin+2)%cor2];
|
|
if(which == 1) return rel * vs2.vertices[(spin+cor2-1)%cor2];
|
|
}
|
|
#endif
|
|
#if CAP_BT
|
|
if(bt::in() || kite::in())
|
|
return nearcorner(c, (i+which) % c->type); // lazy
|
|
#endif
|
|
#if CAP_ARCM
|
|
if(arcm::in()) {
|
|
if(PURE) {
|
|
auto &ac = arcm::current;
|
|
auto& t = ac.get_triangle(c->master, i-1);
|
|
int id = arcm::id_of(c->master);
|
|
auto id1 = ac.get_adj(ac.get_adj(c->master, i-1), -2).first;
|
|
int n1 = isize(ac.adjacent[id1]);
|
|
return spin(-t.first - M_PI / c->type) * lxpush(ac.inradius[id/2] + ac.inradius[id1/2]) * xspinpush0(M_PI + M_PI/n1*(which?3:-3), ac.circumradius[id1/2]);
|
|
}
|
|
if(BITRUNCATED || DUAL) {
|
|
int mul = DUALMUL;
|
|
auto &ac = arcm::current;
|
|
auto adj = ac.get_adj(c->master, i * mul);
|
|
heptagon h; cell cx; cx.master = &h;
|
|
arcm::id_of(&h) = adj.first;
|
|
arcm::parent_index_of(&h) = adj.second;
|
|
|
|
auto& t1 = arcm::current.get_triangle(c->master, i);
|
|
|
|
auto& t2 = arcm::current.get_triangle(adj);
|
|
|
|
return spin(-t1.first) * lxpush(t1.second) * spin(M_PI + t2.first) * get_corner_position(&cx, which ? -mul : 2*mul);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
cellwalker cw(c, i);
|
|
cw += wstep;
|
|
if(!cw.mirrored) cw.spin += (which?-1:2);
|
|
else cw.spin += (which?2:-1);
|
|
return currentmap->adj(c, i) * get_corner_position(c->move(i), cw.spin);
|
|
}
|
|
|
|
EX hyperpoint midcorner(cell *c, int i, ld v) {
|
|
auto hcor = farcorner(c, i, 0);
|
|
auto tcor = get_corner_position(c, i, 3);
|
|
return mid_at(tcor, hcor, v);
|
|
}
|
|
|
|
EX hyperpoint get_warp_corner(cell *c, int cid) {
|
|
// midcorner(c, cid, .5) but sometimes easier versions exist
|
|
#if CAP_GP
|
|
if(GOLDBERG) return gp::get_corner_position(c, cid, 2);
|
|
#endif
|
|
#if CAP_IRR || CAP_ARCM
|
|
if(IRREGULAR || arcm::in()) return midcorner(c, cid, .5);
|
|
#endif
|
|
return ddspin(c,cid,M_PI/S7) * lxpush0(cgi.tessf/2);
|
|
}
|
|
|
|
EX map<cell*, map<cell*, vector<transmatrix>>> brm_structure;
|
|
|
|
EX void generate_brm(cell *c1) {
|
|
set<unsigned> visited_by_matrix;
|
|
queue<pair<cell*, transmatrix>> q;
|
|
map<cell*, ld> cutoff;
|
|
auto& res = brm_structure[c1];
|
|
|
|
auto enqueue = [&] (cell *c, const transmatrix& T) {
|
|
auto b = bucketer(tC0(T));
|
|
if(visited_by_matrix.count(b)) return;
|
|
visited_by_matrix.insert(b);
|
|
q.emplace(c, T);
|
|
};
|
|
|
|
enqueue(c1, Id);
|
|
while(!q.empty()) {
|
|
cell *c2;
|
|
transmatrix T;
|
|
tie(c2,T) = q.front();
|
|
q.pop();
|
|
|
|
ld mindist = HUGE_VAL, maxdist = 0;
|
|
|
|
if(WDIM == 2) {
|
|
for(int i=0; i<c1->type; i++)
|
|
for(int j=0; j<c2->type; j++) {
|
|
ld d = hdist(get_corner_position(c1, i), T * get_corner_position(c2, j));
|
|
if(d < mindist) mindist = d;
|
|
if(d > maxdist) maxdist = d;
|
|
}
|
|
}
|
|
else {
|
|
auto& ss1 = currentmap->get_cellshape(c1);
|
|
auto& ss2 = currentmap->get_cellshape(c2);
|
|
for(auto v: ss1.vertices_only)
|
|
for(auto w: ss2.vertices_only) {
|
|
ld d = hdist(v, T*w);
|
|
if(d < mindist) mindist = d;
|
|
if(d > maxdist) maxdist = d;
|
|
}
|
|
}
|
|
|
|
auto& cu = cutoff[c2];
|
|
if(cu == 0 || cu > maxdist)
|
|
cu = maxdist;
|
|
|
|
if(mindist >= cu) continue;
|
|
res[c2].push_back(T);
|
|
|
|
forCellIdCM(c3, i, c2) enqueue(c3, T * currentmap->adj(c2, i));
|
|
}
|
|
|
|
vector<int> cts;
|
|
for(auto& p: res) cts.push_back(isize(p.second));
|
|
}
|
|
|
|
/** this function exhaustively finds the best transmatrix from (c1,h1) to (c2,h2) */
|
|
EX const transmatrix& brm_get(cell *c1, hyperpoint h1, cell *c2, hyperpoint h2) {
|
|
if(!brm_structure.count(c1))
|
|
generate_brm(c1);
|
|
transmatrix *result = nullptr;
|
|
ld best = HUGE_VAL;
|
|
for(auto& t: brm_structure[c1][c2]) {
|
|
ld d = hdist(h1, t * h2);
|
|
if(d < best) best = d, result = &t;
|
|
}
|
|
return *result;
|
|
}
|
|
|
|
int brm_hook = addHook(hooks_clearmemory, 0, []() {
|
|
brm_structure.clear();
|
|
});
|
|
|
|
EX bool exhaustive_distance_appropriate() {
|
|
if(euclid && (kite::in() || arcm::in() || arb::in() || quotient)) return true;
|
|
#if MAXMDIM >= 4
|
|
if(nil && quotient) return true;
|
|
#endif
|
|
#if CAP_SOLV
|
|
if(asonov::in() && asonov::period_xy && asonov::period_xy <= 256) return true;
|
|
#endif
|
|
|
|
if(closed_manifold) return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#if HDR
|
|
struct pathgen {
|
|
cellwalker start;
|
|
cellwalker last;
|
|
vector<cell*> path;
|
|
bignum full_id_0;
|
|
int last_id;
|
|
};
|
|
#endif
|
|
|
|
EX pathgen generate_random_path_randomdir(cellwalker start, int length, bool for_yendor) {
|
|
start.spin = hrand(start.at->type);
|
|
return generate_random_path(start, length, for_yendor, false);
|
|
}
|
|
|
|
EX pathgen generate_random_path(cellwalker start, int length, bool for_yendor, bool randomdir) {
|
|
pathgen p;
|
|
p.start = start;
|
|
p.path.resize(length+1);
|
|
p.path[0] = start.at;
|
|
p.last_id = 0;
|
|
|
|
int turns = 0;
|
|
|
|
if(exhaustive_distance_appropriate()) {
|
|
permanent_long_distances(start.at);
|
|
int dist = max_saved_distance(start.at);
|
|
dist = min(dist, length);
|
|
auto at = random_in_distance(start.at, dist);
|
|
permanent_long_distances(at);
|
|
for(int a=length-1; a>=0; a--) {
|
|
p.path[a+1] = at;
|
|
vector<cell*> prev;
|
|
forCellCM(c2, at) if(celldistance(start.at, c2) == a) prev.push_back(c2);
|
|
if(isize(prev)) at = prev[hrand(isize(prev))];
|
|
}
|
|
p.path[0] = start.at;
|
|
p.last = p.path.back();
|
|
}
|
|
|
|
else if(mhybrid) {
|
|
/* I am lazy */
|
|
for(int i=1; i<=length; i++) p.path[i] = p.path[i-1]->cmove(p.path[i-1]->type-1);
|
|
p.last = p.path.back();
|
|
}
|
|
|
|
else {
|
|
int t = -1;
|
|
bignum full_id;
|
|
bool onlychild = true;
|
|
bool launched = false;
|
|
|
|
cellwalker ycw = start;
|
|
if(for_yendor) setdist(p.path[0], 7, NULL);
|
|
auto& expansion = get_expansion();
|
|
|
|
for(int i=0; i<length; i++) {
|
|
|
|
if(for_yendor && yendor::control(p, i, ycw)) { }
|
|
|
|
else if(bt::in()) {
|
|
// make it challenging
|
|
vector<int> ds;
|
|
for(int d=0; d<ycw.at->type; d++) {
|
|
bool increase;
|
|
if(sol)
|
|
increase = i < YDIST / 4 || i > 3 * YDIST / 4;
|
|
else
|
|
increase = i < YDIST/2;
|
|
if(increase) {
|
|
if(celldistAlt((ycw+d).cpeek()) < celldistAlt(ycw.at))
|
|
ds.push_back(d);
|
|
}
|
|
else {
|
|
if(celldistAlt((ycw+d).cpeek()) > celldistAlt(ycw.at) && (ycw+d).cpeek() != p.path[i-1])
|
|
ds.push_back(d);
|
|
}
|
|
}
|
|
if(isize(ds)) ycw += ds[hrand(isize(ds))];
|
|
}
|
|
|
|
else if(currentmap->strict_tree_rules()) {
|
|
if(for_yendor && i < arb::current.yendor_backsteps) {
|
|
println(hlog, i, " < ", arb::current.yendor_backsteps);
|
|
ycw.spin = 0;
|
|
}
|
|
|
|
else {
|
|
if(!launched) {
|
|
t = ycw.at->master->fieldval;
|
|
bignum b = expansion.get_descendants(length-i, t);
|
|
if(!full_id.approx_int()) goto stupid;
|
|
p.full_id_0 = full_id = hrand(b);
|
|
/* it may happen that the subtree dies out */
|
|
launched = true;
|
|
}
|
|
|
|
ycw.spin = 0;
|
|
|
|
auto& r = rulegen::treestates[t];
|
|
for(int ri=0; ri<isize(r.rules); ri++) {
|
|
int tch = r.rules[ri];
|
|
if(tch < 0) continue;
|
|
auto& sub_id = expansion.get_descendants(length-1-i, tch);
|
|
if(full_id < sub_id) {
|
|
t = tch; ycw += ri; break;
|
|
}
|
|
full_id.addmul(sub_id, -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
else if(trees_known() && WDIM == 2) {
|
|
auto sdist = [start] (cell *c) { return celldistance(start.at, c); };
|
|
if(i == 0) {
|
|
t = type_in(expansion, randomdir ? start.at : start.cpeek(), sdist);
|
|
ycw--;
|
|
if(valence() == 3) ycw--;
|
|
bignum b = get_expansion().get_descendants(randomdir ? length : length-1, t);
|
|
p.full_id_0 = full_id = hrand(b);
|
|
}
|
|
|
|
#if DEBUG_YENDORGEN
|
|
printf("#%3d t%d %s / %s\n", i, t, full_id.get_str(100).c_str(), expansion.get_descendants(length-i, t).get_str(100).c_str());
|
|
for(int tch: expansion.children[t]) {
|
|
printf(" t%d %s\n", tch, expansion.get_descendants(length-i-1, t).get_str(100).c_str());
|
|
}
|
|
#endif
|
|
|
|
if(i == 1)
|
|
onlychild = true;
|
|
if(!onlychild) ycw++;
|
|
if(valence() == 3) ycw++;
|
|
|
|
onlychild = false;
|
|
|
|
for(int tch: expansion.children[t]) {
|
|
ycw++;
|
|
if(i < 2) tch = type_in(expansion, ycw.cpeek(), sdist);
|
|
auto& sub_id = expansion.get_descendants(length-1-i, tch);
|
|
if(full_id < sub_id) { t = tch; break; }
|
|
|
|
full_id.addmul(sub_id, -1);
|
|
onlychild = true;
|
|
}
|
|
}
|
|
|
|
else if(WDIM == 3) {
|
|
cell *prev = p.path[max(i-3, 0)];
|
|
int d = celldistance(prev, ycw.at);
|
|
vector<int> next;
|
|
forCellIdCM(c, i, ycw.at) if(celldistance(prev, c) > d) next.push_back(i);
|
|
if(!isize(next)) {
|
|
println(hlog, "error: no more cells for i=", i);
|
|
ycw.spin = hrand(ycw.at->type);
|
|
}
|
|
else {
|
|
ycw.spin = hrand_elt(next);
|
|
}
|
|
}
|
|
|
|
else {
|
|
stupid:
|
|
// stupid
|
|
ycw += rev;
|
|
// well, make it a bit more clever on bitruncated a4 grids
|
|
if(a4 && BITRUNCATED && S7 <= 5) {
|
|
if(ycw.at->type == 8 && ycw.cpeek()->type != 8)
|
|
ycw++;
|
|
if(hrand(100) < 10) {
|
|
if(euclid ? (turns&1) : (hrand(100) < 50))
|
|
ycw+=2;
|
|
else
|
|
ycw-=2;
|
|
turns++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(for_yendor) while(p.last_id < i && (p.path[p.last_id]->land == laMirror || inmirror(p.path[p.last_id]))) {
|
|
p.last_id++;
|
|
setdist(p.path[p.last_id], 7, nullptr);
|
|
}
|
|
|
|
if(for_yendor && inmirror(ycw.at)) ycw = mirror::reflect(ycw);
|
|
ycw += wstep;
|
|
p.path[i+1] = ycw.at;
|
|
}
|
|
p.last = ycw + rev;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
}
|