mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-26 18:10:35 +00:00
900 lines
35 KiB
C++
900 lines
35 KiB
C++
// Hyperbolic Rogue -- models of hyperbolic geometry
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file models.cpp
|
|
* \brief models of hyperbolic geometry: their properties, projection menu
|
|
*
|
|
* The actual models are implemented in hypgraph.cpp. Also shaders.cpp,
|
|
* drawing.cpp, and basegraph.cpp are important.
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
namespace hr {
|
|
|
|
EX namespace polygonal {
|
|
|
|
#if ISMOBWEB
|
|
typedef double precise;
|
|
#else
|
|
typedef long double precise;
|
|
#endif
|
|
|
|
#if HDR
|
|
static const int MSI = 120;
|
|
#endif
|
|
|
|
typedef long double xld;
|
|
|
|
typedef complex<xld> cxld;
|
|
|
|
EX int SI = 4;
|
|
EX ld STAR = 0;
|
|
|
|
EX int deg = ISMOBWEB ? 2 : 20;
|
|
|
|
precise matrix[MSI][MSI];
|
|
precise ans[MSI];
|
|
|
|
cxld coef[MSI];
|
|
EX ld coefr[MSI], coefi[MSI];
|
|
EX int maxcoef, coefid;
|
|
|
|
EX void solve() {
|
|
if(pmodel == mdPolynomial) {
|
|
for(int i=0; i<MSI; i++) coef[i] = cxld(coefr[i], coefi[i]);
|
|
return;
|
|
}
|
|
if(pmodel != mdPolygonal) return;
|
|
if(SI < 3) SI = 3;
|
|
for(int i=0; i<MSI; i++) ans[i] = cos(M_PI / SI);
|
|
for(int i=0; i<MSI; i++)
|
|
for(int j=0; j<MSI; j++) {
|
|
precise i0 = (i+0.) / (MSI-1);
|
|
// i0 *= i0;
|
|
// i0 = 1 - i0;
|
|
i0 *= M_PI;
|
|
matrix[i][j] =
|
|
cos(i0 * (j + 1./SI)) * (STAR > 0 ? (1+STAR) : 1)
|
|
- sin(i0 * (j + 1./SI)) * (STAR > 0 ? STAR : STAR/(1+STAR));
|
|
}
|
|
|
|
for(int i=0; i<MSI; i++) {
|
|
precise dby = matrix[i][i];
|
|
for(int k=0; k<MSI; k++) matrix[i][k] /= dby;
|
|
ans[i] /= dby;
|
|
for(int j=i+1; j<MSI; j++) {
|
|
precise sub = matrix[j][i];
|
|
ans[j] -= ans[i] * sub;
|
|
for(int k=0; k<MSI; k++)
|
|
matrix[j][k] -= sub * matrix[i][k];
|
|
}
|
|
}
|
|
for(int i=MSI-1; i>=0; i--) {
|
|
for(int j=0; j<i; j++) {
|
|
precise sub = matrix[j][i];
|
|
ans[j] -= ans[i] * sub;
|
|
for(int k=0; k<MSI; k++)
|
|
matrix[j][k] -= sub * matrix[i][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
EX pair<ld, ld> compute(ld x, ld y, int prec) {
|
|
if(x*x+y*y > 1) {
|
|
xld r = hypot(x,y);
|
|
x /= r;
|
|
y /= r;
|
|
}
|
|
if(pmodel == mdPolynomial) {
|
|
cxld z(x,y);
|
|
cxld res (0,0);
|
|
for(int i=maxcoef; i>=0; i--) { res += coef[i]; if(i) res *= z; }
|
|
return make_pair(real(res), imag(res));
|
|
}
|
|
|
|
cxld z(x, y);
|
|
cxld res (0,0);
|
|
cxld zp = 1; for(int i=0; i<SI; i++) zp *= z;
|
|
|
|
for(int i=prec; i>0; i--) {
|
|
res += ans[i];
|
|
res *= zp;
|
|
}
|
|
res += ans[0]; res *= z;
|
|
return make_pair(real(res), imag(res));
|
|
}
|
|
|
|
EX pair<ld, ld> compute(ld x, ld y) { return compute(x,y,deg); }
|
|
EX }
|
|
|
|
#if HDR
|
|
inline bool mdAzimuthalEqui() { return among(pmodel, mdEquidistant, mdEquiarea, mdEquivolume); }
|
|
inline bool mdBandAny() { return mdinf[pmodel].flags & mf::pseudoband; }
|
|
inline bool mdPseudocylindrical() { return mdBandAny() && !(mdinf[pmodel].flags & mf::cylindrical); }
|
|
#endif
|
|
|
|
EX namespace models {
|
|
|
|
EX ld rotation = 0;
|
|
EX ld rotation_xz = 90;
|
|
EX ld rotation_xy2 = 90;
|
|
EX int do_rotate = 1;
|
|
EX ld ocos, osin, ocos_yz, osin_yz;
|
|
EX ld cos_ball, sin_ball;
|
|
EX bool model_straight, model_straight_yz;
|
|
|
|
#if HDR
|
|
// screen coordinates to logical coordinates: apply_orientation(x,y)
|
|
// logical coordinates back to screen coordinates: apply_orientation(y,x)
|
|
template<class A>
|
|
void apply_orientation(A& x, A& y) { if(!model_straight) tie(x,y) = make_pair(x*ocos + y*osin, y*ocos - x*osin); }
|
|
template<class A>
|
|
void apply_orientation_yz(A& x, A& y) { if(!model_straight_yz) tie(x,y) = make_pair(x*ocos_yz + y*osin_yz, y*ocos_yz - x*osin_yz); }
|
|
template<class A>
|
|
void apply_ball(A& x, A& y) { tie(x,y) = make_pair(x*cos_ball + y*sin_ball, y*cos_ball - x*sin_ball); }
|
|
#endif
|
|
|
|
EX transmatrix rotmatrix() {
|
|
if(GDIM == 2 || prod) return spin(rotation * degree);
|
|
return spin(rotation_xy2 * degree) * cspin(0, 2, -rotation_xz * degree) * spin(rotation * degree);
|
|
}
|
|
|
|
int spiral_id = 7;
|
|
|
|
EX cld spiral_multiplier;
|
|
EX ld spiral_cone_rad;
|
|
EX bool ring_not_spiral;
|
|
|
|
/** the matrix to rotate the Euclidean view from the standard coordinates to the screen coordinates */
|
|
EX transmatrix euclidean_spin;
|
|
|
|
EX void configure() {
|
|
ld ball = -pconf.ballangle * degree;
|
|
cos_ball = cos(ball), sin_ball = sin(ball);
|
|
ocos = cos(pconf.model_orientation * degree);
|
|
osin = sin(pconf.model_orientation * degree);
|
|
ocos_yz = cos(pconf.model_orientation_yz * degree);
|
|
osin_yz = sin(pconf.model_orientation_yz * degree);
|
|
model_straight = (ocos > 1 - 1e-9);
|
|
model_straight_yz = GDIM == 2 || (ocos_yz > 1-1e-9);
|
|
if(history::on) history::apply();
|
|
|
|
if(!euclid) {
|
|
ld b = pconf.spiral_angle * degree;
|
|
ld cos_spiral = cos(b);
|
|
ld sin_spiral = sin(b);
|
|
spiral_cone_rad = pconf.spiral_cone * degree;
|
|
ring_not_spiral = abs(cos_spiral) < 1e-3;
|
|
ld mul = 1;
|
|
if(sphere) mul = .5 * pconf.sphere_spiral_multiplier;
|
|
else if(ring_not_spiral) mul = pconf.right_spiral_multiplier;
|
|
else mul = pconf.any_spiral_multiplier * cos_spiral;
|
|
|
|
spiral_multiplier = cld(cos_spiral, sin_spiral) * cld(spiral_cone_rad * mul / 2., 0);
|
|
}
|
|
if(euclid) {
|
|
euclidean_spin = pispin * iso_inverse(cview().T * master_relative(centerover, true));
|
|
euclidean_spin = gpushxto0(euclidean_spin * C0) * euclidean_spin;
|
|
hyperpoint h = inverse(euclidean_spin) * (C0 + (euc::eumove(gp::loc{1,0})*C0 - C0) * vpconf.spiral_x + (euc::eumove(gp::loc{0,1})*C0 - C0) * vpconf.spiral_y);
|
|
spiral_multiplier = cld(0, 2 * M_PI) / cld(h[0], h[1]);
|
|
}
|
|
|
|
if(centerover && !history::on)
|
|
if(isize(history::path_for_lineanimation) == 0 || ((quotient || arb::in()) && history::path_for_lineanimation.back() != centerover)) {
|
|
history::path_for_lineanimation.push_back(centerover);
|
|
}
|
|
}
|
|
|
|
EX bool model_available(eModel pm) {
|
|
if(prod) {
|
|
if(pm == mdPerspective) return true;
|
|
if(among(pm, mdBall, mdHemisphere)) return false;
|
|
return PIU(model_available(pm));
|
|
}
|
|
if(sl2) return pm == mdGeodesic;
|
|
if(nonisotropic) return among(pm, mdDisk, mdPerspective, mdHorocyclic, mdGeodesic, mdEquidistant, mdFisheye);
|
|
if(pm == mdGeodesic && !sol) return false;
|
|
if(sphere && (pm == mdHalfplane || pm == mdBall))
|
|
return false;
|
|
if(GDIM == 2 && pm == mdPerspective) return false;
|
|
if(GDIM == 2 && pm == mdEquivolume) return false;
|
|
if(GDIM == 3 && among(pm, mdBall, mdHyperboloid, mdFormula, mdPolygonal, mdRotatedHyperboles, mdSpiral, mdHemisphere)) return false;
|
|
if(pm == mdCentralInversion && !euclid) return false;
|
|
if(pm == mdPoorMan) return hyperbolic;
|
|
if(pm == mdRetroHammer) return hyperbolic;
|
|
return true;
|
|
}
|
|
|
|
EX bool has_orientation(eModel m) {
|
|
if(m == mdHorocyclic)
|
|
return hyperbolic;
|
|
if((m == mdPerspective || m == mdGeodesic) && panini_alpha) return true;
|
|
return
|
|
among(m, mdHalfplane, mdPolynomial, mdPolygonal, mdTwoPoint, mdJoukowsky, mdJoukowskyInverted, mdSpiral, mdSimulatedPerspective, mdTwoHybrid, mdHorocyclic, mdAxial, mdAntiAxial, mdQuadrant,
|
|
mdWerner, mdAitoff, mdHammer, mdLoximuthal, mdWinkelTripel) || mdBandAny();
|
|
}
|
|
|
|
/** @brief returns the broken coordinate, or zero */
|
|
EX int get_broken_coord(eModel m) {
|
|
if(m == mdWerner) return 1;
|
|
if(sphere) return (mdinf[m].flags & mf::broken) ? 2 : 0;
|
|
return 0;
|
|
}
|
|
|
|
EX bool is_perspective(eModel m) {
|
|
return among(m, mdPerspective, mdGeodesic);
|
|
}
|
|
|
|
EX bool is_3d(const projection_configuration& p) {
|
|
if(GDIM == 3) return true;
|
|
return among(p.model, mdBall, mdHyperboloid, mdHemisphere) || (p.model == mdSpiral && p.spiral_cone != 360);
|
|
}
|
|
|
|
EX bool has_transition(eModel m) {
|
|
return among(m, mdJoukowsky, mdJoukowskyInverted, mdBand, mdAxial) && GDIM == 2;
|
|
}
|
|
|
|
EX bool product_model(eModel m) {
|
|
if(!prod) return false;
|
|
if(among(m, mdPerspective, mdHyperboloid, mdEquidistant)) return false;
|
|
return true;
|
|
}
|
|
|
|
int editpos = 0;
|
|
|
|
EX string get_model_name(eModel m) {
|
|
if(m == mdDisk && GDIM == 3 && (hyperbolic || nonisotropic)) return XLAT("ball model/Gans");
|
|
if(m == mdPerspective && prod) return XLAT("native perspective");
|
|
if(prod) return PIU(get_model_name(m));
|
|
if(nonisotropic) {
|
|
if(m == mdHorocyclic && !sol) return XLAT("simple model: projection");
|
|
if(m == mdPerspective) return XLAT("simple model: perspective");
|
|
if(m == mdGeodesic) return XLAT("native perspective");
|
|
if(among(m, mdEquidistant, mdFisheye, mdHorocyclic)) return XLAT(mdinf[m].name_hyperbolic);
|
|
}
|
|
if(m == mdDisk && GDIM == 3) return XLAT("perspective in 4D");
|
|
if(m == mdHalfplane && GDIM == 3 && hyperbolic) return XLAT("half-space");
|
|
if(sphere)
|
|
return XLAT(mdinf[m].name_spherical);
|
|
if(euclid)
|
|
return XLAT(mdinf[m].name_euclidean);
|
|
if(hyperbolic)
|
|
return XLAT(mdinf[m].name_hyperbolic);
|
|
return "?";
|
|
}
|
|
|
|
vector<gp::loc> torus_zeros;
|
|
|
|
void match_torus_period() {
|
|
torus_zeros.clear();
|
|
for(int y=0; y<=200; y++)
|
|
for(int x=-200; x<=200; x++) {
|
|
if(y == 0 && x <= 0) continue;
|
|
transmatrix dummy = Id;
|
|
euc::coord v(x, y, 0);
|
|
bool mirr = false;
|
|
auto t = euc::eutester;
|
|
euc::eu.canonicalize(v, t, dummy, mirr);
|
|
if(v == euc::euzero && t == euc::eutester)
|
|
torus_zeros.emplace_back(x, y);
|
|
}
|
|
sort(torus_zeros.begin(), torus_zeros.end(), [] (const gp::loc p1, const gp::loc p2) {
|
|
ld d1 = hdist0(tC0(euc::eumove(p1)));
|
|
ld d2 = hdist0(tC0(euc::eumove(p2)));
|
|
if(d1 < d2 - 1e-6) return true;
|
|
if(d1 > d2 + 1e-6) return false;
|
|
return p1 < p2;
|
|
});
|
|
if(spiral_id > isize(torus_zeros)) spiral_id = 0;
|
|
dialog::editNumber(spiral_id, 0, isize(torus_zeros)-1, 1, 10, XLAT("match the period of the torus"), "");
|
|
dialog::reaction = [] () {
|
|
auto& co = torus_zeros[spiral_id];
|
|
vpconf.spiral_x = co.first;
|
|
vpconf.spiral_y = co.second;
|
|
};
|
|
dialog::bound_low(0);
|
|
dialog::bound_up(isize(torus_zeros)-1);
|
|
}
|
|
|
|
EX void edit_formula() {
|
|
if(vpconf.model != mdFormula) vpconf.basic_model = vpconf.model;
|
|
dialog::edit_string(vpconf.formula, "formula",
|
|
XLAT(
|
|
"This lets you specify the projection as a formula f. "
|
|
"The formula has access to the value 'z', which is a complex number corresponding to the (x,y) coordinates in the currently selected model; "
|
|
"the point z is mapped to f(z). You can also use the underlying coordinates ux, uy, uz."
|
|
) + "\n\n" + parser_help()
|
|
);
|
|
#if CAP_QUEUE && CAP_CURVE
|
|
dialog::extra_options = [] () {
|
|
initquickqueue();
|
|
queuereset(mdPixel, PPR::LINE);
|
|
for(int a=-1; a<=1; a++) {
|
|
curvepoint(point2(-M_PI/2 * current_display->radius, a*current_display->radius));
|
|
curvepoint(point2(+M_PI/2 * current_display->radius, a*current_display->radius));
|
|
queuecurve(shiftless(Id), forecolor, 0, PPR::LINE);
|
|
curvepoint(point2(a*current_display->radius, -M_PI/2*current_display->radius));
|
|
curvepoint(point2(a*current_display->radius, +M_PI/2*current_display->radius));
|
|
queuecurve(shiftless(Id), forecolor, 0, PPR::LINE);
|
|
}
|
|
queuereset(vpconf.model, PPR::LINE);
|
|
quickqueue();
|
|
};
|
|
#endif
|
|
dialog::reaction_final = [] () {
|
|
vpconf.model = mdFormula;
|
|
};
|
|
}
|
|
|
|
EX void edit_rotation(ld& which) {
|
|
dialog::editNumber(which, 0, 360, 90, 0, XLAT("rotation"),
|
|
"This controls the automatic rotation of the world. "
|
|
"It affects the line animation in the history mode, and "
|
|
"lands which have a special direction. Note that if finding this special direction is a part of the puzzle, "
|
|
"it works only in the cheat mode.");
|
|
dialog::dialogflags |= sm::CENTER;
|
|
dialog::extra_options = [] () {
|
|
dialog::addBreak(100);
|
|
dialog::addBoolItem_choice("line animation only", models::do_rotate, 0, 'N');
|
|
dialog::addBoolItem_choice("gravity lands", models::do_rotate, 1, 'G');
|
|
dialog::addBoolItem_choice("all directional lands", models::do_rotate, 2, 'D');
|
|
if(GDIM == 3) {
|
|
dialog::addBreak(100);
|
|
dialog::addSelItem(XLAT("XY plane"), fts(models::rotation) + "°", 'A');
|
|
dialog::add_action([] { popScreen(); edit_rotation(models::rotation); });
|
|
dialog::addSelItem(XLAT("XZ plane"), fts(models::rotation_xz) + "°", 'B');
|
|
dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xz); });
|
|
dialog::addSelItem(XLAT("XY plane #2"), fts(models::rotation_xy2) + "°", 'C');
|
|
dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xy2); });
|
|
}
|
|
};
|
|
}
|
|
|
|
EX void model_list() {
|
|
cmode = sm::SIDE | sm::MAYDARK | sm::CENTER;
|
|
gamescreen(0);
|
|
dialog::init(XLAT("models & projections"));
|
|
#if CAP_RUG
|
|
USING_NATIVE_GEOMETRY_IN_RUG;
|
|
#endif
|
|
|
|
for(int i=0; i<mdGUARD; i++) {
|
|
eModel m = eModel(i);
|
|
if(m == mdFormula && ISMOBILE) continue;
|
|
if(model_available(m)) {
|
|
dialog::addBoolItem(get_model_name(m), vpconf.model == m, (i < 26 ? 'a'+i : 'A'+i-26));
|
|
dialog::add_action([m] () {
|
|
if(m == mdFormula) {
|
|
edit_formula();
|
|
return;
|
|
}
|
|
vpconf.model = m;
|
|
polygonal::solve();
|
|
vpconf.alpha = 1; vpconf.scale = 1;
|
|
if(pmodel == mdBand && sphere)
|
|
vpconf.scale = .3;
|
|
if(pmodel == mdDisk && sphere)
|
|
vpconf.scale = .4;
|
|
popScreen();
|
|
});
|
|
}
|
|
}
|
|
|
|
dialog::display();
|
|
}
|
|
|
|
void edit_stretch() {
|
|
dialog::editNumber(vpconf.stretch, 0, 10, .1, 1, XLAT("vertical stretch"),
|
|
"Vertical stretch factor."
|
|
);
|
|
dialog::extra_options = [] () {
|
|
dialog::addBreak(100);
|
|
if(sphere && pmodel == mdBandEquiarea) {
|
|
dialog::addBoolItem("Gall-Peters", vpconf.stretch == 2, 'O');
|
|
dialog::add_action([] { vpconf.stretch = 2; dialog::ne.s = "2"; });
|
|
}
|
|
if(pmodel == mdBandEquiarea) {
|
|
// y = K * sin(phi)
|
|
// cos(phi) * cos(phi) = 1/K
|
|
if(sphere && vpconf.stretch >= 1) {
|
|
ld phi = acos(sqrt(1/vpconf.stretch));
|
|
dialog::addInfo(XLAT("The current value makes the map conformal at the latitude of %1 (%2°).", fts(phi), fts(phi / degree)));
|
|
}
|
|
else if(hyperbolic && abs(vpconf.stretch) <= 1 && abs(vpconf.stretch) >= 1e-9) {
|
|
ld phi = acosh(abs(sqrt(1/vpconf.stretch)));
|
|
dialog::addInfo(XLAT("The current value makes the map conformal %1 units from the main line.", fts(phi)));
|
|
}
|
|
else dialog::addInfo("");
|
|
}
|
|
};
|
|
}
|
|
|
|
EX void model_menu() {
|
|
cmode = sm::SIDE | sm::MAYDARK | sm::CENTER;
|
|
gamescreen(0);
|
|
#if CAP_RUG
|
|
USING_NATIVE_GEOMETRY_IN_RUG;
|
|
#endif
|
|
dialog::init(XLAT("models & projections"));
|
|
|
|
auto vpmodel = vpconf.model;
|
|
|
|
dialog::addSelItem(XLAT("projection type"), get_model_name(vpmodel), 'm');
|
|
dialog::add_action_push(model_list);
|
|
|
|
if(nonisotropic && !sl2)
|
|
dialog::addBoolItem_action(XLAT("geodesic movement in Sol/Nil"), nisot::geodesic_movement, 'G');
|
|
|
|
dialog::addBoolItem(XLAT("rotation"), do_rotate == 2, 'r');
|
|
if(do_rotate == 0) dialog::lastItem().value = XLAT("NEVER");
|
|
if(GDIM == 2)
|
|
dialog::lastItem().value += " " + its(rotation) + "°";
|
|
else
|
|
dialog::lastItem().value += " " + its(rotation) + "°" + its(rotation_xz) + "°" + its(rotation_xy2) + "°";
|
|
dialog::add_action([] { edit_rotation(rotation); });
|
|
|
|
// if(vpmodel == mdBand && sphere)
|
|
if(!in_perspective_v()) {
|
|
dialog::addSelItem(XLAT("scale factor"), fts(vpconf.scale), 'z');
|
|
dialog::add_action(editScale);
|
|
}
|
|
|
|
if(abs(vpconf.alpha-1) > 1e-3 && vpmodel != mdBall && vpmodel != mdHyperboloid && vpmodel != mdHemisphere && vpmodel != mdDisk) {
|
|
dialog::addBreak(50);
|
|
dialog::addInfo("NOTE: this works 'correctly' only if the Poincaré model/stereographic projection is used.");
|
|
dialog::addBreak(50);
|
|
}
|
|
|
|
if(among(vpmodel, mdDisk, mdBall, mdHyperboloid, mdRotatedHyperboles, mdPanini)) {
|
|
dynamicval<eModel> v(vpconf.model, vpconf.model);
|
|
if(vpmodel == mdHyperboloid) vpconf.model = mdDisk;
|
|
dialog::addSelItem(XLAT("projection distance"), fts(vpconf.alpha) + " (" + current_proj_name() + ")", 'p');
|
|
dialog::add_action(projectionDialog);
|
|
}
|
|
|
|
if(has_orientation(vpmodel)) {
|
|
dialog::addSelItem(XLAT("model orientation"), fts(vpconf.model_orientation) + "°", 'l');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(vpconf.model_orientation, 0, 360, 90, 0, XLAT("model orientation"), "");
|
|
});
|
|
if(GDIM == 3) {
|
|
dialog::addSelItem(XLAT("model orientation (y/z plane)"), fts(vpconf.model_orientation_yz) + "°", 'L');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(vpconf.model_orientation_yz, 0, 360, 90, 0, XLAT("model orientation (y/z plane)"), "");
|
|
});
|
|
}
|
|
}
|
|
|
|
if(among(vpmodel, mdPerspective, mdHorocyclic) && nil) {
|
|
dialog::addSelItem(XLAT("model orientation"), fts(vpconf.model_orientation) + "°", 'l');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(vpconf.model_orientation, 0, 360, 90, 0, XLAT("model orientation"), "");
|
|
});
|
|
dialog::addSelItem(XLAT("rotational or Heisenberg"), fts(vpconf.rotational_nil), 'L');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(vpconf.rotational_nil, 0, 1, 1, 1, XLAT("1 = Heisenberg, 0 = rotational"), "");
|
|
});
|
|
}
|
|
|
|
if(GDIM == 3 && vpmodel != mdPerspective) {
|
|
const string cliphelp = XLAT(
|
|
"Your view of the 3D model is naturally bounded from four directions by your window. "
|
|
"Here, you can also set up similar bounds in the Z direction. Radius of the ball/band "
|
|
"models, and the distance from the center to the plane in the halfspace model, are 1.\n\n");
|
|
dialog::addSelItem(XLAT("near clipping plane"), fts(vpconf.clip_max), 'c');
|
|
dialog::add_action([cliphelp] () {
|
|
dialog::editNumber(vpconf.clip_max, -10, 10, 0.2, 1, XLAT("near clipping plane"),
|
|
cliphelp + XLAT("Objects with Z coordinate "
|
|
"bigger than this parameter are not shown. This is useful with the models which "
|
|
"extend infinitely in the Z direction, or if you want things close to your character "
|
|
"to be not obscured by things closer to the camera."));
|
|
});
|
|
dialog::addSelItem(XLAT("far clipping plane"), fts(vpconf.clip_min), 'C');
|
|
dialog::add_action([cliphelp] () {
|
|
dialog::editNumber(vpconf.clip_min, -10, 10, 0.2, -1, XLAT("far clipping plane"),
|
|
cliphelp + XLAT("Objects with Z coordinate "
|
|
"smaller than this parameter are not shown; it also affects the fog effect"
|
|
" (near clipping plane = 0% fog, far clipping plane = 100% fog)."));
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdPolynomial) {
|
|
dialog::addSelItem(XLAT("coefficient"),
|
|
fts(polygonal::coefr[polygonal::coefid]), 'x');
|
|
dialog::add_action([] () {
|
|
polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid);
|
|
int ci = polygonal::coefid + 1;
|
|
dialog::editNumber(polygonal::coefr[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient"), "");
|
|
});
|
|
dialog::addSelItem(XLAT("coefficient (imaginary)"),
|
|
fts(polygonal::coefi[polygonal::coefid]), 'y');
|
|
dialog::add_action([] () {
|
|
polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid);
|
|
int ci = polygonal::coefid + 1;
|
|
dialog::editNumber(polygonal::coefi[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient (imaginary)"), "");
|
|
});
|
|
dialog::addSelItem(XLAT("which coefficient"), its(polygonal::coefid), 'n');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(polygonal::coefid, 0, polygonal::MSI-1, 1, 0, XLAT("which coefficient"), "");
|
|
dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1);
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdHalfplane) {
|
|
dialog::addSelItem(XLAT("half-plane scale"), fts(vpconf.halfplane_scale), 'b');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(vpconf.halfplane_scale, 0, 2, 0.25, 1, XLAT("half-plane scale"), "");
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdRotatedHyperboles) {
|
|
dialog::addBoolItem_action(XLAT("use atan to make it finite"), vpconf.use_atan, 'x');
|
|
}
|
|
|
|
if(vpmodel == mdBall) {
|
|
dialog::addSelItem(XLAT("projection in ball model"), fts(vpconf.ballproj), 'x');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(vpconf.ballproj, 0, 100, .1, 0, XLAT("projection in ball model"),
|
|
"This parameter affects the ball model the same way as the projection parameter affects the disk model.");
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdPolygonal) {
|
|
dialog::addSelItem(XLAT("polygon sides"), its(polygonal::SI), 'x');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(polygonal::SI, 3, 10, 1, 4, XLAT("polygon sides"), "");
|
|
dialog::reaction = polygonal::solve;
|
|
});
|
|
dialog::addSelItem(XLAT("star factor"), fts(polygonal::STAR), 'y');
|
|
dialog::add_action([]() {
|
|
dialog::editNumber(polygonal::STAR, -1, 1, .1, 0, XLAT("star factor"), "");
|
|
dialog::reaction = polygonal::solve;
|
|
});
|
|
dialog::addSelItem(XLAT("degree of the approximation"), its(polygonal::deg), 'n');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(polygonal::deg, 2, polygonal::MSI-1, 1, 2, XLAT("degree of the approximation"), "");
|
|
dialog::reaction = polygonal::solve;
|
|
dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1);
|
|
});
|
|
}
|
|
|
|
if(is_3d(vpconf) && GDIM == 2) {
|
|
dialog::addSelItem(XLAT("camera rotation in 3D models"), fts(vpconf.ballangle) + "°", 'b');
|
|
dialog::add_action(config_camera_rotation);
|
|
}
|
|
|
|
if(vpmodel == mdHyperboloid) {
|
|
dialog::addSelItem(XLAT("maximum z coordinate to show"), fts(vpconf.top_z), 'l');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.top_z, 1, 20, 0.25, 4, XLAT("maximum z coordinate to show"), "");
|
|
});
|
|
}
|
|
|
|
if(has_transition(vpmodel)) {
|
|
dialog::addSelItem(XLAT("model transition"), fts(vpconf.model_transition), 't');
|
|
dialog::add_action([]() {
|
|
dialog::editNumber(vpconf.model_transition, 0, 1, 0.1, 1, XLAT("model transition"),
|
|
"You can change this parameter for a transition from another model to this one."
|
|
);
|
|
});
|
|
}
|
|
|
|
if(among(vpmodel, mdJoukowsky, mdJoukowskyInverted, mdSpiral) && GDIM == 2) {
|
|
dialog::addSelItem(XLAT("Möbius transformations"), fts(vpconf.skiprope) + "°", 'S');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.skiprope, 0, 360, 15, 0, XLAT("Möbius transformations"), "");
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdHemisphere && euclid) {
|
|
dialog::addSelItem(XLAT("parameter"), fts(vpconf.euclid_to_sphere), 'l');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(vpconf.euclid_to_sphere, 0, 10, .1, 1, XLAT("parameter"),
|
|
"Stereographic projection to a sphere. Choose the radius of the sphere."
|
|
);
|
|
dialog::scaleLog();
|
|
});
|
|
}
|
|
|
|
if(among(vpmodel, mdTwoPoint, mdSimulatedPerspective, mdTwoHybrid)) {
|
|
dialog::addSelItem(XLAT("parameter"), fts(vpconf.twopoint_param), 'b');
|
|
dialog::add_action([vpmodel](){
|
|
dialog::editNumber(vpconf.twopoint_param, 1e-3, 10, .1, 1, XLAT("parameter"),
|
|
s0 + (vpmodel == mdTwoPoint ?
|
|
"This model maps the world so that the distances from two points "
|
|
"are kept. " : "") + "This parameter gives the distance from the two points to "
|
|
"the center."
|
|
);
|
|
dialog::scaleLog();
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdFisheye) {
|
|
dialog::addSelItem(XLAT("parameter"), fts(vpconf.fisheye_param), 'b');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.fisheye_param, 1e-3, 10, .1, 1, XLAT("parameter"),
|
|
"Size of the fish eye."
|
|
);
|
|
dialog::scaleLog();
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdHyperboloid) {
|
|
dialog::addBoolItem_action(XLAT("show flat"), pconf.show_hyperboloid_flat, 'b');
|
|
}
|
|
|
|
if(vpmodel == mdCollignon) {
|
|
dialog::addSelItem(XLAT("parameter"), fts(vpconf.collignon_parameter) + (vpconf.collignon_reflected ? " (r)" : ""), 'b');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.collignon_parameter, -1, 1, .1, 1, XLAT("parameter"),
|
|
""
|
|
);
|
|
dialog::extra_options = [] {
|
|
dialog::addBoolItem_action(XLAT("reflect"), vpconf.collignon_reflected, 'R');
|
|
};
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdMiller) {
|
|
dialog::addSelItem(XLAT("parameter"), fts(vpconf.miller_parameter), 'b');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.miller_parameter, -1, 1, .1, 4/5., XLAT("parameter"),
|
|
"The Miller projection is obtained by multiplying the latitude by 4/5, using Mercator projection, and then multiplying Y by 5/4. "
|
|
"Here you can change this parameter."
|
|
);
|
|
});
|
|
}
|
|
|
|
if(among(vpmodel, mdLoximuthal, mdRetroHammer, mdRetroCraig)) {
|
|
dialog::addSelItem(XLAT("parameter"), fts(vpconf.loximuthal_parameter), 'b');
|
|
dialog::add_action([vpmodel](){
|
|
dialog::editNumber(vpconf.loximuthal_parameter, -M_PI/2, M_PI/2, .1, 0, XLAT("parameter"),
|
|
(vpmodel == mdLoximuthal ?
|
|
"This model is similar to azimuthal equidistant, but based on loxodromes (lines of constant geographic direction) rather than geodesics. "
|
|
"The loximuthal projection maps (the shortest) loxodromes to straight lines of the same length, going through the starting point. "
|
|
"This setting changes the latitude of the starting point." :
|
|
"In retroazimuthal projections, a point is drawn at such a point that the azimuth *from* that point to the chosen central point is correct. "
|
|
"For example, if you should move east, the point is drawn to the right. This parameter is the latitude of the central point.")
|
|
+ string(hyperbolic ? "\n\n(In hyperbolic geometry directions are assigned according to the Lobachevsky coordinates.)" : "")
|
|
);
|
|
});
|
|
}
|
|
|
|
if(among(vpmodel, mdAitoff, mdHammer, mdWinkelTripel)) {
|
|
dialog::addSelItem(XLAT("parameter"), fts(vpconf.aitoff_parameter), 'b');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.aitoff_parameter, -1, 1, .1, 1/2., XLAT("parameter"),
|
|
"The Aitoff projection is obtained by multiplying the longitude by 1/2, using azimuthal equidistant projection, and then multiplying X by 1/2. "
|
|
"Hammer projection is similar but equi-area projection is used instead. "
|
|
"Here you can change this parameter."
|
|
);
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdWinkelTripel) {
|
|
dialog::addSelItem(XLAT("mixing proportion"), fts(vpconf.winkel_parameter), 'B');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.winkel_parameter, -1, 1, .1, 1, XLAT("parameter"),
|
|
"The Winkel Tripel projection is the average of Aitoff projection and equirectangular projection. Here you can change the proportion."
|
|
);
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdSpiral && !euclid) {
|
|
dialog::addSelItem(XLAT("spiral angle"), fts(vpconf.spiral_angle) + "°", 'x');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.spiral_angle, 0, 360, 15, 0, XLAT("spiral angle"),
|
|
XLAT("set to 90° for the ring projection")
|
|
);
|
|
});
|
|
|
|
ld& which =
|
|
sphere ? vpconf.sphere_spiral_multiplier :
|
|
ring_not_spiral ? vpconf.right_spiral_multiplier :
|
|
vpconf.any_spiral_multiplier;
|
|
|
|
dialog::addSelItem(XLAT("spiral multiplier"), fts(which) + "°", 'M');
|
|
dialog::add_action([&which](){
|
|
dialog::editNumber(which, 0, 10, -.1, 1, XLAT("spiral multiplier"),
|
|
XLAT(
|
|
"This parameter has a bit different scale depending on the settings:\n"
|
|
"(1) in spherical geometry (with spiral angle=90°, 1 produces a stereographic projection)\n"
|
|
"(2) in hyperbolic geometry, with spiral angle being +90° or -90°\n"
|
|
"(3) in hyperbolic geometry, with other spiral angles (1 makes the bands fit exactly)"
|
|
)
|
|
);
|
|
});
|
|
|
|
dialog::addSelItem(XLAT("spiral cone"), fts(vpconf.spiral_cone) + "°", 'C');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.spiral_cone, 0, 360, -45, 360, XLAT("spiral cone"), "");
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdSpiral && euclid) {
|
|
dialog::addSelItem(XLAT("spiral period: x"), fts(vpconf.spiral_x), 'x');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.spiral_x, -20, 20, 1, 10, XLAT("spiral period: x"), "");
|
|
});
|
|
dialog::addSelItem(XLAT("spiral period: y"), fts(vpconf.spiral_y), 'y');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.spiral_y, -20, 20, 1, 10, XLAT("spiral period: y"), "");
|
|
});
|
|
if(euclid && quotient) {
|
|
dialog::addSelItem(XLAT("match the period"), its(spiral_id), 'n');
|
|
dialog::add_action(match_torus_period);
|
|
}
|
|
}
|
|
|
|
dialog::addSelItem(XLAT("vertical stretch"), fts(vpconf.stretch), 's');
|
|
dialog::add_action(edit_stretch);
|
|
|
|
if(product_model(vpmodel)) {
|
|
dialog::addSelItem(XLAT("product Z stretch"), fts(vpconf.product_z_scale), 'Z');
|
|
dialog::add_action([] {
|
|
dialog::editNumber(vpconf.product_z_scale, 0.1, 10, 0.1, 1, XLAT("product Z stretch"), "");
|
|
dialog::scaleLog();
|
|
});
|
|
}
|
|
|
|
#if CAP_GL
|
|
dialog::addBoolItem(XLAT("use GPU to compute projections"), vid.consider_shader_projection, 'G');
|
|
bool shaderside_projection = get_shader_flags() & SF_DIRECT;
|
|
if(vid.consider_shader_projection && !shaderside_projection)
|
|
dialog::lastItem().value = XLAT("N/A");
|
|
if(vid.consider_shader_projection && shaderside_projection && vpmodel)
|
|
dialog::lastItem().value += XLAT(" (2D only)");
|
|
dialog::add_action([] { vid.consider_shader_projection = !vid.consider_shader_projection; });
|
|
#endif
|
|
|
|
menuitem_sightrange('R');
|
|
|
|
dialog::addBreak(100);
|
|
dialog::addItem(XLAT("history mode"), 'a');
|
|
dialog::add_action_push(history::history_menu);
|
|
#if CAP_RUG
|
|
if(GDIM == 2 || rug::rugged) {
|
|
dialog::addItem(XLAT("hypersian rug mode"), 'u');
|
|
dialog::add_action_push(rug::show);
|
|
}
|
|
#endif
|
|
dialog::addBack();
|
|
|
|
dialog::display();
|
|
mouseovers = XLAT("see http://www.roguetemple.com/z/hyper/models.php");
|
|
}
|
|
|
|
#if CAP_COMMANDLINE
|
|
|
|
eModel read_model(const string& ss) {
|
|
for(int i=0; i<isize(mdinf); i++) {
|
|
if(appears(mdinf[i].name_hyperbolic, ss)) return eModel(i);
|
|
if(appears(mdinf[i].name_euclidean, ss)) return eModel(i);
|
|
if(appears(mdinf[i].name_spherical, ss)) return eModel(i);
|
|
}
|
|
return eModel(atoi(ss.c_str()));
|
|
}
|
|
|
|
int readArgs() {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-els")) {
|
|
shift_arg_formula(history::extra_line_steps);
|
|
}
|
|
else if(argis("-stretch")) {
|
|
PHASEFROM(2); shift_arg_formula(vpconf.stretch);
|
|
}
|
|
else if(argis("-PM")) {
|
|
PHASEFROM(2); shift(); vpconf.model = read_model(args());
|
|
if(vpconf.model == mdFormula) {
|
|
shift(); vpconf.basic_model = eModel(argi());
|
|
shift(); vpconf.formula = args();
|
|
}
|
|
}
|
|
else if(argis("-ballangle")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.ballangle);
|
|
}
|
|
else if(argis("-topz")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.top_z);
|
|
}
|
|
else if(argis("-twopoint")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.twopoint_param);
|
|
}
|
|
else if(argis("-hp")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.halfplane_scale);
|
|
}
|
|
else if(argis("-mori")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.model_orientation);
|
|
}
|
|
else if(argis("-mnil")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.rotational_nil);
|
|
}
|
|
else if(argis("-mori2")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.model_orientation);
|
|
shift_arg_formula(vpconf.model_orientation_yz);
|
|
}
|
|
else if(argis("-crot")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(models::rotation);
|
|
if(GDIM == 3) shift_arg_formula(models::rotation_xz);
|
|
if(GDIM == 3) shift_arg_formula(models::rotation_xy2);
|
|
}
|
|
else if(argis("-clip")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.clip_min);
|
|
shift_arg_formula(vpconf.clip_max);
|
|
}
|
|
else if(argis("-mtrans")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.model_transition);
|
|
}
|
|
else if(argis("-mparam")) {
|
|
PHASEFROM(2);
|
|
if(pmodel == mdCollignon) shift_arg_formula(vpconf.collignon_parameter);
|
|
else if(pmodel == mdMiller) shift_arg_formula(vpconf.miller_parameter);
|
|
else if(among(pmodel, mdLoximuthal, mdRetroCraig, mdRetroHammer)) shift_arg_formula(vpconf.loximuthal_parameter);
|
|
else if(among(pmodel, mdAitoff, mdHammer, mdWinkelTripel)) shift_arg_formula(vpconf.aitoff_parameter);
|
|
if(pmodel == mdWinkelTripel) shift_arg_formula(vpconf.winkel_parameter);
|
|
}
|
|
else if(argis("-sang")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.spiral_angle);
|
|
if(sphere)
|
|
shift_arg_formula(vpconf.sphere_spiral_multiplier);
|
|
else if(vpconf.spiral_angle == 90)
|
|
shift_arg_formula(vpconf.right_spiral_multiplier);
|
|
}
|
|
else if(argis("-ssm")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.any_spiral_multiplier);
|
|
}
|
|
else if(argis("-scone")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.spiral_cone);
|
|
}
|
|
else if(argis("-sxy")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.spiral_x);
|
|
shift_arg_formula(vpconf.spiral_y);
|
|
}
|
|
else if(argis("-mob")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.skiprope);
|
|
}
|
|
else if(argis("-palpha")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(panini_alpha, reset_all_shaders);
|
|
}
|
|
else if(argis("-zoom")) {
|
|
PHASEFROM(2); shift_arg_formula(vpconf.scale);
|
|
}
|
|
else if(argis("-alpha")) {
|
|
PHASEFROM(2); shift_arg_formula(vpconf.alpha);
|
|
}
|
|
else if(argis("-d:model"))
|
|
launch_dialog(model_menu);
|
|
else if(argis("-d:formula")) {
|
|
launch_dialog();
|
|
edit_formula();
|
|
}
|
|
else if(argis("-d:match")) {
|
|
launch_dialog(match_torus_period);
|
|
edit_formula();
|
|
}
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
auto hookArg = addHook(hooks_args, 100, readArgs);
|
|
#endif
|
|
}
|
|
|
|
} |