mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-25 00:16:59 +00:00
3735 lines
106 KiB
C++
3735 lines
106 KiB
C++
// Hyperbolic Rogue -- hyperbolic graphics
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file hypgraph.cpp
|
|
* \brief mapping hyperpoints to the screen, and related functions
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
namespace hr {
|
|
|
|
hyperpoint ghxy, ghgxy;
|
|
shiftpoint ghpm = shiftless(C02);
|
|
|
|
EX ld flip_limit = 1.1;
|
|
|
|
EX bool flip_sphere() { return GDIM == 2 && sphere && pconf.alpha > flip_limit; }
|
|
|
|
EX bool sphere_flipped;
|
|
|
|
void ghcheck(hyperpoint &ret, const shiftpoint &H) {
|
|
if(hypot_d(2, ret-ghxy) < hypot_d(2, ghgxy-ghxy)) {
|
|
ghpm = H; ghgxy = ret;
|
|
}
|
|
}
|
|
|
|
EX void camrotate(ld& hx, ld& hy) {
|
|
hyperpoint p = hyperpoint(hx, hy, 1, 1);
|
|
p = pconf.cam() * p;
|
|
hx = p[0] / p[2], hy = p[1] / p[2];
|
|
}
|
|
|
|
EX bool non_spatial_model() {
|
|
if(among(pmodel, mdRotatedHyperboles, mdJoukowsky, mdJoukowskyInverted, mdPolygonal, mdPolynomial))
|
|
return true;
|
|
if(pmodel == mdSpiral && euclid)
|
|
return true;
|
|
#if CAP_GL
|
|
return pmodel && vid.consider_shader_projection && (get_shader_flags() & SF_DIRECT);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
EX hyperpoint perspective_to_space(hyperpoint h, ld alpha IS(pconf.alpha), eGeometryClass gc IS(ginf[geometry].cclass)) {
|
|
ld hx = h[0], hy = h[1];
|
|
|
|
if(gc == gcEuclid)
|
|
return hpxy(hx * (1 + alpha), hy * (1 + alpha));
|
|
|
|
ld hr = hx*hx+hy*hy;
|
|
if(LDIM == 3) hr += h[2]*h[2];
|
|
|
|
if(hr > .9999 && gc == gcHyperbolic) return Hypc;
|
|
|
|
ld A, B, C;
|
|
|
|
ld curv = gc == gcSphere ? 1 : -1;
|
|
|
|
A = 1+curv*hr;
|
|
B = 2*hr*alpha*-curv;
|
|
C = 1 - curv*hr*alpha*alpha;
|
|
|
|
B /= A; C /= A;
|
|
|
|
ld rootsign = 1;
|
|
if(gc == gcSphere && pconf.alpha > 1) rootsign = -1;
|
|
|
|
ld hz = B / 2 + rootsign * sqrt(C + B*B/4);
|
|
|
|
hyperpoint H;
|
|
H[0] = hx * (hz+alpha);
|
|
H[1] = hy * (hz+alpha);
|
|
if(LDIM == 3) H[2] = h[2] * (hz + alpha);
|
|
H[LDIM] = hz;
|
|
|
|
return H;
|
|
}
|
|
|
|
EX hyperpoint space_to_perspective(hyperpoint z, ld alpha IS(pconf.alpha)) {
|
|
ld s = 1 / (alpha + z[LDIM]);
|
|
z[0] *= s;
|
|
z[1] *= s;
|
|
if(GDIM == 3) {
|
|
z[2] *= s;
|
|
z[3] = 0;
|
|
}
|
|
else
|
|
z[2] = 0;
|
|
return z;
|
|
}
|
|
|
|
EX hyperpoint pointable() {
|
|
return WDIM == 2 && GDIM == 3 ? zpush0(cgi.FLOOR) : C0;
|
|
}
|
|
|
|
/** find a shiftpoint which minimizes value -- we represent points by matrices to make things a bit simpler */
|
|
|
|
EX shiftmatrix minimize_point_value(shiftmatrix T, function<ld(const shiftmatrix&)> value) {
|
|
|
|
ld best = value(T);
|
|
|
|
for(int it=0; it<50; it++)
|
|
for(int s=0; s<2*WDIM; s++) {
|
|
shiftmatrix T1 = T * cpush(s/2, (s&1?1:-1) * pow(1.2, -it));
|
|
ld dist = value(T1);
|
|
if(dist < best) best = dist, T = T1;
|
|
if(mdBandAny()) {
|
|
T1.shift += TAU;
|
|
dist = value(T1);
|
|
if(dist < best) best = dist, T = T1;
|
|
T1.shift -= 720._deg;
|
|
dist = value(T1);
|
|
if(dist < best) best = dist, T = T1;
|
|
T1.shift += TAU;
|
|
}
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
EX shiftpoint find_on_screen(hyperpoint hxy, const shiftmatrix& T) {
|
|
hyperpoint rel = pointable();
|
|
auto distance_at = [&] (const shiftmatrix& T1) {
|
|
hyperpoint h1;
|
|
applymodel(T1*rel, h1);
|
|
return sqhypot_d(2, hxy - h1);
|
|
};
|
|
return minimize_point_value(T, distance_at) * rel;
|
|
}
|
|
|
|
EX shiftpoint gethyper(ld x, ld y) {
|
|
|
|
ld hx = (x - current_display->xcenter) / current_display->radius;
|
|
ld hy = (y - current_display->ycenter) / current_display->radius / pconf.stretch;
|
|
hyperpoint hxy = point3(hx, hy, 0);
|
|
|
|
if(WDIM == 2 && GDIM == 3) {
|
|
return mouseover ? find_on_screen(hxy, ggmatrix(mouseover)): shiftless(Hypc);
|
|
}
|
|
|
|
if(pmodel) {
|
|
ghxy = hxy;
|
|
return find_on_screen(hxy, rgpushxto0(ghpm));
|
|
}
|
|
|
|
if(!models::camera_straight) camrotate(hx, hy);
|
|
|
|
return shiftless(perspective_to_space(hpxyz(hx, hy, 0)));
|
|
}
|
|
|
|
void ballmodel(hyperpoint& ret, double alpha, double d, double zl) {
|
|
hyperpoint H = ypush(vid.camera) * xpush(d) * ypush(zl) * C0;
|
|
ld tzh = pconf.ballproj + H[LDIM];
|
|
ld ax = H[0] / tzh;
|
|
ld ay = H[1] / tzh;
|
|
|
|
ld ca = cos(alpha), sa = sin(alpha);
|
|
|
|
ret[0] = ax * ca;
|
|
ret[1] = ay;
|
|
ret[2] = ax * sa;
|
|
|
|
ret = pconf.ball() * ret;
|
|
}
|
|
|
|
bool use_z_coordinate() {
|
|
#if CAP_VR
|
|
if(vrhr::rendering()) return true;
|
|
#endif
|
|
return current_display->separate_eyes();
|
|
}
|
|
|
|
void apply_depth(hyperpoint &f, ld z) {
|
|
if(vid.usingGL)
|
|
f[2] = z * pconf.depth_scaling;
|
|
else {
|
|
z = z * current_display->radius * pconf.depth_scaling;
|
|
ld mul = current_display->radius / (current_display->radius + z);
|
|
f[0] = f[0] * mul;
|
|
f[1] = f[1] * mul;
|
|
f[2] = vid.xres * current_display->eyewidth() / 2 / current_display->radius + vid.ipd * mul / 2;
|
|
}
|
|
}
|
|
|
|
bool hypot_zlev(ld zlev, ld& d, ld& df, ld& zf) {
|
|
if(zlev == 1) {
|
|
df = 1; zf = 0;
|
|
return false;
|
|
}
|
|
else {
|
|
// (0,0,1) -> (0, sin z, cos z) -> (sin d cos z, sin z, cos d cos z)
|
|
ld z = geom3::factor_to_lev(zlev);
|
|
|
|
ld tz = sin_auto(z);
|
|
ld td = sin_auto(abs(d)) * cos_auto(z);
|
|
ld h = hypot(td, tz);
|
|
zf = tz / h, df = td / h;
|
|
|
|
if(d > 0)
|
|
d = hypot_auto(d, z);
|
|
else {
|
|
d = -hypot_auto(-d, z);
|
|
zf = -zf;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
int twopoint_sphere_flips;
|
|
bool twopoint_do_flips;
|
|
|
|
EX ld find_zlev(hyperpoint& H) {
|
|
|
|
if(spatial_graphics) {
|
|
ld zlev = zlevel(H);
|
|
if(zlev > 1-1e-9 && zlev < 1+1e-9) return 1;
|
|
H /= zlev;
|
|
return zlev;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
ld get_tz(hyperpoint H) {
|
|
ld tz = pconf.alpha+H[LDIM];
|
|
if(tz < BEHIND_LIMIT && tz > -BEHIND_LIMIT) tz = BEHIND_LIMIT;
|
|
return tz;
|
|
}
|
|
|
|
EX ld atan2(hyperpoint h) {
|
|
return atan2(h[1], h[0]);
|
|
}
|
|
|
|
pair<ld, ld> move_z_to_y(hyperpoint& H) {
|
|
if(GDIM == 2) return make_pair(0, 0);
|
|
ld R = hypot(H[1], H[2]);
|
|
pair<ld, ld> res = { H[1] / R, H[2] / R };
|
|
H[1] = R; H[2] = 0;
|
|
return res;
|
|
}
|
|
|
|
void move_y_to_z(hyperpoint& H, pair<ld, ld> coef) {
|
|
if(GDIM == 3) {
|
|
H[2] = H[1] * coef.second;
|
|
H[1] = H[1] * coef.first;
|
|
#if MAXMDIM >= 4
|
|
H[3] = 1;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
template<class T> void makeband(shiftpoint H, hyperpoint& ret, const T& f) {
|
|
ld zlev = find_zlev(H.h);
|
|
models::scr_to_ori(H.h);
|
|
auto r = move_z_to_y(H.h);
|
|
|
|
ld x, y, yf, zf=0;
|
|
y = asin_auto(H[1]);
|
|
x = asin_auto_clamp(H[0] / cos_auto(y));
|
|
if(sphere) {
|
|
if(H[LDIM] < 0 && x > 0) x = M_PI - x;
|
|
else if(H[LDIM] < 0 && x <= 0) x = -M_PI - x;
|
|
}
|
|
x += H.shift;
|
|
hypot_zlev(zlev, y, yf, zf);
|
|
|
|
f(x, y);
|
|
|
|
ld yzf = y * zf; y *= yf;
|
|
ret = hpxyz(x / M_PI, y / M_PI, 0);
|
|
move_y_to_z(ret, r);
|
|
models::ori_to_scr(ret);
|
|
if(zlev != 1 && use_z_coordinate())
|
|
apply_depth(ret, yzf / M_PI);
|
|
return;
|
|
}
|
|
|
|
EX void makeband_f(shiftpoint H, hyperpoint& ret, const hr::function<void(ld&,ld&)>& f) {
|
|
makeband(H, ret, f);
|
|
}
|
|
|
|
void band_conformal(ld& x, ld& y) {
|
|
switch(cgclass) {
|
|
case gcSphere:
|
|
y = atanh(sin(y));
|
|
x *= 2; y *= 2;
|
|
break;
|
|
case gcHyperbolic:
|
|
y = 2 * atan(tanh(y/2));
|
|
x *= 2; y *= 2;
|
|
break;
|
|
case gcEuclid:
|
|
default:
|
|
// y = y;
|
|
y *= 2; x *= 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void make_twopoint(ld& x, ld& y) {
|
|
auto p = pconf.twopoint_param;
|
|
ld dleft = hypot_auto(x-p, y);
|
|
ld dright = hypot_auto(x+p, y);
|
|
if(sphere) {
|
|
int tss = twopoint_sphere_flips;
|
|
if(tss&1) { tss--;
|
|
dleft = TAU - 2*p - dleft;
|
|
dright = TAU - 2*p - dright;
|
|
swap(dleft, dright);
|
|
y = -y;
|
|
}
|
|
while(tss) { tss -= 2;
|
|
dleft = TAU - 4*p + dleft;
|
|
dright = TAU - 4*p + dright;
|
|
}
|
|
}
|
|
x = (dright*dright-dleft*dleft) / 4 / p;
|
|
y = (y>0?1:-1) * sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9);
|
|
}
|
|
|
|
hyperpoint mobius(hyperpoint h, ld angle, ld scale = 1) {
|
|
h = perspective_to_space(h * scale, 1, gcSphere);
|
|
h = cspin(1, 2, angle * degree) * h;
|
|
return space_to_perspective(h, 1) / scale;
|
|
}
|
|
|
|
hyperpoint compute_hybrid(hyperpoint H, int rootid) {
|
|
auto& t = pconf.twopoint_param;
|
|
hyperpoint Hl = xpush(+t) * H;
|
|
hyperpoint Hr = xpush(-t) * H;
|
|
ld g = (Hl[0] + 1e-7) / (Hl[1] + 1e-8);
|
|
ld d = hdist0(Hr);
|
|
|
|
hyperpoint spinned = spintox(Hl) * xpush0(2*t);
|
|
if(Hl[0] < 0) spinned = pispin * spinned;
|
|
|
|
ld y = asin_auto(spinned[1]);
|
|
ld x = asin_auto_clamp(spinned[0] / cos_auto(y));
|
|
|
|
int sign = (Hl[0] > 0 ? 1 : -1) * hdist0(Hl) < x ? -1 : 1;
|
|
|
|
switch(rootid & 3) {
|
|
case 1: sign = -sign; break;
|
|
case 2: sign = 1; break;
|
|
case 3: sign = -1; break;
|
|
}
|
|
|
|
// (x + t) / g = y
|
|
// yy + (x-t)(x-t) = dd
|
|
// (x+t)*(x+t)/g*g + x*x + t*t - 2*x*t = dd
|
|
|
|
// x*x*(1+1/g*g) + t*t*(1+1/g*g) + 2xt (1/gg-1) = dd
|
|
// xx + 2xt (1/gg-1) / (1+1/gg) = dd / (1+1/gg) - tt
|
|
|
|
ld b = t*(1/g/g - 1) / (1+1/g/g);
|
|
ld c = d*d / (1+1/g/g) - t*t;
|
|
|
|
// xx + 2bx = c
|
|
// xx + 2bx + bb = c + bb
|
|
// (x+b)^2 = c+bb
|
|
// x = +/- sqrt(c+bb) - b
|
|
|
|
ld a = c+b*b;
|
|
|
|
hyperpoint ret;
|
|
ret[0] = (a > 0 ? sign * sqrt(a) : 0) - b;
|
|
ret[1] = (ret[0] + t) / g;
|
|
ret[2] = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
EX ld signed_sqrt(ld x) { return x > 0 ? sqrt(x) : -sqrt(-x); }
|
|
|
|
EX int axial_x, axial_y;
|
|
|
|
/** in perspective projections, compute inverse_exp (or similar) on CPU, but perspective on GPU (needs consider_shader_projection off) */
|
|
EX bool semidirect_rendering = false;
|
|
|
|
/** flag for semidirect_rendering */
|
|
EX bool computing_semidirect = false;
|
|
|
|
EX void apply_perspective(const hyperpoint& H, hyperpoint& ret) {
|
|
if(computing_semidirect) { ret = H; ret[3] = 1; return; }
|
|
if(H[2] == 0) { ret[0] = 1e6; ret[1] = 1e6; ret[2] = 0; return; }
|
|
ld ratio = vid.xres / current_display->tanfov / current_display->radius / 2;
|
|
ret[0] = H[0]/H[2] * ratio;
|
|
ret[1] = H[1]/H[2] * ratio;
|
|
ret[2] = H[2];
|
|
ret[3] = 1;
|
|
}
|
|
|
|
EX void apply_nil_rotation(hyperpoint& H) {
|
|
if(nil) {
|
|
nilv::convert_ref(H, nilv::model_used, nilv::nmSym);
|
|
models::scr_to_ori(H);
|
|
nilv::convert_ref(H, nilv::nmSym, pconf.rotational_nil);
|
|
models::ori_to_scr(H);
|
|
}
|
|
}
|
|
|
|
EX void applymodel(shiftpoint H_orig, hyperpoint& ret) {
|
|
apply_other_model(H_orig, ret, pmodel);
|
|
}
|
|
|
|
EX void vr_sphere(hyperpoint& ret, hyperpoint& H, eModel md) {
|
|
ret = H;
|
|
int flip = 1;
|
|
if(md == mdHalfplane) flip = -flip;
|
|
if(pconf.alpha < 1) flip = -flip;
|
|
ret *= pow(sqhypot_d(3, H), (flip * pconf.depth_scaling-1) / 2);
|
|
ret[2] += pconf.alpha;
|
|
if(md == mdHalfplane) {
|
|
ld d = sqhypot_d(3, ret);
|
|
ret /= abs(d);
|
|
}
|
|
}
|
|
|
|
void vr_disk(hyperpoint& ret, hyperpoint& H) {
|
|
if(euclid) {
|
|
ret = H;
|
|
ret[2] = vid.depth * (1 - (ret[2] - 1) * pconf.depth_scaling) + pconf.alpha + vid.camera;
|
|
}
|
|
else if(sphere) {
|
|
vr_sphere(ret, H, mdDisk);
|
|
return;
|
|
}
|
|
else {
|
|
ld zlev = find_zlev(H);
|
|
ld zl = vid.depth-geom3::factor_to_lev(zlev) * pconf.depth_scaling;
|
|
|
|
ld d = hdist0(H);
|
|
ld dd = hypot_d(2, H);
|
|
|
|
hyperpoint H1 = ypush(vid.camera) * xpush(d) * ypush0(zl);
|
|
ld tzh = pconf.alpha + H1[2];
|
|
ld ax = H1[0] / tzh;
|
|
ld ay = H1[1] / tzh;
|
|
|
|
ret[0] = ax * H[0] / dd;
|
|
ret[1] = ax * H[1] / dd;
|
|
ret[2] = ay;
|
|
}
|
|
}
|
|
|
|
#if MAXMDIM >= 4
|
|
/** Compute the three-point projection. Currently only works in isotropic 3D spaces. */
|
|
EX void threepoint_projection(const hyperpoint& H, hyperpoint& ret) {
|
|
|
|
hyperpoint H1 = H;
|
|
find_zlev(H1);
|
|
if(true) {
|
|
models::scr_to_ori(H1);
|
|
}
|
|
|
|
auto p = pconf.twopoint_param;
|
|
|
|
ld dist[3];
|
|
for(int i=0; i<3; i++) {
|
|
hyperpoint h1 = xspinpush0(TAU*i/3, p);
|
|
dist[i] = geo_dist(h1, H1);
|
|
}
|
|
|
|
/* we are looking for the points (x,y,z) such that:
|
|
(x-xi)^2 + (y-yi)^2 + z^2 = di^2
|
|
|
|
which is equivalent to:
|
|
x^2+y^2+z^2 -2xxi -2yyi = di^2-xi^2-yi^2
|
|
|
|
After setting s = x^2+y^2+z^2, we get a system of linear equations for (x,y,s)
|
|
*/
|
|
|
|
dynamicval<eGeometry> g(geometry, gEuclid);
|
|
|
|
transmatrix T = Id;
|
|
hyperpoint v = C0;
|
|
for(int i=0; i<3; i++) {
|
|
hyperpoint pp = xspinpush0(TAU*i/3, p);
|
|
v[i] = dist[i]*dist[i] - p*p;
|
|
T[i][0] = -2 * pp[0];
|
|
T[i][1] = -2 * pp[1];
|
|
T[i][2] = 1;
|
|
}
|
|
|
|
transmatrix U = inverse3(T);
|
|
hyperpoint sxy = U * v;
|
|
|
|
// compute the actual z based on s
|
|
sxy[2] = sxy[2] - sqhypot_d(2, sxy);
|
|
sxy[2] = sxy[2] > 0 ? sqrt(sxy[2]) : 0;
|
|
|
|
if(H1[2] < 0) sxy[2] *= -1;
|
|
|
|
sxy[3] = 1;
|
|
|
|
geometry = gCubeTiling;
|
|
|
|
ret = sxy;
|
|
models::ori_to_scr(ret);
|
|
}
|
|
#endif
|
|
|
|
EX vector<hr::function<void(shiftpoint& H_orig, hyperpoint& H, hyperpoint& ret)>> extra_projections;
|
|
|
|
EX void make_axial(hyperpoint H, hyperpoint& ret, const hr::function<ld(hyperpoint)>& f) {
|
|
models::scr_to_ori(H);
|
|
|
|
ret[0] = f(H);
|
|
ld axi = pconf.axial_angle;
|
|
bool ax = GDIM == 3 || (axi/180 - floor(axi/180)) == 0.5;
|
|
|
|
if(ax) {
|
|
ret[1] = f(cspin90(0, 1) * H);
|
|
ret[2] = 0;
|
|
if(GDIM == 3) ret[2] = f(cspin90(2, 1) * H);
|
|
}
|
|
else {
|
|
ld alpha = axi * degree;
|
|
ld val = f(cspin(0, 1, alpha) * H);
|
|
// ret[0] * cos(alpha) + ret[1] * sin(alpha) == val
|
|
ret[1] = (val - ret[0] * cos(alpha)) / sin(alpha);
|
|
ret[2] = 0;
|
|
}
|
|
|
|
ret[3] = 1;
|
|
|
|
models::ori_to_scr(ret);
|
|
}
|
|
|
|
// according to https://github.com/cspersonal/peirce-quincuncial-projection/blob/master/peirceQuincuncialProjection.R
|
|
|
|
ld ellRF(ld x, ld y, ld z) {
|
|
ld delx = 1, dely = 1, delz = 1;
|
|
const ld eps = 0.0025;
|
|
ld mean;
|
|
while(abs(delx) > eps || abs(dely) > eps || abs(delz) > eps) {
|
|
ld sx = sqrt(x);
|
|
ld sy = sqrt(y);
|
|
ld sz = sqrt(z);
|
|
ld len = sx * (sy+sz) + sy * sz;
|
|
x = .25 * (x+len);
|
|
y = .25 * (y+len);
|
|
z = .25 * (z+len);
|
|
mean = (x+y+z)/3;
|
|
delx = (mean-x) / mean;
|
|
dely = (mean-y) / mean;
|
|
delz = (mean-z) / mean;
|
|
}
|
|
ld e2 = delx * dely - delz * delz;
|
|
ld e3 = delx * dely * delz;
|
|
return ((1.0 + (e2 / 24.0 - 0.1 - 3.0 * e3 / 44.0) * e2+ e3 / 14) / sqrt(mean));
|
|
}
|
|
|
|
ld ellFaux(ld cos_phi, ld sin_phi, ld k) {
|
|
ld x = cos_phi * cos_phi;
|
|
ld y = 1 - k * k * sin_phi * sin_phi;
|
|
return sin_phi * ellRF(x, y, 1);
|
|
}
|
|
|
|
ld sqrt_clamp(ld x) { if(x<0) return 0; return sqrt(x); }
|
|
|
|
EX hyperpoint to_square(hyperpoint H) {
|
|
|
|
ld d = hypot_d(2, H);
|
|
ld x = d / (H[2] + 1);
|
|
x *= pconf.model_transition;
|
|
|
|
ld cos_phiosqrt2 = sqrt(2) / (x + 1/x);
|
|
ld cos_lambda = -H[1] / d;
|
|
ld sin_lambda = H[0] / d;
|
|
ld cos_a = cos_phiosqrt2 * (sin_lambda + cos_lambda);
|
|
ld cos_b = cos_phiosqrt2 * (sin_lambda - cos_lambda);
|
|
ld sin_a = sqrt(1 - cos_a * cos_a);
|
|
ld sin_b = sqrt(1 - cos_b * cos_b);
|
|
ld cos_a_cos_b = cos_a * cos_b;
|
|
ld sin_a_sin_b = sin_a * sin_b;
|
|
ld sin2_m = 1.0 + cos_a_cos_b - sin_a_sin_b;
|
|
ld sin2_n = 1.0 - cos_a_cos_b - sin_a_sin_b;
|
|
ld sin_m = sqrt_clamp(sin2_m);
|
|
ld cos_m = sqrt_clamp(1 - sin2_m);
|
|
if(sin_lambda < 0) sin_m = -sin_m;
|
|
ld sin_n = sqrt_clamp(sin2_n);
|
|
ld cos_n = sqrt_clamp(1.0 - sin2_n);
|
|
if(cos_lambda > 0.0) sin_n = -sin_n;
|
|
|
|
hyperpoint res;
|
|
ld divby = 0.53935260118837935472;
|
|
res[0] = ellFaux(cos_m,sin_m,sqrt(2)/2.) * divby;
|
|
res[1] = ellFaux(cos_n,sin_n,sqrt(2)/2.) * divby;
|
|
res[2] = 0; res[3] = 1;
|
|
|
|
if(x > 1) {
|
|
if(abs(res[0]) > abs(res[1])) {
|
|
if(res[0] > 0) res[0] = 2 - res[0]; else res[0] = -2 - res[0];
|
|
}
|
|
else {
|
|
if(res[1] > 0) res[1] = 2 - res[1]; else res[1] = -2 - res[1];
|
|
}
|
|
}
|
|
|
|
res /= pconf.model_transition;
|
|
return res;
|
|
}
|
|
|
|
EX hyperpoint hyperboloid_form(hyperpoint ret) {
|
|
ret = cspin90(2, 1) * ret / 3;
|
|
if(hyperbolic) ret[1] += 1/3.;
|
|
ret = pconf.ball() * ret;
|
|
return ret;
|
|
}
|
|
|
|
EX void apply_other_model(shiftpoint H_orig, hyperpoint& ret, eModel md) {
|
|
|
|
hyperpoint H = H_orig.h;
|
|
|
|
if(models::product_model(md)) {
|
|
ld zlev = zlevel(H_orig.h);
|
|
H_orig.h /= exp(zlev);
|
|
hybrid::in_underlying_geometry([&] { applymodel(H_orig, ret); });
|
|
ret[2] = zlev * pconf.product_z_scale;
|
|
ret = NLP * ret;
|
|
return;
|
|
}
|
|
|
|
switch(md) {
|
|
case mdPerspective: {
|
|
if(gproduct) H = product::inverse_exp(H);
|
|
apply_nil_rotation(H);
|
|
if(!computing_semidirect) H = lp_apply(H);
|
|
apply_perspective(H, ret);
|
|
return;
|
|
}
|
|
|
|
case mdGeodesic: {
|
|
auto S = inverse_exp(H_orig, pNORMAL | pfNO_DISTANCE);
|
|
if(!computing_semidirect) S = lp_apply(S);
|
|
apply_perspective(S, ret);
|
|
return;
|
|
}
|
|
|
|
case mdLiePerspective: {
|
|
if(false) {
|
|
hyperpoint h = point31(0, 0, 1);
|
|
hyperpoint a = point31(0, 0, 0);
|
|
hyperpoint b = point31(0.1, 0, 0);
|
|
println(hlog, rgpushxto0(h) * a);
|
|
println(hlog, rgpushxto0(h) * b);
|
|
exit(1);
|
|
/* x wanes as z grows! */
|
|
}
|
|
hyperpoint S = lie_log_correct(H_orig, H);
|
|
#if MAXMDIM >= 4
|
|
S[3] = 1;
|
|
#endif
|
|
if(!computing_semidirect) S = lp_apply(S);
|
|
if(hyperbolic) {
|
|
models::ori_to_scr(ret);
|
|
}
|
|
apply_perspective(S, ret);
|
|
return;
|
|
}
|
|
|
|
#if MAXMDIM >= 4
|
|
case mdRelPerspective: {
|
|
auto S = rel_log(H_orig, true); S[3] = 1;
|
|
if(!computing_semidirect) S = lp_apply(S);
|
|
apply_perspective(S, ret);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
case mdPixel:
|
|
ret = H / current_display->radius;
|
|
return;
|
|
|
|
case mdBall: {
|
|
if(vrhr::rendering()) {
|
|
vr_disk(ret, H);
|
|
return;
|
|
}
|
|
ld zlev = find_zlev(H);
|
|
|
|
ld zl = vid.depth-geom3::factor_to_lev(zlev) * pconf.depth_scaling;
|
|
|
|
ballmodel(ret, atan2(H), hdist0(H), zl);
|
|
break;
|
|
}
|
|
|
|
case mdDisk: {
|
|
if(nonisotropic) {
|
|
ret = lp_apply(inverse_exp(H_orig, pNORMAL | pfNO_DISTANCE));
|
|
ld w;
|
|
if(sn::in()) {
|
|
// w = 1 / sqrt(1 - sqhypot_d(3, ret));
|
|
// w = w / (pconf.alpha + w);
|
|
w = 1 / (sqrt(1 - sqhypot_d(3, ret)) * pconf.alpha + 1);
|
|
}
|
|
else {
|
|
w = hypot_d(3, ret);
|
|
if(w) w = sinh(w) / ((pconf.alpha + cosh(w)) * w);
|
|
}
|
|
for(int i=0; i<3; i++) ret[i] *= w;
|
|
ret[3] = 1;
|
|
break;
|
|
}
|
|
if(vrhr::rendering() && WDIM == 2) {
|
|
vr_disk(ret, H);
|
|
return;
|
|
}
|
|
ld tz = get_tz(H);
|
|
if(models::camera_straight) {
|
|
ret[0] = H[0] / tz;
|
|
ret[1] = H[1] / tz;
|
|
if(GDIM == 3) ret[2] = H[2] / tz;
|
|
else ret[2] = vid.xres * current_display->eyewidth() / 2 / current_display->radius - vid.ipd / tz / 2;
|
|
if(MAXMDIM == 4) ret[3] = 1;
|
|
}
|
|
else {
|
|
ld tx = H[0];
|
|
ld ty = H[1];
|
|
|
|
hyperpoint p = hyperpoint(tx, ty, tz, 1);
|
|
p = rot_inverse(pconf.cam()) * p;
|
|
|
|
ret[0] = p[0] / p[2];
|
|
ret[1] = p[1] / p[2];
|
|
ret[2] = vid.xres * current_display->eyewidth() / 2 / current_display->radius - vid.ipd / p[2] / 2;
|
|
}
|
|
return;
|
|
}
|
|
|
|
case mdCentralInversion: {
|
|
ld tz = get_tz(H);
|
|
for(int d=0; d<GDIM; d++) ret[d] = H[d] / tz;
|
|
for(int d=GDIM; d<MAXMDIM; d++) ret[d] = 1;
|
|
ld r = 0;
|
|
for(int d=0; d<GDIM; d++) r += ret[d]*ret[d];
|
|
for(int d=0; d<GDIM; d++) ret[d] /= r;
|
|
return;
|
|
}
|
|
|
|
case mdHalfplane: {
|
|
if(sphere && vrhr::rendering()) {
|
|
vr_sphere(ret, H, md);
|
|
return;
|
|
}
|
|
// Poincare to half-plane
|
|
|
|
ld zlev = find_zlev(H);
|
|
H = space_to_perspective(H);
|
|
|
|
models::scr_to_ori(H);
|
|
|
|
H[1] += 1;
|
|
double rad = sqhypot_d(GDIM, H);
|
|
H /= -rad;
|
|
H[1] += .5;
|
|
|
|
if(GDIM == 3) {
|
|
// a bit simpler when we do not care about 3D
|
|
H *= pconf.halfplane_scale;
|
|
ret[0] = -H[0];
|
|
ret[1] = 1 + H[1];
|
|
ret[2] = H[2];
|
|
ret[3] = 1;
|
|
models::ori_to_scr(ret);
|
|
break;
|
|
}
|
|
|
|
/* it was inverted, so we apply scr_to_ori again */
|
|
models::scr_to_ori(H);
|
|
H *= pconf.halfplane_scale;
|
|
auto ocos = pconf.mori().get()[0][0];
|
|
auto osin = pconf.mori().get()[1][0];
|
|
|
|
ret[0] = -osin - H[0];
|
|
ld height = 0;
|
|
if(zlev != 1) {
|
|
if(abs(ocos) > 1e-9)
|
|
height += H[1] * (pow(zlev, ocos) - 1);
|
|
if(abs(ocos) > 1e-9 && osin)
|
|
height += H[0] * osin * (pow(zlev, ocos) - 1) / ocos;
|
|
else if(osin)
|
|
height += H[0] * osin * log(zlev);
|
|
}
|
|
ret[1] = ocos + H[1];
|
|
ret[2] = GDIM == 3 ? H[2] : 0;
|
|
if(MAXMDIM == 4) ret[3] = 1;
|
|
if(zlev != 1 && use_z_coordinate())
|
|
apply_depth(ret, height);
|
|
else
|
|
ret[1] += height * pconf.depth_scaling;
|
|
break;
|
|
}
|
|
|
|
case mdAxial: {
|
|
make_axial(H, ret, [] (hyperpoint H) {
|
|
ld& mt = pconf.model_transition;
|
|
|
|
ld z = H[LDIM];
|
|
if(mt != 1) z += (1-mt) * pconf.alpha;
|
|
|
|
ld res = H[0] / z;
|
|
|
|
if(mt) {
|
|
if(mt < 1) res *= mt;
|
|
res = atan_auto(res * mt);
|
|
if(mt > 1) res /= mt;
|
|
}
|
|
return res;
|
|
});
|
|
|
|
if(sphere) ret[0] += axial_x * M_PI, ret[1] += axial_y * M_PI;
|
|
|
|
break;
|
|
}
|
|
|
|
case mdAntiAxial: {
|
|
make_axial(H, ret, [] (hyperpoint H) { return asin_auto(H[0]); });
|
|
break;
|
|
}
|
|
|
|
case mdQuadrant: {
|
|
H = space_to_perspective(H);
|
|
models::scr_to_ori(H);
|
|
|
|
tie(H[0], H[1]) = make_pair((H[0] + H[1]) / sqrt(2), (H[1] - H[0]) / sqrt(2));
|
|
|
|
H[1] += 1;
|
|
double rad = sqhypot_d(GDIM, H);
|
|
H /= -rad;
|
|
H[1] += .5;
|
|
|
|
H *= 2;
|
|
|
|
ld x = exp(-H[0]/2);
|
|
ret[0] = -H[1] * x - 1;
|
|
ret[1] = H[1] / x + 1;
|
|
|
|
models::ori_to_scr(ret);
|
|
break;
|
|
}
|
|
|
|
case mdHorocyclic: {
|
|
|
|
if(sl2) {
|
|
optimize_shift(H_orig);
|
|
ret[2] = H_orig.shift;
|
|
ld d = hypot_d(2, H_orig.h);
|
|
ld z = acosh(H_orig.h[3]);
|
|
ret[0] = H_orig.h[0] * z / d;
|
|
ret[1] = H_orig.h[1] * z / d;
|
|
ret[3] = 1;
|
|
}
|
|
find_zlev(H);
|
|
|
|
apply_nil_rotation(H);
|
|
|
|
if(hyperbolic) models::scr_to_ori(H);
|
|
|
|
ret = hyperbolic ? deparabolic13(H) : H;
|
|
ret *= .5;
|
|
ret[LDIM] = 1;
|
|
|
|
if(hyperbolic) models::ori_to_scr(ret);
|
|
|
|
if(!vrhr::rendering()) ret = lp_apply(ret);
|
|
|
|
break;
|
|
}
|
|
|
|
case mdHorocyclicEqa: {
|
|
|
|
if(hyperbolic) models::scr_to_ori(H);
|
|
|
|
ret = hyperbolic ? deparabolic13(H) : H;
|
|
ret[0] = exp(-ret[0]) - 1;
|
|
ret *= .5;
|
|
ret[LDIM] = 1;
|
|
|
|
if(hyperbolic) models::ori_to_scr(ret);
|
|
|
|
break;
|
|
}
|
|
|
|
case mdConformalSquare: {
|
|
find_zlev(H);
|
|
models::scr_to_ori(H);
|
|
if(euclid) H[0] /= pconf.fisheye_param, H[1] /= pconf.fisheye_param;
|
|
ret = to_square(H);
|
|
models::ori_to_scr(ret);
|
|
break;
|
|
}
|
|
|
|
case mdLieOrthogonal: {
|
|
ret = lie_log_correct(H_orig, H);
|
|
|
|
ret *= .5;
|
|
ret[LDIM] = 1;
|
|
|
|
if(hyperbolic) models::ori_to_scr(ret);
|
|
|
|
if(!vrhr::rendering()) ret = lp_apply(ret);
|
|
|
|
break;
|
|
}
|
|
|
|
#if MAXMDIM >= 4
|
|
case mdRelOrthogonal: {
|
|
|
|
ret = rel_log(H_orig, true);
|
|
ret *= .5;
|
|
ret[LDIM] = 1;
|
|
|
|
if(!vrhr::rendering()) ret = lp_apply(ret);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
case mdHemisphere: {
|
|
|
|
#if CAP_VR
|
|
ld dir = vrhr::rendering() ? -1:1;
|
|
#else
|
|
constexpr ld dir = 1;
|
|
#endif
|
|
|
|
switch(cgclass) {
|
|
case gcHyperbolic: {
|
|
if(pconf.small_hyperboloid) H = mid(C0, H);
|
|
ld zl = zlevel(H);
|
|
ret = H / H[2];
|
|
ret[2] = sqrt(1 - sqhypot_d(2, ret));
|
|
// need to reverse in VR
|
|
ret = ret * (1 + (zl - 1) * ret[2] * pconf.depth_scaling * dir);
|
|
break;
|
|
}
|
|
|
|
case gcEuclid: default: {
|
|
// stereographic projection to a sphere
|
|
auto hd = hdist0(H) / pconf.euclid_to_sphere;
|
|
if(hd == 0) ret = hpxyz(0, 0, -1);
|
|
else {
|
|
ld x = 2 * hd / (1 + hd * hd);
|
|
ld y = x / hd;
|
|
ret = H * x / hd / pconf.euclid_to_sphere;
|
|
ret[2] = (1 - y);
|
|
ret[2] *= dir;
|
|
ret = ret * (1 + (H[2]-1) * y * pconf.depth_scaling * dir / pconf.euclid_to_sphere);
|
|
if(pconf.small_hyperboloid) { ret = ret - C0; ret = ret / hypot_d(3, ret); }
|
|
}
|
|
break;
|
|
}
|
|
|
|
case gcSphere: {
|
|
if(pconf.small_hyperboloid) H = mid(C0, H);
|
|
if(vrhr::rendering()) { vr_sphere(ret, H, md); return; }
|
|
ld z = sqhypot_d(3, H);
|
|
int s = H[2] > 0 ? 1 : -1;
|
|
ret = H;
|
|
ret /= ret[2];
|
|
ret[2] = sqrt(1 + ret[0]*ret[0] + ret[1]*ret[1]) * s;
|
|
ret *= z;
|
|
ld& topz = pconf.top_z;
|
|
if(abs(ret[2]) > topz || (hemi_side && s != hemi_side)) {
|
|
ld scale = sqrt(topz*topz-1) / hypot_d(2, ret);
|
|
ret *= scale;
|
|
ret[2] = topz * s;
|
|
}
|
|
if(pconf.depth_scaling != 1) {
|
|
ld v = intval(H, Hypc);
|
|
ret *= pow(v, (dir * pconf.depth_scaling-1) / 2);
|
|
}
|
|
ret /= 3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(vrhr::rendering()) return;
|
|
|
|
swap(ret[1], ret[2]);
|
|
|
|
ret = pconf.ball() * ret;
|
|
|
|
break;
|
|
}
|
|
|
|
case mdHyperboloidFlat:
|
|
case mdHyperboloid: {
|
|
|
|
if(nonisotropic) {
|
|
// if(nisot::local_perspective_used()) H = NLP * H;
|
|
ret = lp_apply(H);
|
|
break;
|
|
}
|
|
if(gproduct) {
|
|
ret = H;
|
|
break;
|
|
}
|
|
|
|
#if CAP_VR
|
|
if(vrhr::rendering()) {
|
|
if(sphere) { vr_sphere(ret, H, md); return; }
|
|
ret[0] = H[0] * pconf.hyperboloid_scaling;
|
|
ret[1] = H[1] * pconf.hyperboloid_scaling;
|
|
ret[2] = (pconf.alpha + H[2]);
|
|
if(pconf.depth_scaling != 1) {
|
|
ld v = intval(H, Hypc);
|
|
ret *= pow(v, (pconf.depth_scaling-1) / 2);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if(pconf.small_hyperboloid) H = mid(H, C0);
|
|
|
|
ret = H;
|
|
|
|
if(sphere && pmodel == mdHyperboloidFlat) {
|
|
int s = H[2] > 0 ? 1 : -1;
|
|
ret /= ret[2];
|
|
ret[2] = sqrt(1 + ret[0]*ret[0] + ret[1]*ret[1]) * s;
|
|
}
|
|
|
|
if(pconf.depth_scaling != 1) {
|
|
ld v = intval(ret, Hypc);
|
|
ret *= pow(v, (pconf.depth_scaling-1) / 2);
|
|
}
|
|
|
|
if(pmodel == mdHyperboloid) {
|
|
ld& topz = pconf.top_z;
|
|
if(ret[2] > topz) {
|
|
ld scale = sqrt(topz*topz-1) / hypot_d(2, ret);
|
|
ret *= scale;
|
|
ret[2] = topz;
|
|
}
|
|
}
|
|
else {
|
|
ret = space_to_perspective(ret, pconf.alpha);
|
|
ret[2] = 1 - pconf.alpha;
|
|
if(sphere) ret[2] = -ret[2];
|
|
}
|
|
|
|
ret = hyperboloid_form(ret);
|
|
break;
|
|
}
|
|
|
|
case mdFisheye: {
|
|
ld zlev;
|
|
if(nonisotropic) {
|
|
H = lp_apply(inverse_exp(H_orig));
|
|
zlev = 1;
|
|
}
|
|
else {
|
|
zlev = find_zlev(H);
|
|
H = space_to_perspective(H);
|
|
}
|
|
H /= pconf.fisheye_param;
|
|
H[LDIM] = zlev;
|
|
ret = H / sqrt(1 + sqhypot_d(GDIM+1, H));
|
|
if(GDIM == 3) ret[LDIM] = zlev;
|
|
break;
|
|
}
|
|
|
|
case mdFisheye2: {
|
|
ld zlev;
|
|
if(nonisotropic) {
|
|
H = lp_apply(inverse_exp(H_orig));
|
|
zlev = 1;
|
|
}
|
|
else {
|
|
zlev = find_zlev(H);
|
|
H = space_to_perspective(H);
|
|
}
|
|
H /= pconf.fisheye_param;
|
|
auto H1 = perspective_to_space(H, pconf.fisheye_alpha, gcSphere);
|
|
auto H2 = perspective_to_space(hyperpoint(1e6, 0, 0, 0), pconf.fisheye_alpha, gcSphere);
|
|
H1[2] += 1;
|
|
H1 /= H1[2];
|
|
H1 /= H2[0] / (H2[2]+1);
|
|
ret = H1;
|
|
if(GDIM == 3) ret[LDIM] = zlev;
|
|
break;
|
|
}
|
|
|
|
case mdSimulatedPerspective: {
|
|
models::scr_to_ori(H);
|
|
auto yz = move_z_to_y(H);
|
|
hyperpoint Hl = xpush(-pconf.twopoint_param) * H;
|
|
hyperpoint Hr = xpush(+pconf.twopoint_param) * H;
|
|
ld lyx = (Hl[1] + 1e-7) / (Hl[0] + 1e-8);
|
|
ld ryx = (Hr[1] + 1e-7) / (Hr[0] + 1e-8);
|
|
// (r.x + t) * lyx = (r.x - t) * ryx = r.y
|
|
// r.x * lyx + t * lyx = r.x * ryx - t * ryx
|
|
// r.x * (lyx-ryx) = - t * (ryx + lyx)
|
|
// r.x = -t * (ryx+lyx) / (lyx-ryx)
|
|
// r.x = - 2 * t * lyx * ryx / lyx / ryx
|
|
|
|
ret[0] = -pconf.twopoint_param * (ryx + lyx) / (lyx - ryx);
|
|
ret[1] = (ret[0] + pconf.twopoint_param) * lyx;
|
|
ret[2] = 0;
|
|
|
|
ret[0] = -ret[0]; ret[1] = -ret[1];
|
|
|
|
move_y_to_z(ret, yz);
|
|
models::ori_to_scr(ret);
|
|
break;
|
|
}
|
|
|
|
case mdTwoHybrid: {
|
|
models::scr_to_ori(H);
|
|
auto yz = move_z_to_y(H);
|
|
|
|
ret = compute_hybrid(H, whateveri[0]);
|
|
|
|
move_y_to_z(ret, yz);
|
|
models::ori_to_scr(ret);
|
|
break;
|
|
}
|
|
|
|
case mdJoukowsky:
|
|
case mdJoukowskyInverted: {
|
|
models::scr_to_ori(H);
|
|
// with equal speed skiprope: models::scr_to_orientation(H[1], H[0]);
|
|
|
|
if(pconf.skiprope) {
|
|
static ld last_skiprope = 0;
|
|
static transmatrix lastmatrix;
|
|
if(pconf.skiprope != last_skiprope) {
|
|
ret = mobius(C0, -pconf.skiprope, 2);
|
|
const cld c1(1, 0);
|
|
const cld c2(2, 0);
|
|
const cld c4(4, 0);
|
|
cld w(ret[0], ret[1]);
|
|
cld z = sqrt(c4*w*w-c1) + c2*w;
|
|
if(abs(z) > 1) z = c1 / z;
|
|
hyperpoint zr = hpxyz(real(z), imag(z), 0);
|
|
|
|
hyperpoint inhyp = perspective_to_space(zr, 1, gcHyperbolic);
|
|
last_skiprope = pconf.skiprope;
|
|
lastmatrix = rgpushxto0(inhyp);
|
|
}
|
|
H = lastmatrix * H;
|
|
}
|
|
|
|
H = space_to_perspective(H);
|
|
auto yz = move_z_to_y(H);
|
|
ld r = hypot_d(2, H);
|
|
ld c = H[0] / r;
|
|
ld s = H[1] / r;
|
|
ld& mt = pconf.model_transition;
|
|
ld a = 1 - .5 * mt, b = .5 * mt;
|
|
swap(a, b);
|
|
|
|
ret[0] = (a * r + b/r) * c / 2;
|
|
ret[1] = (a * r - b/r) * s / 2;
|
|
ret[2] = 0;
|
|
|
|
if(pconf.skiprope)
|
|
ret = mobius(ret, pconf.skiprope, 2);
|
|
|
|
if(pmodel == mdJoukowskyInverted) {
|
|
ld r2 = sqhypot_d(2, ret);
|
|
if(pconf.dualfocus_autoscale)
|
|
ret *= (1-pconf.model_transition) / 2;
|
|
|
|
ret[0] = ret[0] / r2;
|
|
ret[1] = -ret[1] / r2;
|
|
move_y_to_z(ret, yz);
|
|
|
|
/*
|
|
|
|
ret[0] += 1;
|
|
ld alpha = atan2(ret[1], ret[0]);
|
|
ld mod = hypot(ret[0], ret[1]);
|
|
// ret[0] = cos(alpha/2) * sqrt(mod);
|
|
// ret[1] = sin(alpha/2) * sqrt(mod);
|
|
ret[0] = alpha;
|
|
ret[1] = log(mod); */
|
|
}
|
|
else {
|
|
move_y_to_z(ret, yz);
|
|
}
|
|
models::ori_to_scr(ret);
|
|
|
|
break;
|
|
}
|
|
|
|
case mdPolygonal: case mdPolynomial: {
|
|
|
|
H = space_to_perspective(H);
|
|
|
|
models::scr_to_ori(H);
|
|
|
|
pair<long double, long double> p = polygonal::compute(H[0], H[1]);
|
|
|
|
ret[0] = p.first;
|
|
ret[1] = p.second;
|
|
ret[2] = 0;
|
|
models::ori_to_scr(ret);
|
|
break;
|
|
}
|
|
|
|
case mdBand:
|
|
if(pconf.model_transition != 1) {
|
|
H = unshift(H_orig);
|
|
ld& mt = pconf.model_transition;
|
|
|
|
H = space_to_perspective(H);
|
|
|
|
models::scr_to_ori(H);
|
|
|
|
H[0] += 1;
|
|
double rad = H[0]*H[0] + H[1]*H[1];
|
|
H[1] /= rad;
|
|
H[0] /= rad;
|
|
H[0] -= .5;
|
|
|
|
ld phi = atan2(H);
|
|
ld r = hypot_d(2, H);
|
|
|
|
r = pow(r, 1 - mt);
|
|
phi *= (1 - mt);
|
|
ret[0] = r * cos(phi);
|
|
ret[1] = r * sin(phi);
|
|
ret[2] = 0;
|
|
|
|
ret[0] -= pow(0.5, 1-mt);
|
|
ret[0] /= -(1-mt) * 90._deg;
|
|
ret[1] /= (1-mt) * 90._deg;
|
|
|
|
models::ori_to_scr(ret);
|
|
}
|
|
else
|
|
makeband(H_orig, ret, band_conformal);
|
|
break;
|
|
|
|
case mdMiller:
|
|
makeband(H_orig, ret, [] (ld& x, ld& y) {
|
|
y *= pconf.miller_parameter;
|
|
band_conformal(x, y);
|
|
y /= pconf.miller_parameter;
|
|
});
|
|
break;
|
|
|
|
case mdLoximuthal:
|
|
makeband(H_orig, ret, [] (ld&x, ld &y) {
|
|
ld orig_y = y;
|
|
band_conformal(x, y);
|
|
ld x0 = 0, y0 = pconf.loximuthal_parameter; band_conformal(x0, y0);
|
|
y -= y0;
|
|
|
|
orig_y -= pconf.loximuthal_parameter;
|
|
|
|
if(y) x = x * orig_y / y;
|
|
y = orig_y;
|
|
});
|
|
break;
|
|
|
|
case mdTwoPoint:
|
|
makeband(H_orig, ret, make_twopoint);
|
|
break;
|
|
|
|
case mdThreePoint:
|
|
#if MAXMDIM >= 4
|
|
threepoint_projection(H, ret);
|
|
#else
|
|
throw hr_exception();
|
|
#endif
|
|
break;
|
|
|
|
case mdMollweide:
|
|
makeband(H_orig, ret, [] (ld& x, ld& y) {
|
|
ld theta =
|
|
hyperbolic ? min(y / 2 + 0.572365, y * 0.78509) :
|
|
euclid ? y :
|
|
y > 0 ? max(y * 0.012/0.015, 90._deg - (90._deg-y) * 0.066262/0.015708) :
|
|
min(y * 0.012/0.015, -90._deg + (90._deg+y) * 0.066262/0.015708);
|
|
|
|
if(sphere && abs(theta) >= 90._deg - 1e-6) ;
|
|
else {
|
|
for(int it=0; it<4; it++) {
|
|
auto a = (sin_auto(2*theta) +2*theta - M_PI * sin_auto(y));
|
|
auto b = (2 + 2 * cos_auto(2*theta));
|
|
theta = theta - a / b;
|
|
} }
|
|
y = 90._deg * sin_auto(theta);
|
|
x = x * cos_auto(theta);
|
|
});
|
|
break;
|
|
|
|
case mdCentralCyl:
|
|
makeband(H_orig, ret, [] (ld& x, ld& y) { y = tan_auto(y); ld top = vid.yres * M_PI / current_display->radius; if(y>top) y=top; if(y<-top) y=-top; });
|
|
break;
|
|
|
|
case mdGallStereographic:
|
|
makeband(H_orig, ret, [] (ld& x, ld& y) {
|
|
y = 2 * sin_auto(y) / (1 + cos_auto(y));
|
|
ld top = vid.yres * M_PI / current_display->radius; if(y>top) y=top; if(y<-top) y=-top;
|
|
});
|
|
break;
|
|
|
|
case mdAitoff: case mdHammer: case mdWinkelTripel:
|
|
makeband(H_orig, ret, [&] (ld& x, ld& y) {
|
|
ld ox = x, oy = y;
|
|
x *= pconf.aitoff_parameter;
|
|
|
|
ld x0 = sin_auto(x) * cos_auto(y);
|
|
ld y0 = cos_auto(x) * cos_auto(y);
|
|
ld z0 = sin_auto(y);
|
|
|
|
ld d = acos_auto(y0);
|
|
ld d0 = hypot(x0, z0);
|
|
|
|
if(md == mdAitoff || md == mdWinkelTripel) ;
|
|
else if(sphere) d = sqrt(2*(1 - cos(d))) * 90._deg;
|
|
else d = sqrt(2*(cosh(d) - 1)) / 1.5;
|
|
|
|
x = x0 * d / d0 / pconf.aitoff_parameter, y = z0 * d / d0;
|
|
if(md == mdWinkelTripel)
|
|
x = lerp(x, ox, pconf.winkel_parameter),
|
|
y = lerp(y, oy, pconf.winkel_parameter);
|
|
|
|
});
|
|
break;
|
|
|
|
case mdWerner: {
|
|
|
|
models::scr_to_ori(H);
|
|
|
|
find_zlev(H); // ignored for now
|
|
|
|
ld r = hdist0(H);
|
|
if(r == 0) { ret = H; return; }
|
|
ld angle = atan2(H[0], H[1]);
|
|
angle *= sin_auto(r) / r;
|
|
|
|
ret[0] = sin(angle) * r;
|
|
ret[1] = cos(angle) * r;
|
|
ret[2] = 0;
|
|
ret[3] = 1;
|
|
|
|
models::ori_to_scr(ret);
|
|
break;
|
|
}
|
|
|
|
case mdCollignon:
|
|
find_zlev(H_orig.h);
|
|
makeband(H_orig, ret, [] (ld& x, ld& y) {
|
|
ld sgn = 1;
|
|
if(pconf.collignon_reflected && y > 0) y = -y, sgn = -1;
|
|
y = signed_sqrt(sin_auto(y) + pconf.collignon_parameter);
|
|
x *= y / 1.2;
|
|
y -= signed_sqrt(pconf.collignon_parameter);
|
|
y *= sgn;
|
|
y *= M_PI;
|
|
});
|
|
break;
|
|
|
|
case mdBandEquiarea:
|
|
makeband(H_orig, ret, [] (ld& x, ld& y) { y = sin_auto(y); });
|
|
break;
|
|
|
|
case mdBandEquidistant:
|
|
makeband(H_orig, ret, [] (ld& x, ld& y) { });
|
|
break;
|
|
|
|
case mdSinusoidal:
|
|
makeband(H_orig, ret, [] (ld& x, ld& y) { x *= cos_auto(y); });
|
|
break;
|
|
|
|
case mdPolar: {
|
|
models::scr_to_ori(H);
|
|
H = xpush(pconf.offside) * H;
|
|
ld zlev = find_zlev(H);
|
|
ld d = hdist0(H);
|
|
ld df, zf;
|
|
hypot_zlev(zlev, d, df, zf);
|
|
ret[0] = -atan2(H) / M_PI;
|
|
ret[1] = (d - pconf.offside2) / M_PI;
|
|
ret[2] = zf;
|
|
ret[3] = 1;
|
|
models::ori_to_scr(ret);
|
|
break;
|
|
}
|
|
|
|
case mdEquidistant: case mdEquiarea: case mdEquivolume: {
|
|
if(vrhr::rendering() && GDIM == 3 && pmodel == mdEquidistant) {
|
|
ret = inverse_exp(H_orig);
|
|
ret[3] = 1;
|
|
return;
|
|
}
|
|
|
|
if(nonisotropic || gproduct) {
|
|
ret = lp_apply(inverse_exp(H_orig));
|
|
ret[3] = 1;
|
|
break;
|
|
}
|
|
ld zlev = find_zlev(H);
|
|
|
|
ld rad = hypot_d(GDIM, H);
|
|
if(rad == 0) rad = 1;
|
|
ld d = hdist0(H);
|
|
ld df, zf;
|
|
hypot_zlev(zlev, d, df, zf);
|
|
|
|
if(md == mdEquivolume)
|
|
d = pow(volume_auto(d), 1/3.) * pow(90._deg, 1/3.);
|
|
else if(md == mdEquiarea && sphere) {
|
|
d = sqrt(2*(1 - cos(d))) * 90._deg;
|
|
}
|
|
else if(pmodel == mdEquiarea && hyperbolic)
|
|
d = sqrt(2*(cosh(d) - 1)) / 1.5;
|
|
|
|
ld factor = d * df / rad;
|
|
if(!vrhr::rendering()) factor /= M_PI;
|
|
|
|
ret = H * factor;
|
|
if(GDIM == 2) ret[2] = 0;
|
|
if(MAXMDIM == 4) ret[3] = 1;
|
|
if(zlev != 1 && use_z_coordinate())
|
|
apply_depth(ret, d * zf / M_PI);
|
|
|
|
break;
|
|
}
|
|
|
|
case mdRotatedHyperboles: {
|
|
// ld zlev = <- not implemented
|
|
find_zlev(H); // + vid.depth;
|
|
models::scr_to_ori(H);
|
|
|
|
ld y = asin_auto(H[1]);
|
|
ld x = asin_auto_clamp(H[0] / cos_auto(y));
|
|
// ld z = zlev == 1 ? 0 : geom3::factor_to_lev(zlev);
|
|
|
|
ld factor = geom3::lev_to_factor(y + vid.depth);
|
|
|
|
ret[0] = sinh(x) * factor;
|
|
ret[1] = cosh(x) * factor;
|
|
ret[2] = 0;
|
|
|
|
if(pconf.use_atan) {
|
|
ret[0] = atan(ret[0]);
|
|
ret[1] = atan(ret[1]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case mdFormula: {
|
|
dynamicval<eModel> m(pmodel, pconf.basic_model);
|
|
applymodel(H_orig, ret);
|
|
exp_parser ep;
|
|
ep.extra_params["z"] = cld(ret[0], ret[1]);
|
|
ep.extra_params["cx"] = ret[0];
|
|
ep.extra_params["cy"] = ret[1];
|
|
ep.extra_params["cz"] = ret[2];
|
|
ep.extra_params["ux"] = H[0];
|
|
ep.extra_params["uy"] = H[1];
|
|
ep.extra_params["uz"] = H[2];
|
|
ep.s = pconf.formula;
|
|
cld res;
|
|
try {
|
|
res = ep.parse();
|
|
}
|
|
catch(hr_parse_exception&) {
|
|
res = 0;
|
|
}
|
|
ret[0] = real(res);
|
|
ret[1] = imag(res);
|
|
ret[2] = 0;
|
|
break;
|
|
}
|
|
|
|
case mdSpiral: {
|
|
cld z;
|
|
if(hyperbolic || sphere) {
|
|
makeband(H_orig, ret, band_conformal);
|
|
models::scr_to_ori(ret);
|
|
}
|
|
else ret = H;
|
|
z = cld(ret[0], ret[1]) * models::spiral_multiplier;
|
|
|
|
if(pconf.spiral_cone < 360) {
|
|
ld alpha = imag(z) * 360 / pconf.spiral_cone;
|
|
ld r = real(z);
|
|
r = exp(r);
|
|
|
|
ret[0] = -sin(alpha) * r;
|
|
ret[1] = cos(alpha) * r;
|
|
if(euclid) ret = models::euclidean_spin * ret;
|
|
ret[2] = (r-1) * sqrt( pow(360/pconf.spiral_cone, 2) - 1);
|
|
|
|
ret = pconf.ball() * ret;
|
|
}
|
|
else {
|
|
z = exp(z);
|
|
ret[0] = real(z);
|
|
ret[1] = imag(z);
|
|
if(euclid) ret = models::euclidean_spin * ret;
|
|
|
|
if(pconf.skiprope)
|
|
ret = mobius(ret, pconf.skiprope, 1);
|
|
}
|
|
models::ori_to_scr(ret);
|
|
break;
|
|
}
|
|
|
|
case mdRetroCraig: {
|
|
makeband(H_orig, ret, [] (ld& x, ld& y) {
|
|
if(x)
|
|
y = x / sin_auto(x) * (sin_auto(y) * cos_auto(x) - tan_auto(pconf.loximuthal_parameter) * cos_auto(y));
|
|
else
|
|
y = sin_auto(y) - tan_auto(pconf.loximuthal_parameter) * cos_auto(y);
|
|
});
|
|
break;
|
|
}
|
|
|
|
case mdRetroLittrow: {
|
|
makeband(H_orig, ret, [] (ld& x, ld& y) {
|
|
tie(x, y) = make_pair(
|
|
sin_auto(x) / cos_auto(y),
|
|
cos_auto(x) * tan_auto(y)
|
|
);
|
|
});
|
|
break;
|
|
}
|
|
|
|
case mdRetroHammer: {
|
|
ld d = hdist(H, ypush0(pconf.loximuthal_parameter));
|
|
makeband(H_orig, ret, [d,H] (ld& x, ld& y) {
|
|
if(x == 0 && y == 0) return;
|
|
|
|
if(x)
|
|
y = x / sin_auto(x) * (sin_auto(y) * cos_auto(x) - tan_auto(pconf.loximuthal_parameter) * cos_auto(y));
|
|
else
|
|
y = sin_auto(y) - tan_auto(pconf.loximuthal_parameter) * cos_auto(y);
|
|
|
|
ld scale = d / hypot(x, y);
|
|
if(H[2] < 0) scale = -scale;
|
|
x *= scale;
|
|
y *= scale;
|
|
});
|
|
break;
|
|
}
|
|
|
|
case mdPanini: {
|
|
find_zlev(H);
|
|
models::scr_to_ori(H);
|
|
|
|
ld proh = sqrt(H[2]*H[2] + curvature() * H[0] * H[0]);
|
|
H /= proh;
|
|
H /= (H[2] + pconf.alpha);
|
|
ret = H;
|
|
ret[2] = 0; ret[3] = 1;
|
|
|
|
models::ori_to_scr(ret);
|
|
break;
|
|
}
|
|
|
|
case mdPoorMan: {
|
|
find_zlev(H);
|
|
H = space_to_perspective(H);
|
|
|
|
models::scr_to_ori(H);
|
|
|
|
ld u = H[0], v = H[1];
|
|
if(abs(u) > 1e-3 && abs(v) > 1e-3) {
|
|
ld r2 = u*u+v*v;
|
|
ld scale = sqrt((-r2+sqrt(r2*(r2+4*u*u*v*v*(r2-2))))/(2*(r2-2))) / u / v;
|
|
if(u*v<0) scale = -scale;
|
|
H = scale * H;
|
|
}
|
|
ret = H;
|
|
ret[2] = 0;
|
|
ret[3] = 1;
|
|
|
|
models::ori_to_scr(ret);
|
|
break;
|
|
}
|
|
|
|
case mdGUARD: case mdManual: break;
|
|
|
|
default:
|
|
if(md < isize(extra_projections) && extra_projections[md])
|
|
extra_projections[md](H_orig, H, ret);
|
|
break;
|
|
}
|
|
|
|
ghcheck(ret,H_orig);
|
|
}
|
|
|
|
// game-related graphics
|
|
|
|
EX transmatrix sphereflip; // on the sphere, flip
|
|
EX bool playerfound; // has player been found in the last drawing?
|
|
|
|
EX bool outofmap(hyperpoint h) {
|
|
if(GDIM == 3)
|
|
return false;
|
|
else if(euclid)
|
|
return h[2] < .5; // false; // h[0] * h[0] + h[1] * h[1] > 15 * cgi.crossf;
|
|
else if(sphere)
|
|
return h[2] < .1 && h[2] > -.1 && h[1] > -.1 && h[1] < .1 && h[0] > -.1 && h[0] < .1;
|
|
else
|
|
return h[2] < .5;
|
|
}
|
|
|
|
EX hyperpoint mirrorif(const hyperpoint& V, bool b) {
|
|
if(b) return Mirror*V;
|
|
else return V;
|
|
}
|
|
|
|
EX shiftmatrix mirrorif(const shiftmatrix& V, bool b) {
|
|
if(b) return V*Mirror;
|
|
else return V;
|
|
}
|
|
|
|
// -1 if away, 0 if not away
|
|
EX int away(const transmatrix& V2) {
|
|
return (intval(C0, V2 * xpush0(.1)) > intval(C0, tC0(V2))) ? -1 : 0;
|
|
}
|
|
|
|
/* double zgrad(double f1, double f2, int nom, int den) {
|
|
using namespace geom3;
|
|
ld fo1 = factor_to_lev(f1);
|
|
ld fo2 = factor_to_lev(f2);
|
|
return lev_to_factor(fo1 + (fo2-fo1) * nom / den);
|
|
} */
|
|
|
|
EX double zgrad0(double l1, double l2, int nom, int den) {
|
|
using namespace geom3;
|
|
return lev_to_factor(l1 + (l2-l1) * nom / den);
|
|
}
|
|
|
|
EX bool behindsphere(const hyperpoint& h) {
|
|
if(!sphere) return false;
|
|
|
|
if(mdBandAny()) return false;
|
|
|
|
if(pconf.alpha > 1) {
|
|
if(h[LDIM] > -1/pconf.alpha) return true;
|
|
}
|
|
|
|
if(pconf.alpha <= 1) {
|
|
if(h[LDIM] < .2-pconf.alpha) return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ld to01(ld a0, ld a1, ld x) {
|
|
if(x < a0) return 0;
|
|
if(x > a1) return 1;
|
|
return (x-a0) / (a1-a0);
|
|
}
|
|
|
|
EX ld spherity(const hyperpoint& h) {
|
|
if(!sphere) return 1;
|
|
|
|
if(pconf.alpha > 1) {
|
|
return to01(1/pconf.alpha, 1, abs(h[2]));
|
|
}
|
|
|
|
if(pconf.alpha <= 1) {
|
|
return to01(-1.5, 1, h[2]);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
EX bool behindsphere(const transmatrix& V) {
|
|
return behindsphere(tC0(V));
|
|
}
|
|
|
|
EX bool behindsphere(const shiftmatrix& V) {
|
|
return behindsphere(tC0(V.T));
|
|
}
|
|
|
|
EX ld spherity(const transmatrix& V) {
|
|
return spherity(tC0(V));
|
|
}
|
|
|
|
EX bool confusingGeometry() {
|
|
#if MAXMDIM >= 4
|
|
if(reg3::ultra_mirror_in()) return true;
|
|
#endif
|
|
if(mproduct || mtwisted) return (hybrid::csteps && !PIU(fake::in() && !fake::multiple)) || PIU(confusingGeometry());
|
|
return quotient || elliptic || (fake::in() && fake::multiple);
|
|
}
|
|
|
|
EX ld master_to_c7_angle() {
|
|
if(dont_inverse()) return 0;
|
|
if(mhybrid) return hybrid::in_underlying_geometry(master_to_c7_angle);
|
|
if(WDIM == 3) return 0;
|
|
ld alpha = 0;
|
|
#if CAP_GP
|
|
if(cgi.gpdata) alpha = cgi.gpdata->alpha;
|
|
#endif
|
|
return (!BITRUNCATED && !bt::in() && !arcm::in()) ? M_PI + alpha : 0;
|
|
}
|
|
|
|
EX transmatrix actualV(const heptspin& hs, const transmatrix& V) {
|
|
if(gproduct) return PIU(actualV(hs, V));
|
|
if(WDIM == 3) return V;
|
|
#if CAP_IRR
|
|
if(IRREGULAR)
|
|
return V * spin(M_PI + TAU / S7 * (hs.spin + irr::periodmap[hs.at].base.spin));
|
|
#endif
|
|
#if CAP_ARCM
|
|
if(arcm::in()) return V * spin(-arcm::current.triangles[arcm::id_of(hs.at)][hs.spin].first);
|
|
#endif
|
|
#if CAP_BT
|
|
if(bt::in()) return V;
|
|
#endif
|
|
if(kite::in()) return V;
|
|
return (hs.spin || !BITRUNCATED) ? V * spin(hs.spin*TAU/hs.at->type + master_to_c7_angle()) : V;
|
|
}
|
|
|
|
EX shiftmatrix actualV(const heptspin& hs, const shiftmatrix& V) {
|
|
return shiftless(actualV(hs, V.T), V.shift);
|
|
}
|
|
|
|
EX bool point_behind(const shiftpoint h) {
|
|
if(sphere) return false;
|
|
if(!in_perspective()) return false;
|
|
hyperpoint h1;
|
|
if(pmodel == mdGeodesic) h1 = inverse_exp(h, pQUICK);
|
|
if(pmodel == mdPerspective && gproduct) h1 = product::inverse_exp(h.h);
|
|
h1 = lp_apply(h1);
|
|
return h1[2] < 1e-8;
|
|
}
|
|
|
|
void raise_error() {
|
|
println(hlog, "something wrong");
|
|
}
|
|
|
|
EX bool invalid_matrix(const transmatrix T) {
|
|
for(int i=0; i<GDIM; i++) for(int j=0; j<GDIM; j++)
|
|
if(std::isnan(T[i][j]) || T[i][j] > 1e8 || T[i][j] < -1e8 || std::isinf(T[i][j]))
|
|
return true;
|
|
if(gproduct || (cgflags & qAFFINE)) {
|
|
for(int i=0; i<GDIM; i++) for(int j=0; j<GDIM; j++) if(abs(T[i][j]) > 1e-60) return false;
|
|
}
|
|
else
|
|
for(int i=0; i<GDIM; i++) for(int j=0; j<GDIM; j++) if(T[i][j] > .5 || T[i][j] < -.5) return false;
|
|
return true;
|
|
}
|
|
|
|
EX bool invalid_point(const hyperpoint h) {
|
|
return std::isnan(h[LDIM]) || h[LDIM] > 1e8 || std::isinf(h[LDIM]);
|
|
}
|
|
|
|
EX bool invalid_point(const shiftpoint h) { return invalid_point(h.h); }
|
|
|
|
EX bool in_smart_range(const shiftmatrix& T) {
|
|
shiftpoint h = tC0(T);
|
|
if(invalid_point(h)) return false;
|
|
if(nil || nih) return true;
|
|
#if CAP_SOLV
|
|
if(pmodel == mdGeodesic) return nisot::in_table_range(h.h);
|
|
#endif
|
|
hyperpoint h1;
|
|
applymodel(h, h1);
|
|
if(invalid_point(h1)) return false;
|
|
ld x = current_display->xcenter + current_display->radius * h1[0];
|
|
ld y = current_display->ycenter + current_display->radius * h1[1] * pconf.stretch;
|
|
|
|
bool inp = in_perspective();
|
|
|
|
if(frustum_culling) {
|
|
if(x > current_display->xtop + current_display->xsize * 2) return false;
|
|
if(x < current_display->xtop - current_display->xsize * 1) return false;
|
|
if(y > current_display->ytop + current_display->ysize * 2) return false;
|
|
if(y < current_display->ytop - current_display->ysize * 1) return false;
|
|
if(GDIM == 3 && !inp) {
|
|
if(-h1[2] < pconf.clip_min * 2 - pconf.clip_max) return false;
|
|
if(-h1[2] > pconf.clip_max * 2 - pconf.clip_min) return false;
|
|
}
|
|
}
|
|
|
|
ld epsilon = 0.01;
|
|
|
|
transmatrix ar;
|
|
|
|
ld dx = 0, dy = 0, dz = 0, dh[MAXMDIM];
|
|
for(int i=0; i<GDIM; i++) {
|
|
hyperpoint h2;
|
|
applymodel(T * cpush0(i, epsilon), h2);
|
|
ld x1 = current_display->radius * abs(h2[0] - h1[0]) / epsilon;
|
|
ld y1 = current_display->radius * abs(h2[1] - h1[1]) * pconf.stretch / epsilon;
|
|
|
|
for(int j=0; j<GDIM; j++) ar[i][j] = current_display->radius * (h2[j]-h1[j]) / epsilon;
|
|
|
|
dx = max(dx, x1); dy = max(dy, y1);
|
|
if(GDIM == 3) dz = max(dz, abs(h2[2] - h1[2]));
|
|
dh[i] = hypot(x1, y1);
|
|
}
|
|
|
|
if(GDIM == 2 && vid.smart_area_based) {
|
|
ld area = det2(ar);
|
|
ld scale = sqrt(area) * cgi.scalefactor * hcrossf7;
|
|
if(scale <= vid.smart_range_detail) return false;
|
|
}
|
|
|
|
else if(GDIM == 3) {
|
|
if(!inp && (-h1[2] + 2 * dz < pconf.clip_min || -h1[2] - 2 * dz > pconf.clip_max)) return false;
|
|
sort(dh, dh+3);
|
|
ld scale = sqrt(dh[1] * dh[2]) * cgi.scalefactor * hcrossf7;
|
|
if(scale <= (WDIM == 2 ? vid.smart_range_detail : vid.smart_range_detail_3)) return false;
|
|
}
|
|
else {
|
|
ld scale = sqrt(dh[0] * dh[1]) * cgi.scalefactor * hcrossf7;
|
|
if(scale <= vid.smart_range_detail) return false;
|
|
}
|
|
|
|
if(!frustum_culling) return true;
|
|
|
|
return
|
|
x - 2 * dx < current_display->xtop + current_display->xsize &&
|
|
x + 2 * dx > current_display->xtop &&
|
|
y - 2 * dy < current_display->ytop + current_display->ysize &&
|
|
y + 2 * dy > current_display->ytop;
|
|
}
|
|
|
|
#if CAP_GP
|
|
namespace gp {
|
|
|
|
/*
|
|
void drawrec(cell *c, const transmatrix& V) {
|
|
if(dodrawcell(c))
|
|
drawcell(c, V, 0, false);
|
|
for(int i=0; i<c->type; i++) {
|
|
cell *c2 = c->move(i);
|
|
if(!c2) continue;
|
|
if(c2->move(0) != c) continue;
|
|
if(c2 == c2->master->c7) continue;
|
|
transmatrix V1 = V * ddspin(c, i) * xpush(cgi.crossf) * iddspin(c2, 0) * spin(M_PI);
|
|
drawrec(c2, V1);
|
|
}
|
|
} */
|
|
|
|
bool drawrec(cell *c, const shiftmatrix& V, gp::loc at, int dir, int maindir, local_info li) {
|
|
bool res = false;
|
|
shiftmatrix V1 = V * cgi.gpdata->Tf[li.last_dir][at.first&GOLDBERG_MASK][at.second&GOLDBERG_MASK][fixg6(dir)];
|
|
if(do_draw(c, V1)) {
|
|
/* auto li = get_local_info(c);
|
|
if((dir - li.total_dir) % S6) printf("totaldir %d/%d\n", dir, li.total_dir);
|
|
if(at != li.relative) printf("at %s/%s\n", disp(at), disp(li.relative));
|
|
if(maindir != li.last_dir) printf("ld %d/%d\n", maindir, li.last_dir); */
|
|
li.relative = at;
|
|
li.total_dir = fixg6(dir);
|
|
current_li = li;
|
|
li_for = c;
|
|
drawcell(c, V1);
|
|
res = true;
|
|
}
|
|
for(int i=0; i<c->type; i++) {
|
|
cell *c2 = c->move(i);
|
|
if(!c2) continue;
|
|
if(c2->move(0) != c) continue;
|
|
if(c2 == c2->master->c7) continue;
|
|
res |= drawrec(c2, V, at + eudir(dir+i), dir + i + SG3, maindir, li);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
bool drawrec(cell *c, const shiftmatrix& V) {
|
|
local_info li;
|
|
li.relative = loc(0,0);
|
|
li.total_dir = 0;
|
|
li.last_dir = -1;
|
|
li.first_dir = -1;
|
|
li_for = c;
|
|
current_li = li;
|
|
bool res = false;
|
|
if(do_draw(c, V))
|
|
drawcell(c, V), res = true;
|
|
for(int i=0; i<c->type; i++) {
|
|
cell *c2 = c->move(i);
|
|
if(!c2) continue;
|
|
if(c2->move(0) != c) continue;
|
|
if(c2 == c2->master->c7) continue;
|
|
li.last_dir = i;
|
|
res |= drawrec(c2, V, gp::loc(1,0), SG3, i, li);
|
|
}
|
|
return res;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
vector<tuple<heptspin, hstate, shiftmatrix> > drawn_cells;
|
|
|
|
EX bool drawcell_subs(cell *c, const shiftmatrix& V) {
|
|
|
|
#if CAP_GP
|
|
if(GOLDBERG) {
|
|
return gp::drawrec(c, V);
|
|
}
|
|
#endif
|
|
|
|
bool draw = false;
|
|
|
|
#if CAP_IRR
|
|
if(IRREGULAR) {
|
|
auto& hi = irr::periodmap[c->master];
|
|
auto& vc = irr::cells_of_heptagon[hi.base.at];
|
|
for(int i=0; i<isize(vc); i++) {
|
|
cell *c = hi.subcells[i];
|
|
shiftmatrix V1 = V * irr::cells[vc[i]].pusher;
|
|
if(do_draw(c, V1))
|
|
draw = true,
|
|
drawcell(hi.subcells[i], V * irr::cells[vc[i]].pusher);
|
|
}
|
|
return draw;
|
|
}
|
|
#endif
|
|
|
|
if(do_draw(c, V)) {
|
|
draw = true;
|
|
drawcell(c, V);
|
|
}
|
|
|
|
if(BITRUNCATED) forCellIdEx(c1, d, c) {
|
|
if(c->c.spin(d) == 0) {
|
|
shiftmatrix V2 = V * currentmap->adj(c, d);
|
|
if(do_draw(c1, V2))
|
|
draw = true,
|
|
drawcell(c1, V2);
|
|
}
|
|
}
|
|
|
|
return draw;
|
|
}
|
|
|
|
void hrmap::draw_all() {
|
|
if(sphere && pmodel == mdSpiral) {
|
|
if(models::ring_not_spiral) {
|
|
int qty = ceil(1. / pconf.sphere_spiral_multiplier);
|
|
if(qty > 100) qty = 100;
|
|
for(int i=-qty; i < qty; i++)
|
|
draw_at(centerover, cview(TAU * i));
|
|
}
|
|
else {
|
|
draw_at(centerover, cview());
|
|
if(vid.use_smart_range) for(int i=1;; i++) {
|
|
int drawn = cells_drawn;
|
|
draw_at(centerover, cview(TAU * i));
|
|
draw_at(centerover, cview(-TAU * i));
|
|
if(drawn == cells_drawn) break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
draw_at(centerover, cview());
|
|
}
|
|
|
|
void hrmap::draw_at(cell *at, const shiftmatrix& where) {
|
|
dq::clear_all();
|
|
auto& enq = confusingGeometry() ? dq::enqueue_by_matrix_c : dq::enqueue_c;
|
|
|
|
enq(at, where);
|
|
|
|
while(!dq::drawqueue_c.empty()) {
|
|
auto& p = dq::drawqueue_c.front();
|
|
cell *c = p.first;
|
|
shiftmatrix V = p.second;
|
|
dq::drawqueue_c.pop();
|
|
|
|
if(!do_draw(c, V)) continue;
|
|
drawcell(c, V);
|
|
if(in_wallopt() && isWall3(c) && isize(dq::drawqueue) > 1000) continue;
|
|
|
|
#if MAXMDIM >= 4
|
|
if(reg3::ultra_mirror_in())
|
|
for(auto& T: cgi.ultra_mirrors)
|
|
enq(c, optimized_shift(V * T));
|
|
#endif
|
|
|
|
for(int i=0; i<c->type; i++) {
|
|
// note: need do cmove before c.spin
|
|
cell *c1 = c->cmove(i);
|
|
if(c1 == &out_of_bounds) continue;
|
|
enq(c1, optimized_shift(V * adj(c, i)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void hrmap_standard::draw_at(cell *at, const shiftmatrix& where) {
|
|
if(S3 > 4) {
|
|
hrmap::draw_at(at, where);
|
|
return;
|
|
}
|
|
drawn_cells.clear();
|
|
drawn_cells.emplace_back(at->master, hsOrigin, where * master_relative(at, true));
|
|
for(int i=0; i<isize(drawn_cells); i++) {
|
|
// prevent reallocation due to insertion
|
|
if(drawn_cells.capacity() < drawn_cells.size() + 16)
|
|
drawn_cells.reserve(max<size_t>(2 * drawn_cells.size(), 128));
|
|
|
|
const auto& dc = drawn_cells[i];
|
|
auto& hs = get<0>(dc);
|
|
auto& s = get<1>(dc);
|
|
auto& V = get<2>(dc);
|
|
|
|
cell *c = hs.at->c7;
|
|
|
|
const shiftmatrix& V1 = hs.mirrored ? V * Mirror : V;
|
|
|
|
bool draw = drawcell_subs(c, actualV(hs, V1));
|
|
|
|
if(sphere) draw = true;
|
|
|
|
if(draw) for(int d=0; d<c->master->type; d++) {
|
|
hstate s2 = transition(s, d);
|
|
if(s2 == hsError) continue;
|
|
heptspin hs2 = hs + d + wstep;
|
|
shiftmatrix Vd;
|
|
if(inforder::mixed()) {
|
|
int d1 = gmod(hs.spin+d, c->type);
|
|
Vd = V * spin(-TAU*d/c->type) * xpush(spacedist(c, d1)) * spin180();
|
|
}
|
|
else
|
|
Vd = V * cgi.heptmove[d];
|
|
optimize_shift(Vd);
|
|
drawn_cells.emplace_back(hs2, s2, Vd);
|
|
}
|
|
}
|
|
}
|
|
|
|
EX bool has_fixed_yz() {
|
|
return (embedded_plane || mhybrid || nil || (euclid && WDIM == 3) || sol || nih || (cgflags & qSTRETCHABLE) || (hyperbolic && bt::in()));
|
|
}
|
|
|
|
EX bool keep_vertical() {
|
|
if(vid.fixed_yz && has_fixed_yz()) return !CAP_ORIENTATION;
|
|
if(downseek.qty) return true;
|
|
return false;
|
|
}
|
|
|
|
EX hyperpoint vertical_vector() {
|
|
auto& ds = downseek;
|
|
if(embedded_plane && vid.fixed_yz) {
|
|
transmatrix Rot = View * cgi.emb->map_relative_push(inverse(View) * C0);
|
|
if(gproduct) Rot = NLP * Rot;
|
|
return Rot * lztangent(vid.wall_height);
|
|
}
|
|
if(mproduct && vid.fixed_yz) {
|
|
return get_view_orientation() * lztangent(1);
|
|
}
|
|
if(((cgflags & qSTRETCHABLE) || (mtwisted && sphere)) && vid.fixed_yz) {
|
|
return stretch::itranslate(View * C0) * View * lztangent(1);
|
|
}
|
|
if((nil || (euclid && GDIM == 3) || sol || nih) && vid.fixed_yz) {
|
|
return View * lztangent(1);
|
|
}
|
|
if(hyperbolic && bt::in() && vid.fixed_yz) {
|
|
hyperpoint h = inverse(View) * C0;
|
|
return View * parabolic13_at(deparabolic13(h)) * xtangent(1);
|
|
}
|
|
if(ds.qty && gproduct)
|
|
return get_view_orientation() * product::inverse_exp(ds.point);
|
|
if(ds.qty)
|
|
return ds.point;
|
|
return C0;
|
|
}
|
|
|
|
EX void spinEdge(ld aspd) {
|
|
|
|
#if CAP_VR
|
|
if(vrhr::active() && keep_vertical() && !vrhr::first) {
|
|
transmatrix T = vrhr::hmd_ref_at;
|
|
T = vrhr::sm * inverse(T);
|
|
vrhr::be_33(T);
|
|
|
|
transmatrix V = T * get_view_orientation();
|
|
|
|
hyperpoint h = inverse(V) * C0;
|
|
if(!gproduct) {
|
|
if(embedded_plane)
|
|
V = V * cgi.emb->map_relative_push(h);
|
|
else
|
|
V = V * rgpushxto0(h);
|
|
}
|
|
|
|
V = cspin90(2, 1) * V;
|
|
if(vid.wall_height < 0) V = cspin180(1, 2) * V;
|
|
V = V * cgi.emb->logical_scaled_to_intermediate;
|
|
|
|
if(1) {
|
|
dynamicval<eGeometry> g(geometry, gSphere);
|
|
bool em = embedded_plane;
|
|
if(em) geom3::light_flip(true);
|
|
V = gpushxto0(V*C0) * V;
|
|
fixmatrix(V);
|
|
if(em) geom3::light_flip(false);
|
|
}
|
|
|
|
vrhr::be_33(V);
|
|
|
|
if(vid.wall_height < 0) V = cspin180(1, 2) * V;
|
|
V = cspin90(1, 2) * V;
|
|
V = V * cgi.emb->intermediate_to_logical_scaled;
|
|
if(!gproduct) {
|
|
if(embedded_plane)
|
|
V = V * inverse(cgi.emb->map_relative_push(h));
|
|
else
|
|
V = V * gpushxto0(h);
|
|
}
|
|
V = inverse(T) * V;
|
|
rotate_view(V * inverse(get_view_orientation()));
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
ld downspin = 0;
|
|
auto& ds = downseek;
|
|
if(dual::state == 2 && (dual::one_euclidean ? !euclid : dual::currently_loaded != dual::main_side)) {
|
|
transmatrix our = dual::get_orientation();
|
|
transmatrix their = dual::player_orientation[dual::main_side];
|
|
fixmatrix(our);
|
|
fixmatrix(their);
|
|
if(GDIM == 2) {
|
|
transmatrix T = their * iso_inverse(our);
|
|
hyperpoint H = T * xpush0(1);
|
|
downspin = -atan2(H[1], H[0]);
|
|
}
|
|
else rotate_view(their * iso_inverse(our));
|
|
}
|
|
else if(playerfound && vid.fixed_facing) {
|
|
hyperpoint H = gpushxto0(unshift(playerV) * C0) * unshift(playerV) * xpush0(5);
|
|
downspin = atan2(H[1], H[0]);
|
|
downspin += vid.fixed_facing_dir * degree;
|
|
if(flipplayer) downspin += M_PI;
|
|
cyclefix(downspin, 0);
|
|
aspd = (1 + 2 * abs(downspin)) * aspd;
|
|
}
|
|
else if(keep_vertical()) {
|
|
hyperpoint h = vertical_vector();
|
|
if(ds.qty && GDIM == 2) {
|
|
h = rot_inverse(models::rotation.get()) * h;
|
|
}
|
|
downspin = -atan2(h[0], h[1]);
|
|
if(ds.qty) {
|
|
cyclefix(downspin, 0);
|
|
downspin = downspin * min(ds.speed, (double)1);
|
|
}
|
|
else aspd = 999999;
|
|
}
|
|
if(downspin > aspd) downspin = aspd;
|
|
if(downspin < -aspd) downspin = -aspd;
|
|
rotate_view(cspin(0, 1, downspin));
|
|
}
|
|
|
|
EX void spinEdge_full() { spinEdge(999999); }
|
|
|
|
/** \brief convert a shiftmatrix to the coordinate system of View
|
|
* usually used to set which_copy
|
|
*/
|
|
EX transmatrix back_to_view(const shiftmatrix& V) {
|
|
// ortho_inverse does not work in 2.5D, iso_inverse does not work in Nil.
|
|
// just use inverse
|
|
return inverse(actual_view_transform) * unshift(V);
|
|
}
|
|
|
|
EX void fix_whichcopy(cell *c) {
|
|
if(!gmatrix.count(cwt.at)) return;
|
|
current_display->which_copy = back_to_view(gmatrix[c]);
|
|
}
|
|
|
|
void fix_whichcopy_if_near() {
|
|
if(!gmatrix.count(cwt.at)) return;
|
|
transmatrix T = back_to_view(gmatrix[cwt.at]);
|
|
if(!eqmatrix(T, current_display->which_copy)) return;
|
|
current_display->which_copy = T;
|
|
}
|
|
|
|
EX void adjust_eye(transmatrix& T, cell *c, ld sign) {
|
|
if(!embedded_plane) return;
|
|
geom3::do_auto_eye();
|
|
int sl = snakelevel(c);
|
|
if(isWorm(c->monst) && sl < 3) sl++;
|
|
ld i = cgi.emb->center_z();
|
|
if(sl || vid.eye || i)
|
|
T = T * lzpush(sign * (cgi.SLEV[sl] - cgi.FLOOR - vid.eye + i));
|
|
}
|
|
|
|
EX bool shmup_inverted() {
|
|
if(!embedded_plane) return false;
|
|
return vid.wall_height < 0;
|
|
}
|
|
|
|
/** create the list of matrices that are affected when we shift/rotate the view. Usually this is not only the View matrix, but also auxiliary ones such as which_copy.
|
|
* flag & 1 : spins, so return only NLP if get_view_orientation() is NLP
|
|
* flag & 2 : if rugged, only View
|
|
*/
|
|
|
|
EX vector<transmatrix*> move_affected_matrices(int flag) {
|
|
if(flag & 1) {
|
|
if(&get_view_orientation() == &NLP) return { &NLP };
|
|
}
|
|
|
|
if((flag & 2) && rug::rugged) return { &View };
|
|
vector<transmatrix*> res;
|
|
res.push_back(&View);
|
|
res.push_back(¤t_display->which_copy);
|
|
res.push_back(&cwtV.T);
|
|
if(mapeditor::dt_in()) res.push_back(&mapeditor::cfree_old.T);
|
|
return res;
|
|
}
|
|
|
|
EX void centerpc(ld aspd) {
|
|
|
|
if(subscreens::split([=] () {centerpc(aspd);})) return;
|
|
if(dual::split([=] () { centerpc(aspd); })) return;
|
|
|
|
#if CAP_CRYSTAL && CAP_RUG
|
|
if(cryst)
|
|
crystal::centerrug(aspd);
|
|
#endif
|
|
|
|
#if CAP_RACING
|
|
if(racing::on && racing::set_view()) return;
|
|
#endif
|
|
|
|
#if MAXMDIM >= 4
|
|
if(shmup::on && vid.sspeed > -5 && GDIM == 3) {
|
|
int id = subscreens::in ? subscreens::current_player : 0;
|
|
auto& pc = shmup::pc[id];
|
|
centerover = pc->base;
|
|
transmatrix T = pc->at;
|
|
|
|
if(embedded_plane) {
|
|
transmatrix rot = inverse(cgi.emb->intermediate_to_actual_translation(cgi.emb->actual_to_intermediate(T * tile_center()))) * T;
|
|
T = T * inverse(rot);
|
|
adjust_eye(T, pc->base, +1);
|
|
T = T * rot;
|
|
}
|
|
else {
|
|
adjust_eye(T, pc->base, +1);
|
|
}
|
|
|
|
View = iview_inverse(T);
|
|
if(gproduct) NLP = ortho_inverse(pc->ori);
|
|
if(WDIM == 2) {
|
|
// already taken into account in gproduct
|
|
rotate_view(cgi.emb->intermediate_to_logical_scaled);
|
|
// right => upwards
|
|
rotate_view(cspin90(0, 1));
|
|
// apply playerturny
|
|
if(shmup_inverted()) rotate_view(cspin180(2, 1));
|
|
rotate_view( cspin(2, 1, -90._deg - shmup::playerturny[id]));
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if(ors::mode == 2 && vid.sspeed < 5) return;
|
|
if(vid.sspeed >= 4.99) aspd = 1000;
|
|
DEBBI(DF_GRAPH, ("center pc"));
|
|
|
|
auto mam = move_affected_matrices(0);
|
|
for(auto pV: mam) ors::unrotate(*pV);
|
|
|
|
/* what should we center? */
|
|
transmatrix T;
|
|
if(multi::players > 1)
|
|
T = unshift(cwtV); /* do not even try */
|
|
else {
|
|
T = current_display->which_copy;
|
|
if(shmup::on)
|
|
T = T * shmup::pc[0]->at;
|
|
}
|
|
|
|
if(invalid_matrix(T)) return;
|
|
|
|
adjust_eye(T, cwt.at, +1);
|
|
|
|
hyperpoint H = tC0(T);
|
|
|
|
ld R = (zero_d(GDIM, H) && !gproduct) ? 0 : hdist0(H);
|
|
|
|
if(R < 1e-9) {
|
|
// either already centered or direction unknown
|
|
/* if(playerfoundL && playerfoundR) {
|
|
|
|
} */
|
|
|
|
spinEdge(aspd);
|
|
fix_whichcopy(cwt.at);
|
|
for(auto pV: mam) fixmatrix(*pV);
|
|
}
|
|
|
|
else {
|
|
aspd *= euclid ? (2+3*R*R) : (1+R+(shmup::on?1:0));
|
|
|
|
if(R < aspd) fix_whichcopy_if_near();
|
|
|
|
if(R < aspd)
|
|
shift_view_to(shiftless(H), shift_method(smaAutocenter));
|
|
else
|
|
shift_view_towards(shiftless(H), aspd, shift_method(smaAutocenter));
|
|
|
|
for(auto pV: mam) fixmatrix(*pV);
|
|
spinEdge(aspd);
|
|
}
|
|
|
|
if(set_multi && multi::two_focus) {
|
|
pconf.mori() = spin( -atan2(multi_point) );
|
|
auto& d = pconf.twopoint_param;
|
|
d = hdist0(multi_point);
|
|
if(among(pmodel, mdJoukowsky, mdJoukowskyInverted)) {
|
|
pconf.mori() = pconf.mori() * spin90();
|
|
pconf.model_transition = sinh(d) / (1 + cosh(d));
|
|
pconf.dualfocus_autoscale = true;
|
|
}
|
|
}
|
|
|
|
for(auto pV: mam) ors::rerotate(*pV);
|
|
}
|
|
|
|
EX transmatrix oView;
|
|
|
|
EX purehookset hooks_preoptimize, hooks_postoptimize;
|
|
|
|
EX void optimizeview() {
|
|
|
|
if(subscreens::split(optimizeview)) return;
|
|
if(dual::split(optimizeview)) return;
|
|
|
|
cell *c = centerover;
|
|
transmatrix iView = view_inverse(View);
|
|
callhooks(hooks_preoptimize);
|
|
virtualRebase(centerover, iView);
|
|
if(c != centerover && (sphere || sl2)) {
|
|
transmatrix T = currentmap->relative_matrix(centerover, c, C0);
|
|
T = stretch::itranslate(tC0(T)) * T;
|
|
stretch::mstretch_matrix = T * stretch::mstretch_matrix;
|
|
}
|
|
|
|
View = iview_inverse(iView);
|
|
fixmatrix(View);
|
|
callhooks(hooks_postoptimize);
|
|
|
|
#if CAP_PORTALS
|
|
intra::apply_scale();
|
|
#endif
|
|
|
|
walking::handle();
|
|
|
|
if(is_boundary(centerover))
|
|
centerover = c, View = oView;
|
|
else
|
|
oView = View;
|
|
|
|
#if CAP_ANIMATIONS
|
|
if(centerover && inmirror(centerover)) {
|
|
anims::reflect_view();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void addball(ld a, ld b, ld c) {
|
|
hyperpoint h;
|
|
ballmodel(h, a, b, c);
|
|
for(int i=0; i<3; i++) h[i] *= current_display->radius;
|
|
curvepoint(h);
|
|
}
|
|
|
|
void ballgeometry() {
|
|
queuereset(mdPixel, PPR::CIRCLE);
|
|
for(int i=0; i<60; i++)
|
|
addball(TAU * i / 60, 10, 0);
|
|
for(double d=10; d>=-10; d-=.2)
|
|
addball(0, d, 0);
|
|
for(double d=-10; d<=10; d+=.2)
|
|
addball(0, d, vid.depth);
|
|
addball(0, 0, -vid.camera);
|
|
addball(0, 0, vid.depth);
|
|
addball(0, 0, -vid.camera);
|
|
addball(0, -10, 0);
|
|
addball(0, 0, -vid.camera);
|
|
queuecurve(shiftless(Id), darkena(0xFF, 0, 0x80), 0, PPR::CIRCLE);
|
|
queuereset(pmodel, PPR::CIRCLE);
|
|
}
|
|
|
|
EX void resetview() {
|
|
DEBBI(DF_GRAPH, ("reset view"));
|
|
// EUCLIDEAN
|
|
decide_lpu();
|
|
NLP = Id;
|
|
stretch::mstretch_matrix = Id;
|
|
auto& vo = get_view_orientation();
|
|
if(cwt.at) {
|
|
centerover = cwt.at;
|
|
View = iddspin(cwt.at, cwt.spin);
|
|
if(!flipplayer) vo = spin180() * vo;
|
|
if(cwt.mirrored) vo = lmirror() * vo;
|
|
|
|
if(centering) {
|
|
hyperpoint vl = View * get_corner_position(cwt.at, cwt.spin);
|
|
hyperpoint vr = View * get_corner_position(cwt.at, (cwt.spin+1) % cwt.at->type);
|
|
|
|
hyperpoint vm = (centering == eCentering::edge) ? mid(vl, vr) : vl;
|
|
|
|
transmatrix rm = gpushxto0(vm);
|
|
|
|
View = spintox(rm*vr) * rm * View;
|
|
}
|
|
}
|
|
else if(currentmap) {
|
|
centerover = currentmap->gamestart();
|
|
View = Id;
|
|
}
|
|
|
|
adjust_eye(View, cwt.at, -1);
|
|
|
|
if(WDIM == 2) vo = spin(M_PI + vid.fixed_facing_dir * degree) * vo;
|
|
if(WDIM == 3) vo = cspin90(0, 2) * vo;
|
|
vo = cgi.emb->intermediate_to_logical_scaled * vo;
|
|
if(embedded_plane) vo = cspin90(1, 2) * vo;
|
|
if(embedded_plane && vid.wall_height < 0) vo = cspin180(0, 1) * vo;
|
|
|
|
cwtV = shiftless(View);
|
|
current_display->which_copy =
|
|
nonisotropic ? gpushxto0(tC0(view_inverse(View))) :
|
|
View;
|
|
// SDL_LockSurface(s);
|
|
// SDL_UnlockSurface(s);
|
|
}
|
|
|
|
|
|
EX void panning(shiftpoint hf0, shiftpoint ht0) {
|
|
hyperpoint hf = hf0.h;
|
|
hyperpoint ht = unshift(ht0, hf0.shift);
|
|
View =
|
|
rgpushxto0(hf) * rgpushxto0(gpushxto0(hf) * ht) * gpushxto0(hf) * View;
|
|
playermoved = false;
|
|
}
|
|
|
|
EX int cells_drawn, cells_generated;
|
|
|
|
EX void fullcenter() {
|
|
if(history::saved_ends == 0)
|
|
history::path_for_lineanimation.clear();
|
|
if(playerfound && false) centerpc(INF);
|
|
else {
|
|
bfs();
|
|
resetview();
|
|
drawthemap();
|
|
if(!centering) centerpc(INF);
|
|
centerover = cwt.at;
|
|
}
|
|
playermoved = !centering;
|
|
}
|
|
|
|
transmatrix screenpos(ld x, ld y) {
|
|
transmatrix V = Id;
|
|
V[0][2] += (x - current_display->xcenter) / current_display->radius * (1+pconf.alpha);
|
|
V[1][2] += (y - current_display->ycenter) / current_display->radius * (1+pconf.alpha);
|
|
return V;
|
|
}
|
|
|
|
/**
|
|
In 3D, we use the standard translation matrices to place stuff on the screen.
|
|
In 2D, this does not work (as HyperRogue reduces matrices to 3x3) so we use the native disk projection
|
|
*/
|
|
|
|
EX int flat_on;
|
|
eGeometry backup_geometry;
|
|
eVariation backup_variation;
|
|
videopar backup_vid;
|
|
bool backup_lpu;
|
|
transmatrix backup_cam;
|
|
|
|
/** \brief enable the 'flat' model for drawing HUD. See hr::flat_model_enabler */
|
|
EX void enable_flat_model(int val) {
|
|
if(flat_on < 1 && flat_on + val >= 1) {
|
|
#if CAP_GL
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
#endif
|
|
backup_geometry = geometry;
|
|
backup_variation = variation;
|
|
backup_cam = pconf.cam();
|
|
backup_lpu = nisot::local_perspective_used;
|
|
backup_vid = vid;
|
|
geometry = gNormal;
|
|
variation = eVariation::bitruncated;
|
|
nisot::local_perspective_used = false;
|
|
|
|
pmodel = mdDisk;
|
|
pconf.alpha = 1;
|
|
pconf.scale = 1;
|
|
pconf.cam() = Id;
|
|
pconf.stretch = 1;
|
|
|
|
vid.always3 = false;
|
|
vid.wall_height = .3;
|
|
vid.human_wall_ratio = .7;
|
|
vid.camera = 1;
|
|
vid.depth = 1;
|
|
geom3::apply_always3();
|
|
check_cgi();
|
|
cgi.require_shapes();
|
|
calcparam();
|
|
}
|
|
if(flat_on >= 1 && flat_on + val < 1) {
|
|
geometry = backup_geometry;
|
|
variation = backup_variation;
|
|
nisot::local_perspective_used = backup_lpu;
|
|
pconf.cam() = backup_cam;
|
|
vid = backup_vid;
|
|
geom3::apply_always3();
|
|
calcparam();
|
|
check_cgi();
|
|
}
|
|
flat_on += val;
|
|
}
|
|
|
|
#if HDR
|
|
struct flat_model_enabler {
|
|
flat_model_enabler() { enable_flat_model(+1); }
|
|
~flat_model_enabler() { enable_flat_model(-1); }
|
|
};
|
|
#endif
|
|
|
|
EX transmatrix atscreenpos(ld x, ld y, ld size) {
|
|
transmatrix V = Id;
|
|
|
|
if(pmodel == mdPixel) {
|
|
V[0][3] += (x - current_display->xcenter);
|
|
V[1][3] += (y - current_display->ycenter);
|
|
V[0][0] = size * 2 * cgi.hcrossf / cgi.crossf;
|
|
V[1][1] = size * 2 * cgi.hcrossf / cgi.crossf;
|
|
if(WDIM == 3) V[2][2] = -1;
|
|
}
|
|
else if(pmodel == mdHorocyclic) {
|
|
V[0][3] += (x - current_display->xcenter) * 2 / current_display->radius;
|
|
V[1][3] += (y - current_display->ycenter) * 2/ current_display->radius;
|
|
V[0][0] = size * 2 / current_display->radius;
|
|
V[1][1] = size * 2 / current_display->radius;
|
|
}
|
|
else {
|
|
V[0][2] += (x - current_display->xcenter);
|
|
V[1][2] += (y - current_display->ycenter);
|
|
V[0][0] = size * 2 * cgi.hcrossf / cgi.crossf;
|
|
V[1][1] = size * 2 * cgi.hcrossf / cgi.crossf;
|
|
V[2][2] = current_display->radius;
|
|
if(S3 >= OINF) V[0][0] /= 5, V[1][1] /= 5;
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
void circle_around_center(ld radius, color_t linecol, color_t fillcol, PPR prio) {
|
|
#if CAP_QUEUE
|
|
if(among(pmodel, mdDisk, mdEquiarea, mdEquidistant, mdFisheye, mdFisheye2) && !(pmodel == mdDisk && hyperbolic && pconf.alpha <= -1) && models::camera_straight) {
|
|
hyperpoint ret;
|
|
applymodel(shiftless(xpush0(radius)), ret);
|
|
ld r = hypot_d(2, ret);
|
|
queuecircle(current_display->xcenter, current_display->ycenter, r * current_display->radius, linecol, prio, fillcol);
|
|
return;
|
|
}
|
|
#endif
|
|
#if CAP_QUEUE
|
|
ld rad = 10;
|
|
if(euclid) rad = 1000;
|
|
for(int i=0; i<=36000; i+=10) curvepoint(xspinpush0(i * degree / 100., rad));
|
|
auto& c = queuecurve(shiftless(Id), linecol, fillcol, prio);
|
|
if(pmodel == mdDisk && hyperbolic && pconf.alpha <= -1)
|
|
c.flags |= POLY_FORCE_INVERTED;
|
|
if(pmodel == mdJoukowsky)
|
|
c.flags |= POLY_FORCE_INVERTED;
|
|
c.flags |= POLY_ALWAYS_IN;
|
|
c.flags |= POLY_FORCEWIDE;
|
|
#endif
|
|
}
|
|
|
|
EX color_t periodcolor = 0x00FF0080;
|
|
EX color_t ringcolor = 0xFFFF;
|
|
EX color_t modelcolor = 0;
|
|
EX ld periodwidth = 1;
|
|
|
|
EX ld twopoint_xscale = 1;
|
|
EX ld twopoint_xwidth = 1;
|
|
EX int twopoint_xshape = 0;
|
|
|
|
EX void put_x(shiftmatrix S, color_t col) {
|
|
switch(twopoint_xshape) {
|
|
case 0:
|
|
queuestr(S * C0, twopoint_xscale * vid.xres / 100, "X", ringcolor >> 8);
|
|
break;
|
|
case 1:
|
|
vid.linewidth *= twopoint_xwidth;
|
|
queueline(S * xpush0(twopoint_xscale / 10.), S * xpush0(-twopoint_xscale / 10.), ringcolor, 3);
|
|
queueline(S * ypush0(twopoint_xscale / 10.), S * ypush0(-twopoint_xscale / 10.), ringcolor, 3);
|
|
vid.linewidth /= twopoint_xwidth;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if CAP_QUEUE
|
|
EX void draw_model_elements() {
|
|
|
|
#if CAP_VR
|
|
if(vrhr::active() && models::is_hyperboloid(pmodel)) return;
|
|
#endif
|
|
|
|
if(sphere && pconf.alpha <= 1 && pmodel == mdDisk)
|
|
queuecircle(current_display->xcenter, current_display->ycenter, current_display->xsize + current_display->ysize, ringcolor, PPR::OUTCIRCLE, modelcolor);
|
|
|
|
dynamicval<ld> lw(vid.linewidth, vid.linewidth * vid.multiplier_ring);
|
|
switch(pmodel) {
|
|
|
|
#if MAXMDIM >= 4
|
|
case mdRelOrthogonal:
|
|
case mdRelPerspective: {
|
|
constexpr ld cc = 3;
|
|
if(sl2) for(ld dist: {-0.1, 0.1}) {
|
|
transmatrix Lorentz = Id;
|
|
Lorentz[0][0] = Lorentz[2][2] = cosh(cc);
|
|
Lorentz[0][2] = Lorentz[2][0] = sinh(cc);
|
|
hyperpoint h = Lorentz * cspin(3, 2, dist) * C0;
|
|
for(int s=0; s<=360; s++)
|
|
curvepoint(spin(s*degree) * h);
|
|
queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE);
|
|
}
|
|
if(hyperbolic) for(ld dist: {-0.1, 0.1}) {
|
|
transmatrix Lorentz = Id;
|
|
Lorentz[0][0] = Lorentz[3][3] = cosh(cc);
|
|
Lorentz[0][3] = Lorentz[3][0] = sinh(cc);
|
|
hyperpoint h = Lorentz * hyperpoint(0, 0, cosh(dist), sinh(dist));
|
|
for(int s=0; s<=360; s++)
|
|
curvepoint(spin(s*degree) * h);
|
|
queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
case mdRotatedHyperboles: {
|
|
queuestr(current_display->xcenter, current_display->ycenter + current_display->radius * pconf.alpha, 0, vid.fsize, "X", ringcolor, 1, 8);
|
|
return;
|
|
}
|
|
|
|
case mdTwoHybrid: {
|
|
queuereset(mdPixel, PPR::CIRCLE);
|
|
|
|
for(int mode=0; mode<4; mode++) {
|
|
for(int s=-200; s<=200; s ++) {
|
|
ld p = tanh(s / 40.);
|
|
ld a = pconf.twopoint_param * (1+p);
|
|
ld b = pconf.twopoint_param * (1-p);
|
|
ld h = ((mode & 2) ? -1 : 1) * sqrt(asin_auto(tan_auto(a) * tan_auto(b)));
|
|
|
|
hyperpoint H = xpush(p * pconf.twopoint_param) * ypush0(h);
|
|
|
|
hyperpoint res = compute_hybrid(H, 2 | mode);
|
|
models::ori_to_scr(res);
|
|
curvepoint(res * current_display->radius);
|
|
}
|
|
queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE);
|
|
}
|
|
|
|
queuereset(pmodel, PPR::CIRCLE);
|
|
goto fallthrough;
|
|
}
|
|
|
|
case mdTwoPoint: case mdSimulatedPerspective: fallthrough: {
|
|
if(set_multi) return; /* no need */
|
|
auto T = rot_inverse(pconf.mori().get());
|
|
put_x(shiftless(T * xpush(+pconf.twopoint_param)), ringcolor >> 8);
|
|
put_x(shiftless(T * xpush(-pconf.twopoint_param)), ringcolor >> 8);
|
|
return;
|
|
}
|
|
|
|
case mdThreePoint: {
|
|
vid.linewidth *= 5;
|
|
for(int i=0; i<=3; i++) {
|
|
hyperpoint h = xspinpush0(120._deg*i, pconf.twopoint_param);
|
|
models::ori_to_scr(h);
|
|
curvepoint(h);
|
|
}
|
|
|
|
queuecurve(shiftless(Id), ringcolor, 0, PPR::SUPERLINE);
|
|
vid.linewidth /= 5;
|
|
return;
|
|
}
|
|
|
|
case mdBall: {
|
|
queuecircle(current_display->xcenter, current_display->ycenter, current_display->radius, ringcolor, PPR::OUTCIRCLE, modelcolor);
|
|
ballgeometry();
|
|
return;
|
|
}
|
|
|
|
case mdHyperboloid:
|
|
case mdHemisphere: {
|
|
if(!pconf.show_hyperboloid_flat) return;
|
|
if(models::is_hyperboloid(pmodel)) {
|
|
|
|
#if CAP_QUEUE
|
|
if(pconf.small_hyperboloid) queueaction(PPR::CIRCLE, [] { glflush(); pconf.small_hyperboloid = false; });
|
|
curvepoint(point3(0,0,1));
|
|
curvepoint(point3(0,0,-pconf.alpha));
|
|
queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE);
|
|
|
|
ld& tz = pconf.top_z;
|
|
ld z = acosh(tz);
|
|
|
|
hyperpoint a = xpush0(z);
|
|
ld cb = pconf.ball() [1][1];
|
|
ld sb = pconf.ball() [1][2];
|
|
|
|
if(pmodel == mdHemisphere && sphere) cb = -cb;
|
|
|
|
a[1] = sb * a[2] / cb;
|
|
a[0] = sqrt(-1 + a[2] * a[2] - a[1] * a[1]);
|
|
|
|
curvepoint(point3(0,0,-pconf.alpha));
|
|
curvepoint(a);
|
|
curvepoint(point3(0,0,0));
|
|
a[0] = -a[0];
|
|
curvepoint(a);
|
|
curvepoint(point3(0,0,-pconf.alpha));
|
|
queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE);
|
|
|
|
curvepoint(point3(-1,0,0));
|
|
curvepoint(point3(1,0,0));
|
|
queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE);
|
|
|
|
a[1] = sb * tz / cb;
|
|
a[0] = sqrt(tz * tz - a[1] * a[1]);
|
|
a[2] = tz - pconf.alpha;
|
|
|
|
curvepoint(a);
|
|
curvepoint(point3(0,0,-pconf.alpha));
|
|
a[0] = -a[0];
|
|
curvepoint(a);
|
|
queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE);
|
|
if(pconf.small_hyperboloid) queueaction(PPR::CIRCLE, [] { glflush(); pconf.small_hyperboloid = true; });
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
void queuestraight(hyperpoint X, int style, color_t lc, color_t fc, PPR p) {
|
|
|
|
hyperpoint H0, H1;
|
|
applymodel(shiftless(X), H0);
|
|
H0 *= current_display->radius;
|
|
ld mul0 = hypot(vid.xres, vid.yres) / hypot_d(2, H0);
|
|
|
|
if(style == 1) {
|
|
H1 = H0 * -mul0;
|
|
}
|
|
else {
|
|
applymodel(shiftless(pispin * X), H1);
|
|
H1 *= current_display->radius;
|
|
}
|
|
|
|
ld mul1 = hypot(vid.xres, vid.yres) / hypot_d(2, H1);
|
|
|
|
queuereset(mdPixel, p);
|
|
curvepoint(H0 + spin90() * H0 * mul0);
|
|
curvepoint(H0 - spin90() * H0 * mul0);
|
|
curvepoint(H1 + spin90() * H1 * mul1);
|
|
curvepoint(H1 - spin90() * H1 * mul1);
|
|
curvepoint(H0 + spin90() * H0 * mul0);
|
|
|
|
queuecurve(shiftless(Id), lc, fc, p).flags |= POLY_ALWAYS_IN | POLY_FORCEWIDE;
|
|
queuereset(pmodel, p);
|
|
/*
|
|
for(int i=0; i<1; i++) {
|
|
hyperpoint h = spin(i * 45 * degree) * X;
|
|
hyperpoint res;
|
|
applymodel(h, res);
|
|
if(hypot2(res) < 1000 && !std::isnan(res[0]) && !std::isnan(res[1]))
|
|
queuestr(h, 16, "X", 0xFF0000 + i * 0x20);
|
|
} */
|
|
}
|
|
|
|
/** ball is written as cspin(0, 1, alpha) * cspin(2, 1, beta) * cspin(0, 2, gamma) */
|
|
struct ball_deconstruct {
|
|
ld alpha, beta, gamma;
|
|
transmatrix talpha, tbeta, tgamma, igamma;
|
|
ld cos_beta, sin_beta;
|
|
};
|
|
|
|
/** create a ball_deconstruct object */
|
|
ball_deconstruct deconstruct_ball() {
|
|
// (0,1,0) -> (0, cos beta, sin beta) -> (sin alpha, cos beta * cos alpha, sin beta)
|
|
hyperpoint h = pconf.ball() * point3(0, 1, 0);
|
|
ball_deconstruct d;
|
|
if(h[0] == 0 && h[1] == 0) { println(hlog, "gimbal lock"); return d; }
|
|
d.alpha = atan2(h[0], h[1]);
|
|
d.beta = atan2(h[2], hypot(h[0], h[1]));
|
|
d.cos_beta = cos(d.beta);
|
|
d.sin_beta = sin(d.beta);
|
|
d.talpha = cspin(0, 1, d.alpha);
|
|
d.tbeta = cspin(2, 1, d.beta);
|
|
d.tgamma = rot_inverse(d.tbeta) * rot_inverse(d.talpha) * pconf.ball();
|
|
h = d.tgamma * point3(0, 0, 1);
|
|
d.gamma = atan2(h[0], h[2]);
|
|
if(!eqmatrix(d.tgamma, cspin(0, 2, d.gamma))) println(hlog, "deconstruction failed");
|
|
d.igamma = cspin(1, 0, d.gamma);
|
|
return d;
|
|
}
|
|
|
|
EX void draw_boundary(int w) {
|
|
|
|
if((nonisotropic || gproduct) && pmodel == mdDisk) {
|
|
queuecircle(current_display->xcenter, current_display->ycenter, current_display->radius, ringcolor, PPR::OUTCIRCLE, modelcolor);
|
|
return;
|
|
}
|
|
|
|
if(w == 1) return;
|
|
if(nonisotropic || (euclid && !among(pmodel, mdFisheye, mdFisheye2, mdConformalSquare, mdHemisphere)) || gproduct) return;
|
|
#if CAP_VR
|
|
if(vrhr::active() && pmodel == mdHyperboloid) return;
|
|
#endif
|
|
|
|
dynamicval<ld> lw(vid.linewidth, vid.linewidth * vid.multiplier_ring);
|
|
|
|
color_t lc = ringcolor;
|
|
color_t fc = modelcolor;
|
|
PPR p = PPR::OUTCIRCLE;
|
|
|
|
if(haveaura()) lc = 0;
|
|
if(lc == 0 && fc == 0) return;
|
|
if(pmodel == mdRotatedHyperboles) return;
|
|
|
|
ld fakeinf = sphere ? M_PI-1e-5 : hyperbolic ? 10 : exp(10);
|
|
|
|
#if CAP_SVG
|
|
dynamicval<ld> dw(vid.linewidth, vid.linewidth * (svg::in ? svg::divby : 1));
|
|
#endif
|
|
|
|
if(elliptic && !among(pmodel, mdBand, mdBandEquidistant, mdBandEquiarea, mdSinusoidal, mdMollweide, mdCollignon)) {
|
|
dynamicval<ld> d(vid.linewidth, vid.linewidth * periodwidth);
|
|
circle_around_center(90._deg, periodcolor, 0, PPR::CIRCLE);
|
|
}
|
|
|
|
int broken_coord = models::get_broken_coord(pmodel);
|
|
if(broken_coord) {
|
|
dynamicval<ld> d(vid.linewidth, vid.linewidth * periodwidth);
|
|
int unbroken_coord = 3 - broken_coord;
|
|
const ld eps = 1e-3;
|
|
const ld rem = sqrt(1-eps*eps);
|
|
for(int s: {-1, 1}) {
|
|
for(int a=1; a<180; a++) {
|
|
hyperpoint h = Hypc;
|
|
h[broken_coord] = -sin_auto(a*degree) * rem;
|
|
h[0] = sin_auto(a*degree) * eps * s;
|
|
h[unbroken_coord] = cos_auto(a*degree);
|
|
models::ori_to_scr(h);
|
|
curvepoint(h);
|
|
}
|
|
queuecurve(shiftless(Id), periodcolor, 0, PPR::CIRCLE).flags |= POLY_FORCEWIDE;
|
|
}
|
|
}
|
|
|
|
if(pmodel == mdWerner && hyperbolic) return;
|
|
|
|
switch(pmodel) {
|
|
|
|
case mdTwoPoint: {
|
|
if(twopoint_do_flips || current_display->separate_eyes() || !sphere) return;
|
|
queuereset(mdPixel, p);
|
|
|
|
for(int b=-1; b<=1; b+=2)
|
|
for(ld a=-90; a<=90+1e-6; a+=pow(.5, vid.linequality)) {
|
|
ld x = sin(a * pconf.twopoint_param * b / 90);
|
|
ld y = 0;
|
|
ld z = -sqrt(1 - x*x);
|
|
hyperpoint h0 = hpxyz(x, y, z);
|
|
models::ori_to_scr(h0);
|
|
hyperpoint h1;
|
|
applymodel(shiftless(h0), h1);
|
|
|
|
models::scr_to_ori(h1);
|
|
h1[1] = abs(h1[1]) * b;
|
|
models::ori_to_scr(h1);
|
|
curvepoint(h1);
|
|
}
|
|
|
|
queuecurve(shiftless(Id), lc, fc, p).flags |= POLY_FORCEWIDE;
|
|
queuereset(pmodel, p);
|
|
return;
|
|
}
|
|
|
|
case mdBand: case mdBandEquidistant: case mdBandEquiarea: case mdSinusoidal: case mdMollweide: case mdCentralCyl: case mdCollignon:
|
|
case mdGallStereographic: case mdMiller:
|
|
{
|
|
if(GDIM == 3) return;
|
|
if(pmodel == mdBand && pconf.model_transition != 1) return;
|
|
bool bndband = (among(pmodel, mdBand, mdMiller, mdGallStereographic, mdCentralCyl) ? hyperbolic : sphere);
|
|
transmatrix T = pconf.mori().get();
|
|
ld right = 90._deg - 1e-5;
|
|
if(bndband)
|
|
queuestraight(T * ypush0(hyperbolic ? 10 : right), 2, lc, fc, p);
|
|
ld xperiod = elliptic ? fakeinf/2 : fakeinf;
|
|
if(sphere && !bndband) {
|
|
dynamicval<ld> d(vid.linewidth, vid.linewidth * periodwidth);
|
|
queuestraight(T * xpush0(xperiod), 2, periodcolor, 0, PPR::CIRCLE);
|
|
}
|
|
if(sphere && bndband) {
|
|
dynamicval<ld> d(vid.linewidth, vid.linewidth * periodwidth);
|
|
ld adegree = degree-1e-6;
|
|
for(ld a=-90; a<90+1e-6; a+=pow(.5, vid.linequality)) {
|
|
curvepoint(T * xpush(xperiod) * ypush0(a * adegree));
|
|
}
|
|
for(ld a=-90; a<90+1e-6; a+=pow(.5, vid.linequality)) {
|
|
curvepoint(T * xpush(-xperiod) * ypush0(-a * adegree));
|
|
}
|
|
curvepoint(T * xpush(xperiod) * ypush0(-90 * adegree));
|
|
queuecurve(shiftless(Id), periodcolor, 0, PPR::CIRCLE).flags |= POLY_FORCEWIDE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
case mdHalfplane:
|
|
if(hyperbolic && GDIM == 2) {
|
|
transmatrix Ori = pconf.mori().get();
|
|
queuestraight(Ori * spin270() * xpush0(fakeinf), 1, lc, fc, p);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case mdHemisphere: {
|
|
auto d = deconstruct_ball();
|
|
if(hyperbolic) {
|
|
queuereset(mdPixel, p);
|
|
for(int i=0; i<=360; i++) {
|
|
ld c1 = cos(i * degree - d.gamma);
|
|
ld s1 = sin(i * degree - d.gamma);
|
|
curvepoint(point3(current_display->radius * c1, current_display->radius * s1 * (d.cos_beta * s1 >= 0 - 1e-6 ? 1 : abs(d.sin_beta)), 0));
|
|
}
|
|
queuecurve_reuse(shiftless(d.talpha), lc, fc, p);
|
|
queuereset(pmodel, p);
|
|
|
|
p = PPR::CIRCLE; fc = 0;
|
|
queuereset(mdPixel, p);
|
|
queuecurve(shiftless(d.talpha), lc, fc, p);
|
|
|
|
for(int i=0; i<=360; i++) {
|
|
ld c = cos(i * degree);
|
|
ld s = sin(i * degree);
|
|
curvepoint(point3(current_display->radius * c, current_display->radius * s * d.sin_beta, 0));
|
|
}
|
|
queuecurve(shiftless(d.talpha), lc, fc, p);
|
|
queuereset(pmodel, p);
|
|
}
|
|
if(euclid) {
|
|
queuereset(mdPixel, p);
|
|
for(int i=0; i<=360; i++) {
|
|
curvepoint(point3(current_display->radius * cos(i * degree), current_display->radius * sin(i * degree), 0));
|
|
}
|
|
queuecurve_reuse(shiftless(Id), lc, fc, p);
|
|
queuereset(pmodel, p);
|
|
|
|
queuereset(mdPixel, PPR::CIRCLE);
|
|
queuecurve(shiftless(Id), lc, 0, PPR::CIRCLE);
|
|
queuereset(pmodel, PPR::CIRCLE);
|
|
}
|
|
if(sphere) goto as_hyperboloid;
|
|
return;
|
|
}
|
|
|
|
case mdHyperboloid: {
|
|
if(hyperbolic) {
|
|
as_hyperboloid:
|
|
auto d = deconstruct_ball();
|
|
ld& tz = pconf.top_z;
|
|
ld mz = acosh(tz);
|
|
|
|
for(int it=0; it < (sphere ? 2 : 1); it++) {
|
|
auto fc1 = fc;
|
|
auto p1 = p;
|
|
|
|
if(abs(d.sin_beta) <= abs(d.cos_beta) + 1e-5) {
|
|
queuereset(mdPixel, p1);
|
|
int steps = 100 << vid.linequality;
|
|
|
|
hyperpoint a;
|
|
|
|
auto hpolar = [] (ld phi, ld r) {
|
|
ld s = sinh(r);
|
|
return point3(cos(phi) * s, -sin(phi) * s, cosh(r));
|
|
};
|
|
|
|
auto hform = [&] (hyperpoint h) {
|
|
h = hyperboloid_form(d.igamma * h);
|
|
h[0] *= current_display->radius; h[1] *= current_display->radius; h[2] = 0;
|
|
if(it) h[0] *= -1, h[1] *= -1;
|
|
return h;
|
|
};
|
|
|
|
for(int ts=-steps; ts<=steps; ts++) {
|
|
ld t = ts * 1. / steps;
|
|
a = hpolar(0, t * mz);
|
|
if(t != 0) {
|
|
a[1] = d.sin_beta * a[2] / -d.cos_beta;
|
|
ld v = -1 + a[2] * a[2] - a[1] * a[1];
|
|
if(v < 0) continue;
|
|
a[0] = sqrt(v);
|
|
if(t < 0) a[0] = -a[0];
|
|
}
|
|
curvepoint(hform(a));
|
|
}
|
|
|
|
if((d.sin_beta > 0) ^ (d.cos_beta < 0)) {
|
|
ld alpha = (M_PI - atan2(a[0], -a[1])) / steps;
|
|
|
|
for(int ts=-steps; ts<=steps; ts++)
|
|
curvepoint(hform(hpolar(-90._deg - ts * alpha, mz)));
|
|
}
|
|
else {
|
|
ld alpha = - atan2(a[0], -a[1]) / steps;
|
|
|
|
for(int ts=-steps; ts<=steps; ts++)
|
|
curvepoint(hform(hpolar(+90._deg - ts * alpha, mz)));
|
|
}
|
|
|
|
queuecurve_reuse(shiftless(Id), lc, fc1, p1);
|
|
queuereset(pmodel, p1);
|
|
fc1 = 0; p1 = PPR::CIRCLE;
|
|
queuereset(mdPixel, p1);
|
|
queuecurve(shiftless(Id), lc, fc1, p1);
|
|
queuereset(pmodel, p1);
|
|
}
|
|
|
|
int mul = pconf.small_hyperboloid ? 2 : 1;
|
|
for(ld t=0; t<=360; t ++)
|
|
curvepoint(xspinpush0(t * degree, it ? M_PI - mz * mul: mz * mul));
|
|
|
|
if(p1 == PPR::OUTCIRCLE) { queuecurve_reuse(shiftless(Id), lc, fc1, p1); fc1 = 0; p1 = PPR::CIRCLE; }
|
|
queuecurve(shiftless(Id), lc, fc1, p1);
|
|
}
|
|
}
|
|
else if(sphere) {
|
|
queuereset(mdPixel, p);
|
|
for(int i=0; i<=360; i++) {
|
|
curvepoint(point3(current_display->radius * cos(i * degree)/3, current_display->radius * sin(i * degree)/3, 0));
|
|
}
|
|
queuecurve_reuse(shiftless(Id), lc, fc, p);
|
|
queuereset(pmodel, p);
|
|
|
|
queuereset(mdPixel, PPR::CIRCLE);
|
|
queuecurve(shiftless(Id), lc, 0, PPR::CIRCLE);
|
|
queuereset(pmodel, PPR::CIRCLE);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case mdSpiral: {
|
|
if(euclid) return;
|
|
if(models::ring_not_spiral) return;
|
|
// if(p == PPR::CIRCLE) p = PPR::OUTCIRCLE;
|
|
auto& sm = models::spiral_multiplier;
|
|
ld u = hypot(1, imag(sm) / real(sm));
|
|
if(real(sm)) {
|
|
queuereset(mdPixel, p);
|
|
for(ld a=-10; a<=10; a+=0.01 / (1 << vid.linequality) / u) {
|
|
cld z = exp(cld(a, a * imag(sm) / real(sm) + M_PI));
|
|
hyperpoint ret = point2(real(z), imag(z));
|
|
ret = mobius(ret, pconf.skiprope, 1);
|
|
ret *= current_display->radius;
|
|
models::ori_to_scr(ret);
|
|
curvepoint(ret);
|
|
}
|
|
queuecurve(shiftless(Id), ringcolor, 0, p).flags |= POLY_ALWAYS_IN;
|
|
queuereset(pmodel, p);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case mdBall:
|
|
/* circle_around_center not wanted */
|
|
return;
|
|
|
|
default:
|
|
if(models::is_perspective(pmodel)) return;
|
|
break;
|
|
}
|
|
|
|
if(sphere && pmodel == mdDisk && pconf.alpha > 1) {
|
|
double rad = current_display->radius / sqrt(pconf.alpha*pconf.alpha - 1);
|
|
queuecircle(current_display->xcenter, current_display->ycenter, rad, lc, p, fc);
|
|
return;
|
|
}
|
|
|
|
if(sphere && !among(pmodel, mdEquidistant, mdEquiarea)) return;
|
|
circle_around_center(fakeinf, lc, fc, p);
|
|
}
|
|
#endif
|
|
|
|
EX void change_shift(shiftpoint& h, ld by) {
|
|
if(!by) return;
|
|
h.shift += by;
|
|
if(sl2) {
|
|
ld ca = cos(by), sa = sin(by);
|
|
tie(h[2], h[3]) = make_pair(h[2] * ca - h[3] * sa, h[3] * ca + h[2] * sa);
|
|
tie(h[0], h[1]) = make_pair(h[0] * ca - h[1] * sa, h[1] * ca + h[0] * sa);
|
|
}
|
|
else if((mdinf[pmodel].flags & mf::uses_bandshift) || (sphere && pmodel == mdSpiral)) {
|
|
models::scr_to_ori(h.h);
|
|
h.h = xpush(-by) * h.h;
|
|
models::ori_to_scr(h.h);
|
|
}
|
|
}
|
|
|
|
EX void change_shift(shiftmatrix& T, ld by) {
|
|
if(!by) return;
|
|
T.shift += by;
|
|
if(sl2) {
|
|
ld ca = cos(by), sa = sin(by);
|
|
for(int a=0; a<4; a++) {
|
|
tie(T[2][a], T[3][a]) = make_pair(T[2][a] * ca - T[3][a] * sa, T[3][a] * ca + T[2][a] * sa);
|
|
tie(T[0][a], T[1][a]) = make_pair(T[0][a] * ca - T[1][a] * sa, T[1][a] * ca + T[0][a] * sa);
|
|
}
|
|
}
|
|
else if((mdinf[pmodel].flags & mf::uses_bandshift) || (sphere && pmodel == mdSpiral)) {
|
|
models::scr_to_ori(T.T);
|
|
T.T = xpush(-by) * T.T;
|
|
fixmatrix(T.T);
|
|
models::ori_to_scr(T.T);
|
|
}
|
|
}
|
|
|
|
EX transmatrix unshift(shiftmatrix T, ld to IS(0)) {
|
|
change_shift(T, to - T.shift);
|
|
return T.T;
|
|
}
|
|
|
|
EX hyperpoint unshift(shiftpoint T, ld to IS(0)) {
|
|
change_shift(T, to - T.shift);
|
|
return T.h;
|
|
}
|
|
|
|
EX transmatrix inverse_shift(const shiftmatrix& T1, const shiftmatrix& T2) {
|
|
return iso_inverse(T1.T) * unshift(T2, T1.shift);
|
|
}
|
|
|
|
EX hyperpoint inverse_shift(const shiftmatrix& T1, const shiftpoint& T2) {
|
|
return iso_inverse(T1.T) * unshift(T2, T1.shift);
|
|
}
|
|
|
|
EX void optimize_shift(shiftpoint& h) {
|
|
if(sl2) {
|
|
change_shift(h, atan2(h[2], h[3]));
|
|
}
|
|
}
|
|
|
|
EX void optimize_shift(shiftmatrix& T) {
|
|
|
|
if(sl2) {
|
|
change_shift(T, atan2(T[2][3], T[3][3]));
|
|
if(hybrid::csteps) {
|
|
auto period = (M_PI * hybrid::csteps) / cgi.psl_steps;
|
|
while(T.shift > period*.4999)
|
|
T.shift -= period;
|
|
while(T.shift < -period*.5001)
|
|
T.shift += period;
|
|
}
|
|
return;
|
|
}
|
|
|
|
else if(((mdinf[pmodel].flags & mf::uses_bandshift) && T[LDIM][LDIM] > 30) || (sphere && pmodel == mdSpiral)) {
|
|
models::scr_to_ori(T.T);
|
|
hyperpoint H = tC0(T.T);
|
|
find_zlev(H);
|
|
|
|
ld y = asin_auto(H[1]);
|
|
ld x = asin_auto_clamp(H[0] / cos_auto(y));
|
|
if(sphere) {
|
|
if(H[LDIM] < 0 && x > 0) x = M_PI - x;
|
|
else if(H[LDIM] < 0 && x <= 0) x = -M_PI - x;
|
|
}
|
|
T.shift += x;
|
|
T.T = xpush(-x) * T.T;
|
|
fixmatrix(T.T);
|
|
models::ori_to_scr(T.T);
|
|
}
|
|
}
|
|
|
|
EX shiftmatrix optimized_shift(const shiftmatrix& T) {
|
|
shiftmatrix U = T;
|
|
optimize_shift(U);
|
|
return U;
|
|
}
|
|
|
|
EX namespace dq {
|
|
EX queue<pair<heptagon*, shiftmatrix>> drawqueue;
|
|
|
|
EX unsigned bucketer(const shiftpoint& T) {
|
|
if(cgi.emb->is_euc_in_sl2()) {
|
|
auto T1 = T; optimize_shift(T1);
|
|
return bucketer(T1.h) + unsigned(floor(T1.shift*81527+.5));
|
|
}
|
|
return bucketer(T.h) + unsigned(floor(T.shift*81527+.5));
|
|
}
|
|
|
|
EX set<heptagon*> visited;
|
|
EX void enqueue(heptagon *h, const shiftmatrix& T) {
|
|
if(!h || visited.count(h)) { return; }
|
|
visited.insert(h);
|
|
drawqueue.emplace(h, T);
|
|
}
|
|
|
|
EX set<unsigned> visited_by_matrix;
|
|
EX void enqueue_by_matrix(heptagon *h, const shiftmatrix& T) {
|
|
if(!h) return;
|
|
unsigned b = bucketer(T * tile_center());
|
|
if(visited_by_matrix.count(b)) { return; }
|
|
visited_by_matrix.insert(b);
|
|
drawqueue.emplace(h, T);
|
|
}
|
|
|
|
EX queue<pair<cell*, shiftmatrix>> drawqueue_c;
|
|
EX set<cell*> visited_c;
|
|
|
|
EX void enqueue_c(cell *c, const shiftmatrix& T) {
|
|
if(!c || visited_c.count(c)) { return; }
|
|
visited_c.insert(c);
|
|
drawqueue_c.emplace(c, T);
|
|
}
|
|
|
|
EX void enqueue_by_matrix_c(cell *c, const shiftmatrix& T) {
|
|
if(!c) return;
|
|
unsigned b = bucketer(T * tile_center());
|
|
if(visited_by_matrix.count(b)) { return; }
|
|
visited_by_matrix.insert(b);
|
|
drawqueue_c.emplace(c, T);
|
|
}
|
|
|
|
EX void clear_all() {
|
|
visited.clear();
|
|
visited_by_matrix.clear();
|
|
visited_c.clear();
|
|
while(!drawqueue_c.empty()) drawqueue_c.pop();
|
|
while(!drawqueue.empty()) drawqueue.pop();
|
|
}
|
|
|
|
|
|
EX }
|
|
|
|
EX bool do_draw(cell *c) {
|
|
// do not display out of range cells, unless on torus
|
|
if(c->pathdist == PINFD && !(meuclid && quotient) && vid.use_smart_range == 0)
|
|
return false;
|
|
// do not display not fully generated cells, unless changing range allowed
|
|
if(c->mpdist > 7 && !allowChangeRange()) return false;
|
|
// in the Yendor Challenge, scrolling back is forbidden
|
|
if(c->cpdist > get_sightrange() && (yendor::on || isHaunted(cwt.at->land)) && !cheater && !autocheat) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
EX ld extra_generation_distance = 99;
|
|
|
|
// returns false if limited
|
|
EX bool limited_generation(cell *c) {
|
|
if(c->mpdist <= 7) return true;
|
|
if(cells_generated > vid.cells_generated_limit) return false;
|
|
setdist(c, 7, c);
|
|
cells_generated++;
|
|
return true;
|
|
}
|
|
|
|
EX int min_cells_drawn = 50;
|
|
|
|
EX hookset<int(cell*,const shiftmatrix&)> hooks_do_draw;
|
|
|
|
EX bool do_draw(cell *c, const shiftmatrix& T) {
|
|
int h = callhandlers(0, hooks_do_draw, c, T);
|
|
if(h) return h > 0;
|
|
|
|
if(WDIM == 3) {
|
|
// do not care about cells outside of the track
|
|
if(GDIM == 3 && racing::on && c->land == laMemory && cells_drawn >= S7+1) return false;
|
|
|
|
if(cells_drawn > vid.cells_drawn_limit) return false;
|
|
if(cells_drawn < min_cells_drawn) { limited_generation(c); return true; }
|
|
#if MAXMDIM >= 4
|
|
if(nil && models::is_perspective(pmodel)) {
|
|
ld dist = hypot_d(3, inverse_exp(tC0(T), pQUICK));
|
|
if(dist > sightranges[geometry] + (vid.sloppy_3d ? 0 : 0.9)) return false;
|
|
if(dist <= extra_generation_distance && !limited_generation(c)) return false;
|
|
}
|
|
else if(sol && models::is_perspective(pmodel)) {
|
|
if(!nisot::in_table_range(tC0(T.T))) return false;
|
|
if(!limited_generation(c)) return false;
|
|
}
|
|
else if(nih && models::is_perspective(pmodel)) {
|
|
hyperpoint h = inverse_exp(tC0(T), pQUICK);
|
|
ld dist = hypot_d(3, h);
|
|
if(dist > sightranges[geometry] + (vid.sloppy_3d ? 0 : cgi.corner_bonus)) return false;
|
|
if(dist <= extra_generation_distance && !limited_generation(c)) return false;
|
|
}
|
|
else if(sl2 && models::is_perspective(pmodel)) {
|
|
if(hypot(tC0(T.T)[2], tC0(T.T)[3]) > cosh(slr::range_xy)) return false;
|
|
if(abs(T.shift) > (slr::range_z)) return false;
|
|
if(abs(T.shift * stretch::not_squared()) > sightranges[geometry]) return false;
|
|
if(!limited_generation(c)) return false;
|
|
}
|
|
#endif
|
|
else if(vid.use_smart_range) {
|
|
if(cells_drawn >= min_cells_drawn && !in_smart_range(T)) return false;
|
|
if(!limited_generation(c)) return false;
|
|
}
|
|
else {
|
|
ld dist = hdist0(tC0(T.T));
|
|
if(dist > sightranges[geometry] + (vid.sloppy_3d ? 0 : cgi.corner_bonus)) return false;
|
|
if(dist <= extra_generation_distance && !limited_generation(c)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#if MAXMDIM >= 4
|
|
if(hybrid::drawing_underlying && euclid && hdist0(tC0(T)) > 6) return false;
|
|
#endif
|
|
if(just_gmatrix && sphere) return true;
|
|
if(!do_draw(c)) return false;
|
|
if(euclid && pmodel == mdSpiral) {
|
|
hyperpoint h = tC0(T.T);
|
|
cld z(h[0], h[1]);
|
|
z = z * models::spiral_multiplier;
|
|
ld iz = imag(z) + 1.14279e-2; // make it never fall exactly on PI
|
|
if(iz < -M_PI || iz >= M_PI) return false;
|
|
}
|
|
if(pmodel == mdSpiral && models::ring_not_spiral) {
|
|
cld z;
|
|
shiftpoint H = tC0(T);
|
|
hyperpoint ret;
|
|
makeband(H, ret, band_conformal);
|
|
z = cld(ret[0], ret[1]) * models::spiral_multiplier;
|
|
if(imag(z) < -models::spiral_cone_rad/2-1e-5 || imag(z) >= models::spiral_cone_rad/2-1e-5) return false;
|
|
}
|
|
if(cells_drawn > vid.cells_drawn_limit) return false;
|
|
bool usr = vid.use_smart_range || quotient;
|
|
if(usr && cells_drawn >= min_cells_drawn && !in_smart_range(T) && !(WDIM == 2 && GDIM == 3 && hdist0(tC0(T)) < 2.5)) return false;
|
|
if(vid.use_smart_range == 2 && !limited_generation(c)) return false;
|
|
return true;
|
|
}
|
|
|
|
EX int cone_side(const shiftpoint H) {
|
|
hyperpoint ret;
|
|
if(hyperbolic) makeband(H, ret, band_conformal);
|
|
else ret = unshift(H);
|
|
cld z = cld(ret[0], ret[1]) * models::spiral_multiplier;
|
|
|
|
auto zth = [&] (cld z) {
|
|
ld alpha = imag(z) * 360 / pconf.spiral_cone;
|
|
ld r = real(z);
|
|
r = exp(r);
|
|
|
|
hyperpoint ret;
|
|
|
|
ret[0] = -sin(alpha) * r;
|
|
ret[1] = cos(alpha) * r;
|
|
ret[2] = (r-1) * sqrt( pow(360/pconf.spiral_cone, 2) - 1);
|
|
|
|
ret = pconf.ball() * ret;
|
|
return ret;
|
|
};
|
|
|
|
hyperpoint ret0 = zth(z);
|
|
hyperpoint ret1 = zth(z + cld(1e-3, 0));
|
|
hyperpoint ret2 = zth(z + cld(0, 1e-3));
|
|
|
|
return (ret1[1] - ret0[1]) * (ret2[0] - ret0[0]) < (ret2[1] - ret0[1]) * (ret1[0] - ret0[0]) ? 1 : -1;
|
|
}
|
|
|
|
/** get the current orientation of the view */
|
|
EX transmatrix& get_view_orientation() {
|
|
return gproduct ? NLP : View;
|
|
}
|
|
|
|
EX hookset<bool(const transmatrix&)> hooks_rotate_view;
|
|
EX hookset<bool(const hyperpoint&)> hooks_shift_view;
|
|
|
|
/** rotate the view using the given rotation matrix */
|
|
EX void rotate_view(transmatrix T) {
|
|
if(callhandlers(false, hooks_rotate_view, T)) return;
|
|
for(auto pV: move_affected_matrices(3)) (*pV) = T * (*pV);
|
|
}
|
|
|
|
EX shiftpoint lie_exp(hyperpoint h1) {
|
|
shiftpoint sh = shiftless(h1);
|
|
auto& h = sh.h;
|
|
if(nil) {
|
|
h[3] = 1;
|
|
h[2] += h[0] * h[1] / 2;
|
|
}
|
|
else if(sol && !nih) {
|
|
h[3] = 1;
|
|
if(abs(h[2]) > 1e-6) {
|
|
h[0] *= (exp(-h[2]) - 1) / -h[2];
|
|
h[1] *= (exp(+h[2]) - 1) / h[2];
|
|
}
|
|
}
|
|
else if(sol && nih) {
|
|
h[3] = 1;
|
|
if(abs(h[2]) > 1e-6) {
|
|
ld z = h[2] * log(2);
|
|
h[0] *= (exp(-z) - 1) / -z;
|
|
z = h[2] * log(3);
|
|
h[1] *= (exp(+z) - 1) / z;
|
|
}
|
|
}
|
|
else if(nih) {
|
|
h[3] = 1;
|
|
if(abs(h[2]) > 1e-6) {
|
|
ld z = h[2] * log(2);
|
|
h[0] *= (exp(+z) - 1) / z;
|
|
z = h[2] * log(3);
|
|
h[1] *= (exp(+z) - 1) / z;
|
|
}
|
|
}
|
|
else if(sl2) {
|
|
h[3] = 0;
|
|
ld v = h[0] * h[0] + h[1] * h[1] - h[2] * h[2];
|
|
if(v < 0) {
|
|
v = sqrt(-v);
|
|
h *= sin(v) / v;
|
|
h[3] += cos(v);
|
|
ld cycles = floor(v / TAU + .5);
|
|
sh.shift += TAU * cycles * (h[2] > 0 ? 1 : -1);
|
|
}
|
|
else if(v > 0) {
|
|
v = sqrt(v);
|
|
h *= sinh(v) / v;
|
|
h[3] += cosh(v);
|
|
}
|
|
else h[3]++;
|
|
return sh;
|
|
}
|
|
else {
|
|
/* not implemented -- approximate for now */
|
|
const int steps = 16;
|
|
h /= (1<<steps);
|
|
h[3] = 1;
|
|
normalize(h);
|
|
transmatrix T = eupush(h);
|
|
for(int i=0; i<16; i++) T = T * T;
|
|
h = tC0(T);
|
|
}
|
|
return sh;
|
|
}
|
|
|
|
/** Compute the Lie logarithm in SL(2,R), which corresponds to a geodesic in AdS; or a geodesic in de Sitter space.
|
|
**/
|
|
|
|
#if MAXMDIM >= 4
|
|
EX hyperpoint rel_log(shiftpoint h, bool relativistic_length) {
|
|
if(sl2) {
|
|
optimize_shift(h);
|
|
ld cycles = floor(h.shift / TAU + .5);
|
|
hyperpoint h1 = unshift(h);
|
|
ld choice = h1[2] * h1[2] - h1[0] * h1[0] - h1[1] * h1[1];
|
|
ld r, z;
|
|
if(choice > 0) {
|
|
r = sqrt(choice);
|
|
z = asin_clamp(r);
|
|
if(h1[3] < 0) z = M_PI - z;
|
|
z += cycles * TAU;
|
|
}
|
|
else if(cycles || h1[3] < -1) {
|
|
/* impossible, or light-like */
|
|
r = 1; z = 0;
|
|
}
|
|
else if(choice == 0) {
|
|
if(!relativistic_length) return h1 - C0;
|
|
/* impossible, or light-like */
|
|
r = 1; z = 0;
|
|
}
|
|
else {
|
|
r = sqrt(-choice);
|
|
z = asinh(r);
|
|
}
|
|
h1 = h1 * z / r;
|
|
h1[3] = 0;
|
|
return h1;
|
|
}
|
|
if(hyperbolic && GDIM == 3) {
|
|
hyperpoint h1 = h.h;
|
|
ld choice = h1[3] * h1[3] - h1[0] * h1[0] - h1[1] * h1[1];
|
|
ld r, z;
|
|
if(choice > 0) { r = sqrt(choice); z = asinh(r); }
|
|
else { r = sqrt(-choice); z = asin_clamp(r); if(h1[2] < 0) z = M_PI - z; }
|
|
if(!relativistic_length) r = sqrt(h1[3] * h1[3] + h1[0] * h1[0] + h1[1] * h1[1]);
|
|
h1 = h1 * z / r; h1[2] = h1[3]; h1[3] = 0;
|
|
return h1;
|
|
}
|
|
throw hr_exception("rel_log in wrong geometry");
|
|
}
|
|
#endif
|
|
|
|
/** Is Lie movement available? Depends on map geometry, not ambient geometry. */
|
|
EX bool lie_movement_available() {
|
|
if(nonisotropic && !embedded_plane) return true;
|
|
if(mhyperbolic && bt::in()) return true;
|
|
return false;
|
|
}
|
|
|
|
EX hyperpoint lie_log(const shiftpoint h1) {
|
|
hyperpoint h = unshift(h1);
|
|
if(0) ;
|
|
#if MAXMDIM >= 4
|
|
else if(nil) {
|
|
h[3] = 0;
|
|
h[2] -= nilv::model_used * nilv::sym_to_heis_bonus(h);
|
|
}
|
|
else if(sol && !nih) {
|
|
h[3] = 0;
|
|
if(abs(h[2]) > 1e-6) {
|
|
h[0] *= -h[2] / (exp(-h[2]) - 1);
|
|
h[1] *= h[2] / (exp(+h[2]) - 1);
|
|
}
|
|
}
|
|
else if(sol && nih) {
|
|
h[3] = 0;
|
|
if(abs(h[2]) > 1e-6) {
|
|
ld z = h[2] * log(2);
|
|
h[0] *= -z / (exp(-z) - 1);
|
|
z = h[2] * log(3);
|
|
h[1] *= z / (exp(+z) - 1);
|
|
}
|
|
}
|
|
else if(nih) {
|
|
h[3] = 1;
|
|
if(abs(h[2]) > 1e-6) {
|
|
ld z = h[2] * log(2);
|
|
h[0] *= z / (exp(+z) - 1);
|
|
z = h[2] * log(3);
|
|
h[1] *= z / (exp(+z) - 1);
|
|
}
|
|
}
|
|
else if(sl2) {
|
|
return rel_log(h1, false);
|
|
}
|
|
#endif
|
|
else if(euclid) {
|
|
h[LDIM] = 0;
|
|
}
|
|
else if(hyperbolic) {
|
|
h = deparabolic13(h);
|
|
if(abs(h[0]) > 1e-6)
|
|
for(int i=1; i<LDIM; i++)
|
|
h[i] *= h[0] / (exp(h[0])-1);
|
|
}
|
|
else {
|
|
/* not implemented */
|
|
}
|
|
return h;
|
|
}
|
|
|
|
/** Like lie_log but includes orientation and level in hyperbolic space. May modify H */
|
|
EX hyperpoint lie_log_correct(const shiftpoint H_orig, hyperpoint& H) {
|
|
find_zlev(H);
|
|
if(hyperbolic) {
|
|
models::scr_to_ori(H);
|
|
return lie_log(shiftless(H));
|
|
}
|
|
return lie_log(H_orig);
|
|
}
|
|
|
|
/** Shift the view according to the given tangent vector. NOTE: known bug when // note: possible error when lie_exp includes a shift!*/
|
|
EX void shift_v_by_vector(transmatrix& V, const hyperpoint H, eShiftMethod sm IS(shift_method(smaManualCamera))) {
|
|
switch(sm) {
|
|
case smProduct:
|
|
V = rgpushxto0(direct_exp(lp_iapply(H))) * V;
|
|
return;
|
|
case smIsotropic:
|
|
V = rgpushxto0(direct_exp(H)) * V;
|
|
return;
|
|
case smEmbedded:
|
|
return shift_v_embedded(V, rgpushxto0(direct_exp(H)));
|
|
case smLie: {
|
|
transmatrix IV = view_inverse(V);
|
|
transmatrix view_shift = eupush( tC0(IV) );
|
|
transmatrix rot = V * view_shift;
|
|
hyperpoint tH = lie_exp(inverse(rot) * H).h;
|
|
V = rot * eupush(tH) * inverse(view_shift);
|
|
return;
|
|
}
|
|
case smGeodesic:
|
|
V = iview_inverse(nisot::parallel_transport(view_inverse(V), -H));
|
|
return;
|
|
default:
|
|
throw hr_exception("unknown shift method (embedded not supported)");
|
|
}
|
|
}
|
|
|
|
EX transmatrix get_shift_view_of(const hyperpoint H, transmatrix V, eShiftMethod sm IS(shift_method(smaManualCamera))) {
|
|
shift_v_by_vector(V, H, sm);
|
|
return V;
|
|
}
|
|
|
|
/** shift the view according to the given tangent vector */
|
|
EX void shift_view(hyperpoint H, eShiftMethod sm IS(shift_method(smaManualCamera))) {
|
|
if(callhandlers(false, hooks_shift_view, H)) return;
|
|
static bool recursive = false;
|
|
if(!recursive && intra::in) {
|
|
dynamicval<bool> r(recursive, true);
|
|
#if CAP_PORTALS
|
|
intra::shift_view_portal(H);
|
|
#endif
|
|
return;
|
|
}
|
|
for(auto pV: move_affected_matrices(0)) *pV = get_shift_view_of(H, *pV, sm);
|
|
}
|
|
|
|
/** works in embedded_plane (except embedded product where shift_view works, and euc_in_sl2) */
|
|
EX void shift_v_embedded(transmatrix& V, const transmatrix T) {
|
|
transmatrix IV = view_inverse(V);
|
|
transmatrix rot = V * cgi.emb->map_relative_push(IV * C0);
|
|
transmatrix V1 = T * V;
|
|
transmatrix IV1 = view_inverse(V1);
|
|
transmatrix rot1 = V1 * cgi.emb->map_relative_push(IV1 * C0);
|
|
V = rot * inverse(rot1) * V1;
|
|
}
|
|
|
|
EX void shift_v_by_matrix(transmatrix& V, const transmatrix T, eShiftMethod sm) {
|
|
switch(sm) {
|
|
case smEmbedded:
|
|
return shift_v_embedded(V, T);
|
|
case smIsotropic:
|
|
case smProduct:
|
|
V = T * V;
|
|
return;
|
|
default:
|
|
throw hr_exception("unsupported shift method in shift_view_by_matrix");
|
|
}
|
|
}
|
|
|
|
EX void shift_view_to(shiftpoint H, eShiftMethod sm IS(shift_method(smaManualCamera))) {
|
|
for(auto pV: move_affected_matrices(0)) shift_v_to(*pV, H, sm);
|
|
}
|
|
|
|
EX void shift_v_to(transmatrix& V, shiftpoint H, eShiftMethod sm IS(shift_method(smaManualCamera))) {
|
|
switch(sm) {
|
|
case smIsotropic:
|
|
case smEmbedded:
|
|
case smProduct:
|
|
return shift_v_by_matrix(V, gpushxto0(unshift(H)), sm);
|
|
case smLie:
|
|
return shift_v_by_vector(V, -lie_log(H), sm);
|
|
return;
|
|
case smGeodesic:
|
|
return shift_v_by_vector(V, -inverse_exp(H), sm);
|
|
default:
|
|
throw hr_exception("unsupported shift method in shift_view_to");
|
|
}
|
|
}
|
|
|
|
EX void shift_view_towards(shiftpoint H, ld l, eShiftMethod sm IS(shift_method(smaManualCamera))) {
|
|
for(auto pV: move_affected_matrices(0)) shift_v_towards(*pV, H, l, sm);
|
|
}
|
|
|
|
EX void shift_v_towards(transmatrix& V, shiftpoint H, ld l, eShiftMethod sm IS(shift_method(smaManualCamera))) {
|
|
switch(sm) {
|
|
case smIsotropic:
|
|
case smEmbedded:
|
|
return shift_v_by_matrix(V, rspintox(unshift(H)) * xpush(-l) * spintox(unshift(H)), sm);
|
|
case smLie:
|
|
return shift_v_by_vector(V, tangent_length(lie_log(H), -l), sm);
|
|
case smGeodesic:
|
|
case smProduct: {
|
|
hyperpoint ie = inverse_exp(H, pNORMAL | pfNO_DISTANCE);
|
|
if(gproduct) ie = lp_apply(ie);
|
|
return shift_v_by_vector(V, tangent_length(ie, -l), sm);
|
|
}
|
|
default:
|
|
throw hr_exception("unsupported shift method in shift_view_towards");
|
|
}
|
|
}
|
|
|
|
EX void set_view(hyperpoint camera, hyperpoint forward, hyperpoint upward) {
|
|
if(GDIM == 2) {
|
|
View = gpushxto0(camera);
|
|
View = spin90() * spintox(View * upward) * View;
|
|
return;
|
|
}
|
|
|
|
transmatrix V = gpushxto0(camera);
|
|
forward = V * forward;
|
|
upward = V * upward;
|
|
|
|
if(pmodel == mdGeodesic || hyperbolic || sphere || euclid || mproduct) {
|
|
forward = inverse_exp(shiftless(forward));
|
|
}
|
|
else {
|
|
// apply_nil_rotation(forward);
|
|
forward -= C0;
|
|
}
|
|
|
|
if(hypot_d(3, forward) == 0) forward[0] = 1;
|
|
|
|
forward /= hypot_d(3, forward);
|
|
|
|
if(pmodel == mdGeodesic || hyperbolic || sphere || euclid || mproduct)
|
|
upward = inverse_exp(shiftless(upward));
|
|
else {
|
|
// apply_nil_rotation(upward);
|
|
upward -= C0;
|
|
}
|
|
|
|
upward -= (forward|upward) * forward;
|
|
if(hypot_d(3, upward) == 0) return;
|
|
|
|
upward /= hypot_d(3, upward);
|
|
|
|
hyperpoint rightward = (forward ^ upward);
|
|
|
|
transmatrix rotator = Id;
|
|
rotator[2] = forward;
|
|
rotator[1] = -upward;
|
|
rotator[0] = -rightward;
|
|
|
|
if(det(rotator) < 0) rotator[0] = -rotator[0];
|
|
|
|
View = iso_inverse(rgpushxto0(camera));
|
|
if(gproduct)
|
|
NLP = rotator;
|
|
else
|
|
View = rotator * View;
|
|
}
|
|
|
|
}
|