1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-11 20:00:26 +00:00
hyperrogue/binary-tiling.cpp
2021-06-17 09:44:47 +02:00

1126 lines
36 KiB
C++

// Hyperbolic Rogue -- binary tilings
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file binary-tiling.cpp
* \brief Binary tilings in 2D and 3D
*/
#include "hyper.h"
namespace hr {
EX namespace bt {
/** note: nihsolv and kd3 tilings return bt::in(). They are defined elsewhere, although some of bt:: functions are used for them */
EX bool in() {
#if CAP_BT
return cgflags & qBINARY;
#else
return false;
#endif
}
#if !CAP_BT
EX int updir() { return 0; }
#endif
#if CAP_BT
#if HDR
enum bindir {
bd_right = 0,
bd_up_right = 1,
bd_up = 2,
bd_up_left = 3,
bd_left = 4,
bd_down = 5, /* for cells of degree 6 */
bd_down_left = 5, /* for cells of degree 7 */
bd_down_right = 6 /* for cells of degree 7 */
};
#endif
EX int type_of(heptagon *h) {
return h->c7->type;
}
// 0 - central, -1 - left, +1 - right
EX int mapside(heptagon *h) {
return h->zebraval;
}
#if DEBUG_BINARY_TILING
map<heptagon*, long long> xcode;
map<long long, heptagon*> rxcode;
long long expected_xcode(heptagon *h, int d) {
auto r =xcode[h];
if(d == 0) return r + 1;
if(d == 1) return 2*r + 1;
if(d == 2) return 2*r;
if(d == 3) return 2*r - 1;
if(d == 4) return r-1;
if(d == 5 && type_of(h) == 6) return r / 2;
if(d == 5 && type_of(h) == 7) return (r-1) / 2;
if(d == 6 && type_of(h) == 7) return (r+1) / 2;
breakhere();
}
#endif
EX heptagon *path(heptagon *h, int d, int d1, std::initializer_list<int> p) {
static int rec = 0;
rec++; if(rec>100) exit(1);
// printf("{generating path from %p (%d/%d) dir %d:", h, type_of(h), mapside(h), d);
heptagon *h1 = h;
for(int d0: p) {
// printf(" [%d]", d0);
h1 = currentmap->may_create_step(h1, d0);
// printf(" %p", h1);
}
#if DEBUG_BINARY_TILING
if(xcode[h1] != expected_xcode(h, d)) {
printf("expected_xcode mismatch\n");
breakhere();
}
#endif
// printf("}\n");
if(h->move(d) && h->move(d) != h1) {
printf("already connected to something else (1)\n");
breakhere();
}
if(h1->move(d1) && h1->move(d1) != h) {
printf("already connected to something else (2)\n");
breakhere();
}
h->c.connect(d, h1, d1, false);
rec--;
return h1;
}
EX heptagon *pathc(heptagon *h, int d, int d1, std::vector<std::initializer_list<int>> p) {
h->cmove(S7-1);
int z = h->c.spin(S7-1);
return path(h, d, d1, p[z]);
}
EX ld hororec_scale = 0.25;
EX ld horohex_scale = 0.6;
EX void make_binary_lands(heptagon *parent, heptagon *h) {
if(!parent->emeraldval) parent->emeraldval = currentmap->gamestart()->land;
eLand z = eLand(parent->emeraldval);
int chance = 0;
if(ls::no_walls() || parent->emeraldval == laCrossroads4) {
eLand x = parent->c7->land;
parent->c7->land = z;
chance = wallchance(parent->c7, deep_ocean_at(parent->c7, parent->c7));
parent->c7->land = x;
}
if(ls::std_chaos()) chance = 1000;
if(chance && hrand(40000) < chance)
h->emeraldval = getNewLand(z);
else
h->emeraldval = z;
}
EX heptagon *build(heptagon *parent, int d, int d1, int t, int side, int delta) {
auto h = buildHeptagon1(tailored_alloc<heptagon> (t), parent, d, hsA, d1);
h->distance = parent->distance + delta;
h->dm4 = parent->dm4 + delta;
h->c7 = NULL;
if(parent->c7) h->c7 = newCell(t, h);
h->cdata = NULL;
h->zebraval = side;
h->emeraldval = 0;
h->fieldval = 0;
switch(geometry) {
case gBinary4:
if(d < 2)
h->emeraldval = gmod(parent->emeraldval * 2 + d, 15015);
else
h->emeraldval = gmod((parent->emeraldval - d1) * 7508, 15015);
break;
case gTernary:
if(d < 2)
h->emeraldval = gmod(parent->emeraldval * 3 + d, 10010);
else
h->emeraldval = gmod((parent->emeraldval - d1) * 3337, 10010);
break;
case gHoroRec: {
int x = parent->fieldval & 4095;
int y = (parent->fieldval >> 12) & 4095;
if(d < 2) tie(x, y) = make_pair(y, gmod(x * 2 + d, 1155));
else tie(x,y) = make_pair(gmod((y-d1)*578, 1155), x);
h->fieldval = x + (y << 12);
break;
}
case gBinary3: {
int x = parent->fieldval & 4095;
int y = (parent->fieldval >> 12) & 4095;
if(d < 4) x = gmod(x * 2 + (d&1), 1155), y = gmod(y * 2 + (d>>1), 1155);
else x = gmod((x-(d1&1))*578, 1155), y = gmod((y-(d1>>1))*578, 1155);
h->fieldval = x + (y << 12);
break;
}
default:
break;
}
if(WDIM == 3 && h->c7) make_binary_lands(parent, h);
#if DEBUG_BINARY_TILING
xcode[h] = expected_xcode(parent, d);
if(rxcode.count(xcode[h])) {
printf("xcode clash\n");
breakhere();
}
rxcode[xcode[h]] = h;
#endif
return h;
}
#if MAXMDIM==4
EX heptagon *build3(heptagon *parent, int d, int d1, int delta) {
int side = 0;
if(geometry == gBinary3) {
if(d < 4) side = (parent->zebraval * 2 + d) % 5;
if(d == S7-1) side = ((5+parent->zebraval-d1) * 3) % 5;
}
if(geometry == gHoroHex) {
if(d < 3) side = (parent->zebraval + d) % 3;
if(d == S7-1) side = (parent->zebraval + 3 - d1) % 3;
}
return build(parent, d, d1, S7, side, delta);
}
#endif
struct hrmap_binary : hrmap {
heptagon *origin;
std::mt19937 directions_generator;
hrmap_binary(heptagon *o) : origin(o) { set_seed(); }
void set_seed() { directions_generator.seed(137137137); }
int nextdir(int choices) { return directions_generator() % choices; }
heptagon *getOrigin() override { return origin; }
hrmap_binary() {
set_seed();
origin = hyperbolic_origin();
#if DEBUG_BINARY_TILING
bt::xcode.clear();
bt::rxcode.clear();
bt::xcode[&h] = (1 << 16);
bt::rxcode[1<<16] = &h;
#endif
origin->zebraval = 0;
origin->emeraldval = 0;
}
heptagon *create_step(heptagon *parent, int d) override {
auto h = parent;
switch(geometry) {
case gBinaryTiling: {
switch(d) {
case bd_right: {
if(mapside(h) > 0 && type_of(h) == 7)
return path(h, d, bd_left, {bd_left, bd_down, bd_right, bd_up});
else if(mapside(h) >= 0)
return build(parent, bd_right, bd_left, type_of(parent) ^ 1, 1, 0);
else if(type_of(h) == 6)
return path(h, d, bd_left, {bd_down, bd_right, bd_up, bd_left});
else
return path(h, d, bd_left, {bd_down_right, bd_up});
}
case bd_left: {
if(mapside(h) < 0 && type_of(h) == 7)
return path(h, d, bd_right, {bd_right, bd_down, bd_left, bd_up});
else if(mapside(h) <= 0)
return build(parent, bd_left, bd_right, type_of(parent) ^ 1, -1, 0);
else if(type_of(h) == 6)
return path(h, d, bd_right, {bd_down, bd_left, bd_up, bd_right});
else
return path(h, d, bd_right, {bd_down_left, bd_up});
}
case bd_up_right: {
return path(h, d, bd_down_left, {bd_up, bd_right});
}
case bd_up_left: {
return path(h, d, bd_down_right, {bd_up, bd_left});
}
case bd_up:
return build(parent, bd_up, bd_down, 6, mapside(parent), 1);
default:
/* bd_down */
if(type_of(h) == 6) {
if(mapside(h) == 0)
return build(parent, bd_down, bd_up, 6, 0, -1);
else if(mapside(h) == 1)
return path(h, d, bd_up, {bd_left, bd_left, bd_down, bd_right});
else if(mapside(h) == -1)
return path(h, d, bd_up, {bd_right, bd_right, bd_down, bd_left});
}
/* bd_down_left */
else if(d == bd_down_left) {
return path(h, d, bd_up_right, {bd_left, bd_down});
}
else if(d == bd_down_right) {
return path(h, d, bd_up_left, {bd_right, bd_down});
}
}
throw hr_exception("wrong dir");
}
case gBinary4: {
switch(d) {
case 0: case 1:
return build(parent, d, 3, 5, d, 1);
case 3:
return build(parent, 3, parent->zebraval, 5, nextdir(2), -1);
case 2:
if(parent->zebraval == 0)
return path(h, 2, 4, {3, 1});
else
return path(h, 2, 4, {3, 2, 0});
case 4:
if(parent->zebraval == 1)
return path(h, 4, 2, {3, 0});
else
return path(h, 4, 2, {3, 4, 1});
default:
throw hr_exception("wrong dir");
}
}
case gTernary: {
switch(d) {
case 0: case 1: case 2:
return build(parent, d, 4, 6, d, 1);
case 4:
return build(parent, 4, parent->zebraval, 6, nextdir(3), -1);
case 3:
if(parent->zebraval < 2)
return path(h, 3, 5, {4, parent->zebraval + 1});
else
return path(h, 3, 5, {4, 3, 0});
case 5:
if(parent->zebraval > 0)
return path(h, 5, 3, {4, parent->zebraval - 1});
else
return path(h, 5, 3, {4, 5, 2});
default:
throw hr_exception("wrong dir");
}
}
#if MAXMDIM >= 4
case gBinary3: {
switch(d) {
case 0: case 1:
case 2: case 3:
return build3(parent, d, 8, 1);
case 8:
return build3(parent, 8, nextdir(4), -1);
case 4:
parent->cmove(8);
if(parent->c.spin(8) & 1)
return path(h, 4, 5, {8, parent->c.spin(8) ^ 1});
else
return path(h, 4, 5, {8, 4, parent->c.spin(8) ^ 1});
case 5:
parent->cmove(8);
if(!(parent->c.spin(8) & 1))
return path(h, 5, 4, {8, parent->c.spin(8) ^ 1});
else
return path(h, 5, 4, {8, 5, parent->c.spin(8) ^ 1});
case 6:
parent->cmove(8);
if(parent->c.spin(8) & 2)
return path(h, 6, 7, {8, parent->c.spin(8) ^ 2});
else
return path(h, 6, 7, {8, 6, parent->c.spin(8) ^ 2});
case 7:
parent->cmove(8);
if(!(parent->c.spin(8) & 2))
return path(h, 7, 6, {8, parent->c.spin(8) ^ 2});
else
return path(h, 7, 6, {8, 7, parent->c.spin(8) ^ 2});
default:
throw hr_exception("wrong dir");
}
}
case gHoroRec: {
switch(d) {
case 0: case 1:
return build3(parent, d, 6, 1);
case 6:
return build3(parent, 6, nextdir(2), -1);
case 2:
parent->cmove(6);
if(parent->c.spin(6) == 0)
return path(h, 2, 4, {6, 1});
else
return path(h, 2, 4, {6, 3, 0});
case 4:
parent->cmove(6);
if(parent->c.spin(6) == 0)
return path(h, 4, 2, {6, 5, 1});
else
return path(h, 4, 2, {6, 0});
case 3:
parent->cmove(6);
return path(h, 3, 5, {6, 4, parent->c.spin(6)});
case 5:
parent->cmove(6);
return path(h, 5, 3, {6, 2, parent->c.spin(6)});
default:
throw hr_exception("wrong dir");
}
}
case gHoroTris: {
switch(d) {
case 0: case 1: case 2: case 3:
return build3(parent, d, 7, 1);
case 7:
return build3(parent, 7, nextdir(3), -1);
case 4: case 5: case 6: {
parent->cmove(7);
int s = parent->c.spin(7);
if(s == 0) return path(h, d, d, {7, d-3});
else if(s == d-3) return path(h, d, d, {7, 0});
else return path(h, d, d, {7, d, 9-d-s});
}
default:
throw hr_exception("wrong dir");
}
}
case gHoroHex: {
// the comment is a picture...
// generated with the help of hexb.cpp
switch(d) {
case 0: case 1: case 2:
return build3(parent, d, 13, 1);
case 13:
return build3(parent, 13, nextdir(3), -1);
case 3:
return pathc(h, 3, 12, {{13,4,2}, {13,5,2}, {13,3,2}});
case 4:
return pathc(h, 4, 12, {{13,6,2,0}, {13,7,0,0}, {13,8,1,0}});
case 5:
return pathc(h, 5, 12, {{13,1,1}, {13,2,1}, {13,0,1}});
case 6:
return pathc(h, 6, 10, {{13,5}, {13,3}, {13,4}});
case 7:
return pathc(h, 7, 11, {{13,2}, {13,0}, {13,1}});
case 8:
return pathc(h, 8, 9, {{13,6,0}, {13,7,1}, {13,8,2}});
case 9:
return pathc(h, 9, 8, {{13,4}, {13,5}, {13,3}});
case 10:
return pathc(h, 10, 6, {{13,6,2}, {13,7,0}, {13,8,1}});
case 11:
return pathc(h, 11, 7, {{13,1}, {13,2}, {13,0}});
case 12: {
h->cmove(13);
int z = h->c.spin(13);
return path(h, 12, (z+1)%3+3, {13, z+6});
}
default:
throw hr_exception("wrong dir");
}
}
#endif
default:
throw hr_exception("wrong geometry");
}
}
int shvid(cell *c) override {
if(geometry == gBinaryTiling)
return c->type-6;
else if(geometry == gBinary4 || geometry == gTernary)
return c->master->zebraval;
else
return 0;
}
hyperpoint get_corner(cell *c, int cid, ld cf) override {
if(WDIM == 3) {
println(hlog, "get_corner_position called");
return C0;
}
return mid_at_actual(bt::get_horopoint(bt::get_corner_horo_coordinates(c, cid)), 3/cf);
}
int updir_at(heptagon *h) {
if(geometry != gBinaryTiling) return updir();
else if(type_of(h) == 6) return bd_down;
else if(mapside(h) == 1) return bd_left;
else if(mapside(h) == -1) return bd_right;
else throw hr_exception("wrong dir");
}
transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7))
return inverse_shift(gmatrix0[h1->c7], gmatrix0[h2->c7]);
transmatrix gm = Id, where = Id;
while(h1 != h2) {
if(h1->distance <= h2->distance) {
int d = updir_at(h2);
where = iadj(h2, d) * where;
h2 = may_create_step(h2, d);
}
else {
int d = updir_at(h1);
gm = gm * adj(h1, d);
h1 = may_create_step(h1, d);
}
}
return gm * where;
}
vector<hyperpoint> get_vertices(cell* c) override {
vector<hyperpoint> res;
ld yy = log(2) / 2;
auto add = [&] (hyperpoint h) {
res.push_back(bt::parabolic3(h[0], h[1]) * xpush0(yy*h[2]));
};
switch(geometry) {
case gBinary3:
for(int x=-1; x<2; x++) for(int y=-1; y<2; y++) for(int z=-1; z<=1; z+=2)
if(z == -1 || x != 0 || y != 0)
add(point3(x,y,z));
break;
case gHoroTris: {
ld r = sqrt(3)/6;
ld r2 = r * 2;
hyperpoint shift3 = point3(0,0,-3);
hyperpoint shift1 = point3(0,0,-1);
for(int i=0; i<3; i++) {
hyperpoint t0 = spin(120 * degree * i) * point3(0,-r2,-1);
add(t0);
add(-2 * t0 + shift3);
add(-2 * t0 + shift1);
}
}
break;
case gHoroRec: {
ld r2 = sqrt(2);
for(int y=-1; y<=1; y++) for(int x=-1; x<=1; x+=2) for(int z=-1; z<=1; z++)
if(z == -1 || y != 0)
add(point3(-r2*x*hororec_scale, -2*y*hororec_scale, z*.5));
break;
}
case gHoroHex: {
// complicated and unused for now -- todo
break;
}
default: ;
}
return res;
}
ld spin_angle(cell *c, int d) override {
if(WDIM == 3 || geometry == gBinary4 || geometry == gTernary) {
return hrmap::spin_angle(c, d);
}
if(d == NODIR) return 0;
if(d == c->type-1) d++;
return -(d+2)*M_PI/4;
}
transmatrix adj(heptagon *h, int dir) override {
if(geometry == gBinaryTiling) switch(dir) {
case bd_up: return xpush(-log(2));
case bd_left: return parabolic(-1);
case bd_right: return parabolic(+1);
case bd_down:
if(h->type == 6) return xpush(log(2));
/* case bd_down_left: */
return parabolic(-1) * xpush(log(2));
case bd_down_right:
return parabolic(+1) * xpush(log(2));
case bd_up_left:
return xpush(-log(2)) * parabolic(-1);
case bd_up_right:
return xpush(-log(2)) * parabolic(1);
default:
throw hr_exception("unknown direction");
}
else if(use_direct_for(dir))
return cgi.direct_tmatrix[dir];
else {
h->cmove(dir);
return cgi.inverse_tmatrix[h->c.spin(dir)];
}
}
const transmatrix iadj(heptagon *h, int dir) { heptagon *h1 = h->cmove(dir); return adj(h1, h->c.spin(dir)); }
void virtualRebase(heptagon*& base, transmatrix& at) override {
while(true) {
double currz = at[LDIM][LDIM];
heptagon *h = base;
heptagon *newbase = NULL;
transmatrix bestV;
for(int d=0; d<S7; d++) {
transmatrix V2 = iadj(h, d) * at;
double newz = V2[LDIM][LDIM];
if(newz < currz) {
currz = newz;
bestV = V2;
newbase = h->cmove(d);
}
}
if(newbase) {
base = newbase;
at = bestV;
continue;
}
return;
}
}
~hrmap_binary() { clearfrom(origin); }
};
EX hrmap *new_map() { return new hrmap_binary; }
struct hrmap_alternate_binary : hrmap_binary {
heptagon *origin;
hrmap_alternate_binary(heptagon *o) { origin = o; }
~hrmap_alternate_binary() { clearfrom(origin); }
};
EX hrmap *new_alt_map(heptagon *o) { return new hrmap_binary(o); }
/** \brief return if ew should use direct_tmatrix[dir] to get the adjacent cell the given direction
*
* Otherwise, this is the 'up' direction and thus we should use inverse_tmatrix for the inverse direction
*/
EX bool use_direct_for(int dir) {
return (cgi.use_direct >> dir) & 1;
}
/** \brief which coordinate is expanding */
EX int expansion_coordinate() {
if(WDIM == 2) return 0;
return 2;
}
/** \brief by what factor does the area expand after moving one level in hr::bt::expansion_coordinate() */
EX ld area_expansion_rate() {
switch(geometry) {
case gBinaryTiling: case gBinary4:
return 2;
case gTernary:
return 3;
case gBinary3: case gHoroTris:
return 4;
case gHoroRec:
return 2;
case gHoroHex:
return 3;
case gNil:
return 1;
case gEuclidSquare:
return 1;
case gKiteDart3:
return pow(golden_phi, 2);
case gSol:
return 1;
case gNIH:
return 6;
case gSolN:
return 3/2.;
case gArnoldCat:
return 1;
default:
return 0;
}
}
/** \brief by what factor do the lengths expand after moving one level in hr::bt::expansion_coordinate() */
EX ld expansion() {
if(WDIM == 2) return area_expansion_rate();
else return sqrt(area_expansion_rate());
}
/** \brief Get a point in the current cell, normalized to [-1,1]^WDIM
*
* This function returns the matrix moving point (0,0,0) to the given point in a parallelogram-like box
* Dimensions of the box are normalized to [-1,1], and directions are the same as usual (i.e., expansion_coordinate() is the correct one)
*
* This should works for all geometries which actually have boxes.
*
* For binary-based tessellations which are not based on square sections (e.g. gKiteDart3), 'x' and 'y' coordinates are not given in [-1,1], but take binary_width into account
*
* Otherwise: just return h
*
* See also: in devmods/tests.cpp, -bt-test tests whether this works correctly
*
*/
EX transmatrix normalized_at(hyperpoint h) {
ld z2 = -log(2) / 2;
ld z3 = -log(3) / 2;
ld bwhn = vid.binary_width / 2;
ld bwh = vid.binary_width * z2;
ignore(bwh); ignore(bwhn);
ld r2 = sqrt(2);
const ld hs = hororec_scale;
auto &x = h[0], &y = h[1], &z = h[2];
switch(geometry) {
case gBinaryTiling: case gBinary4:
return bt::parabolic(y/2) * xpush(x*z2);
case gTernary:
return bt::parabolic(y/2) * xpush(x*z3);
#if CAP_SOLV
case gSol:
return xpush(bwh*x) * ypush(bwh*y) * zpush(z2*z);
case gSolN: case gNIH:
return xpush(bwhn*x) * ypush(bwhn*y) * zpush(-z*.5);
case gArnoldCat:
return rgpushxto0(asonov::tx*x/2 + asonov::ty*y/2 + asonov::tz*z/2);
#endif
case gNil:
return rgpushxto0(point31(x/2, y/2, z/2));
case gEuclidSquare:
return rgpushxto0(hpxy(x, y));
case gBinary3:
return parabolic3(x,y) * xpush(z*z2);
case gHoroRec:
return parabolic3(r2*hs*x, 2*hs*y) * xpush(z*z2/2);
case gHoroTris:
return parabolic3(x,y) * xpush(z*z2);
case gHoroHex:
return parabolic3(x,y) * xpush(z*z3/2);
case gKiteDart3:
return parabolic3(x,y) * xpush(-z*log_golden_phi/2);
default:
return rgpushxto0(h);
}
}
EX transmatrix normalized_at(ld x, ld y, ld z IS(0)) {
return normalized_at(point3(x, y, z));
}
EX int updir() {
if(geometry == gBinary4) return 3;
if(geometry == gTernary) return 4;
if(geometry == gBinaryTiling) return 5;
if(kite::in()) return 0;
if(!bt::in()) return 0;
return S7-1;
}
EX int dirs_outer() {
switch(geometry) {
case gBinary3: return 4;
case gHoroTris: return 4;
case gHoroRec: return 2;
case gHoroHex: return 6;
default: return -1;
}
}
EX int dirs_inner() {
if(among(geometry, gBinaryTiling, gHoroHex)) return 2;
return 1;
}
EX void build_tmatrix() {
if(among(geometry, gBinaryTiling, gSol, gArnoldCat)) return; // unused
auto& direct_tmatrix = cgi.direct_tmatrix;
auto& inverse_tmatrix = cgi.inverse_tmatrix;
auto& use_direct = cgi.use_direct;
use_direct = (1 << (S7-1)) - 1;
if(geometry == gBinary4) {
use_direct = 3;
direct_tmatrix[0] = xpush(-log(2)) * parabolic(-0.5);
direct_tmatrix[1] = xpush(-log(2)) * parabolic(+0.5);
direct_tmatrix[2] = parabolic(1);
direct_tmatrix[4] = parabolic(-1);
use_direct = 1+2+4+16;
}
if(geometry == gTernary) {
direct_tmatrix[0] = xpush(-log(3)) * parabolic(-1);
direct_tmatrix[1] = xpush(-log(3));
direct_tmatrix[2] = xpush(-log(3)) * parabolic(+1);
direct_tmatrix[3] = parabolic(1);
direct_tmatrix[5] = parabolic(-1);
use_direct = 1+2+4+8+32;
}
if(geometry == gBinary3) {
direct_tmatrix[0] = xpush(-log(2)) * parabolic3(-1, -1);
direct_tmatrix[1] = xpush(-log(2)) * parabolic3(1, -1);
direct_tmatrix[2] = xpush(-log(2)) * parabolic3(-1, 1);
direct_tmatrix[3] = xpush(-log(2)) * parabolic3(1, 1);
direct_tmatrix[4] = parabolic3(-2, 0);
direct_tmatrix[5] = parabolic3(+2, 0);
direct_tmatrix[6] = parabolic3(0, -2);
direct_tmatrix[7] = parabolic3(0, +2);
}
if(geometry == gHoroTris) {
ld r3 = sqrt(3);
direct_tmatrix[0] = xpush(-log(2)) * cspin(1,2, M_PI);
direct_tmatrix[1] = parabolic3(0, +r3/3) * xpush(-log(2));
direct_tmatrix[2] = parabolic3(-0.5, -r3/6) * xpush(-log(2));
direct_tmatrix[3] = parabolic3(+0.5, -r3/6) * xpush(-log(2));
direct_tmatrix[4] = parabolic3(0, -r3*2/3) * cspin(1,2, M_PI);
direct_tmatrix[5] = parabolic3(1, r3/3) * cspin(1,2,M_PI);
direct_tmatrix[6] = parabolic3(-1, r3/3) * cspin(1,2,M_PI);
}
if(geometry == gHoroRec) {
ld r2 = sqrt(2);
ld l = -log(2)/2;
ld z = hororec_scale;
direct_tmatrix[0] = parabolic3(0, -z) * xpush(l) * cspin(2,1,M_PI/2);
direct_tmatrix[1] = parabolic3(0, +z) * xpush(l) * cspin(2,1,M_PI/2);
direct_tmatrix[2] = parabolic3(+2*r2*z, 0);
direct_tmatrix[3] = parabolic3(0, +4*z);
direct_tmatrix[4] = parabolic3(-2*r2*z, 0);
direct_tmatrix[5] = parabolic3(0, -4*z);
}
if(geometry == gHoroHex) {
// also generated with the help of hexb.cpp
ld l = log(3)/2;
auto& t = direct_tmatrix;
t[0] = parabolic3(horohex_scale, 0) * xpush(-l) * cspin(1, 2, M_PI/2);
t[1] = cspin(1, 2, 2*M_PI/3) * t[0];
t[2] = cspin(1, 2, 4*M_PI/3) * t[0];
auto it = iso_inverse(t[0]);
t[5] = it * t[1] * t[1];
t[6] = it * t[5];
t[4] = it * t[6] * t[2] * t[0];
t[3] = it * t[4] * t[2];
t[7] = it * t[2];
t[8] = it * t[6] * t[0];
t[9] = it * t[4];
t[10] = it * t[6] * t[2];
t[11] = it * t[1];
if(debugflags & DF_GEOM)
for(int a=0; a<12; a++)
println(hlog, t[a]);
use_direct >>= 1;
}
for(int i=0; i<S7; i++) if(use_direct_for(i))
inverse_tmatrix[i] = iso_inverse(direct_tmatrix[i]);
}
#if MAXMDIM == 4
EX void queuecube(const shiftmatrix& V, ld size, color_t linecolor, color_t facecolor) {
ld yy = log(2) / 2;
const int STEP=3;
const ld MUL = 1. / STEP;
auto at = [&] (ld x, ld y, ld z) { curvepoint(parabolic3(size*x, size*y) * xpush0(size*yy*z)); };
for(int a:{-1,1}) {
for(ld t=-STEP; t<STEP; t++) at(a, 1,t*MUL);
for(ld t=-STEP; t<STEP; t++) at(a, -t*MUL,1);
for(ld t=-STEP; t<STEP; t++) at(a, -1,-t*MUL);
for(ld t=-STEP; t<STEP; t++) at(a, t*MUL,-1);
at(a, 1,-1);
queuecurve(V, linecolor, facecolor, PPR::LINE);
for(ld t=-STEP; t<STEP; t++) at(1,t*MUL,a);
for(ld t=-STEP; t<STEP; t++) at(-t*MUL,1,a);
for(ld t=-STEP; t<STEP; t++) at(-1,-t*MUL,a);
for(ld t=-STEP; t<STEP; t++) at(t*MUL,-1,a);
at(1,-1,a);
queuecurve(V, linecolor, facecolor, PPR::LINE);
for(ld t=-STEP; t<STEP; t++) at(1,a,t*MUL);
for(ld t=-STEP; t<STEP; t++) at(-t*MUL,a,1);
for(ld t=-STEP; t<STEP; t++) at(-1,a,-t*MUL);
for(ld t=-STEP; t<STEP; t++) at(t*MUL,a,-1);
at(1,a,-1);
queuecurve(V, linecolor, facecolor, PPR::LINE);
}
/*for(int a:{-1,1}) for(int b:{-1,1}) for(int c:{-1,1}) {
at(0,0,0); at(a,b,c); queuecurve(linecolor, facecolor, PPR::LINE);
}*/
}
#endif
EX transmatrix parabolic(ld u) {
return parabolic1(u * vid.binary_width / log(2) / 2);
}
EX transmatrix parabolic3(ld y, ld z) {
ld co = vid.binary_width / log(2) / 4;
return hr::parabolic13(y * co, z * co);
}
// on which horocycle are we
EX ld horo_level(hyperpoint h) {
h /= (1 + h[LDIM]);
h[0] -= 1;
h /= sqhypot_d(GDIM, h);
h[0] += .5;
return log(2) + log(-h[0]);
}
EX hyperpoint deparabolic3(hyperpoint h) {
h /= (1 + h[3]);
hyperpoint one = point3(1,0,0);
h -= one;
h /= sqhypot_d(3, h);
h[0] += .5;
ld co = vid.binary_width / log(2) / 8;
return point3(log(2) + log(-h[0]), h[1] / co, h[2] / co);
}
#if CAP_COMMANDLINE
auto bt_config = arg::add2("-btwidth", [] {arg::shift_arg_formula(vid.binary_width); });
#endif
EX bool pseudohept(cell *c) {
if(WDIM == 2)
return c->type & c->master->distance & 1;
else if(geometry == gHoroRec)
return c->c.spin(S7-1) == 0 && (c->master->distance & 1) && c->cmove(S7-1)->c.spin(S7-1) == 0;
else if(geometry == gHoroTris)
return c->c.spin(S7-1) == 0 && (c->master->distance & 1);
else
return (c->master->zebraval == 1) && (c->master->distance & 1);
}
EX pair<gp::loc, gp::loc> gpvalue(heptagon *h) {
int d = h->c.spin(S7-1);
if(d == 0) return make_pair(gp::loc(0,0), gp::loc(-1,0));
else return make_pair(gp::eudir((d-1)*2), gp::loc(1,0));
}
// distance in a triangular grid
EX int tridist(gp::loc v) {
using namespace gp;
int d = v.first - v.second;
int d0 = d % 3;
if(d0 == 1 || d0 == -2) return 1 + min(tridist(v - eudir(0)), min(tridist(v - eudir(2)), tridist(v - eudir(4))));
if(d0 == 2 || d0 == -1) return 1 + min(tridist(v + eudir(0)), min(tridist(v + eudir(2)), tridist(v + eudir(4))));
return length(v * loc(1,1)) * 2 / 3;
}
EX int equalize(heptagon*& c1, heptagon*& c2) {
int steps = 0;
int d1 = c1->distance;
int d2 = c2->distance;
while(d1 > d2) c1 = c1->cmove(S7-1), steps++, d1--;
while(d2 > d1) c2 = c2->cmove(S7-1), steps++, d2--;
return steps;
}
EX int celldistance3_tri(heptagon *c1, heptagon *c2) {
using namespace gp;
int steps = equalize(c1, c2);
vector<pair<loc, loc> > m1, m2;
while(c1 != c2) {
m2.push_back(gpvalue(c2));
m1.push_back(gpvalue(c1));
c1 = c1->cmove(S7-1);
c2 = c2->cmove(S7-1);
steps += 2;
}
loc T1(0,0), T2(0,0), inv1(1,0), inv2(1,0);
int xsteps = steps;
while(isize(m1)) {
xsteps -= 2;
inv1 = inv1 * m1.back().second;
inv2 = inv2 * m2.back().second;
T1 = T1 + T1 + m1.back().first * inv1;
T2 = T2 + T2 + m2.back().first * inv2;
m1.pop_back(); m2.pop_back();
loc T0 = T2 - T1;
if(T0.first > 3 || T0.second > 3 || T0.first < -3 || T0.second < -3) break;
steps = min(steps, xsteps + tridist(T0));
}
return steps;
}
EX int celldistance3_rec(heptagon *c1, heptagon *c2) {
int steps = equalize(c1, c2);
vector<int> dx;
while(c1 != c2) {
dx.push_back(c1->c.spin(S7-1) - c2->c.spin(S7-1));
c1 = c1->cmove(S7-1);
c2 = c2->cmove(S7-1);
steps += 2;
}
int xsteps = steps, sx = 0, sy = 0;
while(isize(dx)) {
xsteps -= 2;
tie(sx, sy) = make_pair(-sy, 2 * sx + dx.back());
dx.pop_back();
int ysteps = xsteps + abs(sx) + abs(sy);
if(ysteps < steps) steps = ysteps;
if(sx >= 8 || sx <= -8 || sy >= 8 || sy <= -8) break;
}
return steps;
}
EX int celldistance3_square(heptagon *c1, heptagon *c2) {
int steps = equalize(c1, c2);
vector<int> dx, dy;
while(c1 != c2) {
dx.push_back((c1->c.spin(S7-1) & 1) - (c2->c.spin(S7-1) & 1));
dy.push_back((c1->c.spin(S7-1) >> 1) - (c2->c.spin(S7-1) >> 1));
c1 = c1->cmove(S7-1);
c2 = c2->cmove(S7-1);
steps += 2;
}
int xsteps = steps, sx = 0, sy = 0;
while(isize(dx)) {
xsteps -= 2;
sx *= 2;
sy *= 2;
sx += dx.back(); sy += dy.back();
dx.pop_back(); dy.pop_back();
int ysteps = xsteps + abs(sx) + abs(sy);
if(ysteps < steps) steps = ysteps;
if(sx >= 8 || sx <= -8 || sy >= 8 || sy <= -8) break;
}
return steps;
}
// this algorithm is wrong: it never considers the "narrow gap" moves
EX int celldistance3_hex(heptagon *c1, heptagon *c2) {
int steps = equalize(c1, c2);
vector<int> d1, d2;
while(c1 != c2) {
d1.push_back(c1->c.spin(S7-1));
d2.push_back(c2->c.spin(S7-1));
c1 = c1->cmove(S7-1);
c2 = c2->cmove(S7-1);
steps += 2;
}
int xsteps = steps;
dynamicval<eGeometry> g(geometry, gEuclid);
transmatrix T = Id;
while(isize(d1)) {
xsteps -= 2;
T = euscalezoom(hpxy(0,sqrt(3))) * eupush(1,0) * spin(-d2.back() * 2 * M_PI/3) * T * spin(d1.back() * 2 * M_PI/3) * eupush(-1,0) * euscalezoom(hpxy(0,-1/sqrt(3)));
d1.pop_back(); d2.pop_back();
hyperpoint h = tC0(T);
int sx = int(floor(h[0] - h[1] / sqrt(3) + .5)) / 3;
int sy = int(floor(h[1] * 2 / sqrt(3) + .5)) / 3;
int ysteps = xsteps + euc::dist(sx, sy);
if(ysteps < steps) steps = ysteps;
if(sx >= 8 || sx <= -8 || sy >= 8 || sy <= -8) break;
}
return steps;
}
EX int celldistance3_approx(heptagon *c1, heptagon *c2) {
int d = 0;
while(true) {
if(d > 1000000) return d; /* sanity check */
if(c1 == c2) return d;
for(int i=0; i<c1->type; i++)
if(c1->move(i) == c2) return d + 1;
for(int i=0; i<c1->type; i++) {
heptagon *c3 = c1->move(i);
for(int j=0; j<c3->type; j++)
if(c3->move(j) == c2) return d+2;
}
if(c1->distance > c2->distance) c1=c1->cmove(updir()), d++;
else c2=c2->cmove(updir()), d++;
}
}
EX int celldistance3(heptagon *c1, heptagon *c2) {
switch(geometry) {
case gBinary3: return celldistance3_square(c1, c2);
case gHoroTris: return celldistance3_tri(c1, c2);
case gHoroRec: return celldistance3_rec(c1, c2);
case gHoroHex: return celldistance3_hex(c1, c2);
default:
if(sol || !bt::in()) {
println(hlog, "called celldistance3 for wrong geometry"); return 0;
}
return celldistance3_approx(c1, c2);
}
}
EX int celldistance3(cell *c1, cell *c2) { return celldistance3(c1->master, c2->master); }
EX hyperpoint get_horopoint(ld y, ld x) {
return xpush(-y) * bt::parabolic(x) * C0;
}
EX hyperpoint get_horopoint(hyperpoint h) {
return get_horopoint(h[0], h[1]);
}
EX hyperpoint get_corner_horo_coordinates(cell *c, int i) {
ld yx = log(2) / 2;
ld yy = yx;
ld xx = 1 / sqrt(2)/2;
switch(geometry) {
case gBinaryTiling:
switch(gmod(i, c->type)) {
case 0: return point2(-yy, xx);
case 1: return point2(yy, 2*xx);
case 2: return point2(yy, xx);
case 3: return point2(yy, -xx);
case 4: return point2(yy, -2*xx);
case 5: return point2(-yy, -xx);
case 6: return point2(-yy, 0);
default: return point2(0, 0);
}
case gBinary4:
switch(gmod(i, c->type)) {
case 0: return point2(yy, -2*xx);
case 1: return point2(yy, +0*xx);
case 2: return point2(yy, +2*xx);
case 3: return point2(-yy, xx);
case 4: return point2(-yy, -xx);
default: return point2(0, 0);
}
case gTernary:
yy = log(3) / 2;
xx = 1 / sqrt(3) / 2;
switch(gmod(i, c->type)) {
case 0: return point2(yy, -3*xx);
case 1: return point2(yy, -1*xx);
case 2: return point2(yy, +1*xx);
case 3: return point2(yy, +3*xx);
case 4: return point2(-yy, xx);
case 5: return point2(-yy, -xx);
default: return point2(0, 0);
}
default:
return point2(0, 0);
}
return point2(0, 0);
}
auto hooksw = addHook(hooks_swapdim, 100, [] {
if(bt::in()) build_tmatrix();
});
#endif
}
}