mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-15 19:55:47 +00:00
230 lines
7.4 KiB
C++
230 lines
7.4 KiB
C++
#include "rogueviz.h"
|
|
#include <unordered_map>
|
|
|
|
// heat equation simulation
|
|
// https://twitter.com/ZenoRogue/status/1208409387733307392
|
|
|
|
// run with e.g.
|
|
// -geo 1 -canvas 0 -smart 1 -smartlimit 999999 -heatx
|
|
// -tes tessellations/sample/marjorie-rice.tes heat_scale=0.02 -canvas 0 -smart 1 -smartlimit 999999 -heatx
|
|
|
|
namespace hr {
|
|
|
|
namespace heatx {
|
|
|
|
const int NOT_STARTED = 999999;
|
|
const int OFF = 999998;
|
|
|
|
int last_steps = NOT_STARTED;
|
|
|
|
std::unordered_map<cell*, double> m1, m2, m3;
|
|
|
|
ld delta = 0.01;
|
|
|
|
int mode = 1;
|
|
|
|
int qsteps = 2000;
|
|
|
|
ld frac_per_frame = .001;
|
|
|
|
ld frac;
|
|
|
|
ld scale = 0.04;
|
|
|
|
int simulation_range = 20000;
|
|
|
|
void advance_heat_wave() {
|
|
|
|
if(euclid && GDIM == 2)
|
|
pconf.scale = scale / max(frac, .15);
|
|
|
|
int steps = mode == 2 ? (frac * qsteps) : (frac * frac * qsteps);
|
|
|
|
if(steps != last_steps || mode == 3) {
|
|
celllister cl(cwt.at, 999999, simulation_range, nullptr);
|
|
if(steps < last_steps) {
|
|
last_steps = 0;
|
|
m1.clear();
|
|
m2.clear();
|
|
for(cell *c: cl.lst) m1[c] = 0;
|
|
m2 = m1;
|
|
m1[cwt.at] = 1;
|
|
}
|
|
while(last_steps < steps) {
|
|
switch(mode) {
|
|
case 0:
|
|
// heat: average of adjacent
|
|
for(cell *c: cl.lst) {
|
|
ld v = m1[c];
|
|
forCellEx(c2, c) {
|
|
if(m1.count(c2)) v += m1[c2]; else v += m1[c];
|
|
}
|
|
v /= (1 + c->type);
|
|
m2[c] = v;
|
|
}
|
|
swap(m1, m2);
|
|
break;
|
|
case 1:
|
|
// heat: transfer to adjacent
|
|
for(auto& p: m2) p.second = 0;
|
|
for(cell *c: cl.lst) {
|
|
ld v = m1[c] / (1 + c->type);
|
|
m2[c] += v;
|
|
forCellEx(c2, c) {
|
|
if(m1.count(c2)) m2[c2] += v; else m2[c] += v;
|
|
}
|
|
}
|
|
swap(m1, m2);
|
|
break;
|
|
case 2:
|
|
// wave
|
|
for(cell *c: cl.lst) {
|
|
m3[c] = 0;
|
|
forCellEx(c2, c) {
|
|
if(m1.count(c2)) m3[c] += (m1[c2] - m1[c]);
|
|
}
|
|
}
|
|
for(cell *c: cl.lst) {
|
|
m1[c] += m2[c] * delta + m3[c] * delta * delta / 2;
|
|
m2[c] += m3[c] * delta;
|
|
}
|
|
break;
|
|
}
|
|
last_steps++;
|
|
}
|
|
|
|
if(mode == 3) {
|
|
ld fsteps = qsteps * frac;
|
|
for(cell *c: cl.lst) {
|
|
ld d = hdist0(tC0(ggmatrix(c)));
|
|
m1[c] = m2[c] = m3[c] = exp(-d*d/(fsteps+1e-3));
|
|
}
|
|
}
|
|
|
|
ld maxv = 0;
|
|
for(auto p: m1) maxv = max(maxv, abs(p.second));
|
|
for(cell *c: cl.lst) {
|
|
ld x = m1[c] / maxv;
|
|
if(mode == 2) {
|
|
if(x < 0) c->landparam = gradient(0x001010, 0x1010FF, -1, x, 0);
|
|
else c->landparam = gradient(0x1010FF, 0xFFFFFF, 0, x, 1);
|
|
}
|
|
else {
|
|
if(x < 1/2.) c->landparam = gradient(0x001010, 0xFF1010, 0, x, 1/2.);
|
|
else c->landparam = gradient(0xFF1010, 0xFFFF10, 1/2., x, 1.);
|
|
if(x > .2 && x < .3) c->landparam |= 0x4040;
|
|
}
|
|
}
|
|
}
|
|
|
|
// return false;
|
|
}
|
|
|
|
void show() {
|
|
cmode = sm::SIDE | sm::MAYDARK;
|
|
gamescreen();
|
|
dialog::init(XLAT("heat transfer simulation"), 0xFFFFFFFF, 150, 0);
|
|
add_edit(delta);
|
|
add_edit(qsteps);
|
|
add_edit(frac_per_frame);
|
|
add_edit(scale);
|
|
add_edit(simulation_range);
|
|
dialog::addBack();
|
|
dialog::display();
|
|
}
|
|
|
|
void enable() {
|
|
using rogueviz::rv_hook;
|
|
rv_hook(hooks_frame, 100, advance_heat_wave);
|
|
rv_hook(anims::hooks_anim, 100, [] {
|
|
if(inHighQual) {
|
|
frac = std::fmod(ticks, anims::period) * 1. / anims::period;
|
|
}
|
|
else {
|
|
frac += frac_per_frame;
|
|
if(frac > 1) frac--;
|
|
}
|
|
});
|
|
rv_hook(shot::hooks_take, 100, [] {
|
|
advance_heat_wave(); calcparam(); models::configure();
|
|
});
|
|
rv_hook(hooks_drawcell, 100, [] (cell *c, const shiftmatrix& V) {
|
|
if(WDIM == 3)
|
|
queuepoly(face_the_player(V), cgi.shRing, darkena(c->landparam_color, 0, 0xFF));
|
|
return false;
|
|
});
|
|
rv_hook(hooks_o_key, 80, [] (o_funcs& v) { v.push_back(named_dialog("heat", show)); });
|
|
rv_hook(hooks_post_initgame, 100, [] { last_steps = NOT_STARTED; frac = 0; });
|
|
rogueviz::cleanup.push_back([] { m1.clear(); m2.clear(); m3.clear(); last_steps = OFF; });
|
|
last_steps = NOT_STARTED; frac = 0;
|
|
}
|
|
|
|
string cap = "heat transfer/";
|
|
|
|
void heat_slide(vector<tour::slide>& v, string title, string desc, reaction_t t) {
|
|
using namespace tour;
|
|
v.push_back(
|
|
tour::slide{cap + title, 18, LEGAL::NONE | QUICKGEO, desc,
|
|
|
|
[t] (presmode mode) {
|
|
setPlainCanvas(mode);
|
|
slide_backup(vid.use_smart_range, 2);
|
|
slide_backup(vid.smart_range_detail, 1);
|
|
slide_backup(vid.cells_drawn_limit, 100000);
|
|
slide_backup(vid.cells_generated_limit, 10000);
|
|
if(mode == pmStart) {
|
|
t();
|
|
start_game();
|
|
enable();
|
|
}
|
|
}}
|
|
);
|
|
}
|
|
|
|
auto heathook = arg::add3("-heatx", enable)
|
|
+ addHook(hooks_configfile, 100, [] {
|
|
param_f(delta, "heat_delta")
|
|
->editable(0, 1, 0.01, "delta", "how fast is the heat transfer", 't');
|
|
param_i(qsteps, "heat_qsteps")
|
|
->editable(0, 10000, 100, "steps to simulate", "", 's');
|
|
param_f(frac_per_frame, "heat_pf")
|
|
->editable(0, 0.01, 0.0001, "speed", "speed of simulation: fraction per frame", 'v');
|
|
param_f(scale, "heat_scale")
|
|
->editable(0, 1, 0.001, "scale", "scaling factor", 'f');
|
|
param_i(simulation_range, "heat_range")
|
|
->editable(0, 100000, 1000, "heat simulation range", "number of cells to consider", 'r');
|
|
param_i(mode, "heat_mode");
|
|
})
|
|
+ addHook_rvslides(180, [] (string s, vector<tour::slide>& v) {
|
|
if(s != "mixed") return;
|
|
heat_slide(v, "squares",
|
|
"A simple heat simulation. In each turn, the temperature changes towards the average of temperatures of adjacent cells.\n\n"
|
|
"Here we do this simulation on a square grid. Note that, despite the natural taxicab metric, spread heats in perfect circles.",
|
|
[] {
|
|
set_geometry(gEuclidSquare); set_variation(eVariation::pure);
|
|
});
|
|
heat_slide(v, "Marjorie Rice tiling", "Heat simulation on a tiling discovered by Marjorie Rice. Despite the more complex tiling, the heat spreads in perfect circles!", [] {
|
|
arb::run("tessellations/sample/marjorie-rice.tes");
|
|
tour::slide_backup(scale, 0.02);
|
|
});
|
|
heat_slide(v, "elongated triangular", "It is not always perfect circles -- in a periodic tessellation, it could also be ellipses. Here the ellipses are very close to perfect circles.", [] {
|
|
set_variation(eVariation::pure);
|
|
set_geometry(gArchimedean);
|
|
arcm::current.parse("(4,4,3L,3L,3L) [3,4]");
|
|
});
|
|
heat_slide(v, "kite-and-dart tiling", "But even in the kite-and-dart tiling we seem to get perfect circles.", [] {
|
|
set_geometry(gKiteDart2);
|
|
});
|
|
heat_slide(v, "hyperbolic tiling",
|
|
"We used Euclidean tessellations so far. In each Euclidean tessellation, the tessellations behaved in roughly the same, Euclidean way.\n\n"
|
|
"In hyperbolic geometry it is different -- not only it is less circular, but the radius of the hot area (at least 30% of the heat of the central tile) will not grow to infinity!", [] {
|
|
set_geometry(gNormal);
|
|
gp::param.first = 4;
|
|
gp::param.second = 0;
|
|
set_variation(eVariation::goldberg);
|
|
});
|
|
});
|
|
|
|
}
|
|
}
|