1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-10-31 19:36:16 +00:00
hyperrogue/rulegen3.cpp
2022-08-07 01:57:34 +02:00

1537 lines
51 KiB
C++

// Hyperbolic Rogue -- rule generator
// Copyright (C) 2011-2021 Zeno Rogue, see 'hyper.cpp' for details
/** \file rulegen3.cpp
* \brief An algorithm to create strict tree rules for arb tessellations -- 3D parts
*/
#include "hyper.h"
namespace hr {
EX namespace rulegen {
struct road_shortcut_trie_vertex {
set<vector<int>> backpaths;
map<int, shared_ptr<struct road_shortcut_trie_vertex>> children;
};
EX map<int, shared_ptr<struct road_shortcut_trie_vertex>> road_shortcuts;
int qroad;
map<int, int> qroad_for;
map<tcell*, int> qroad_memo;
EX void add_road_shortcut(tcell *s, tcell *t) {
shared_ptr<road_shortcut_trie_vertex> u;
vector<int> tpath;
if(!road_shortcuts.count(s->id)) road_shortcuts[s->id] = make_shared<road_shortcut_trie_vertex>();
u = road_shortcuts[s->id];
while(true) {
// println(hlog, s, " dist=", s->dist, " parent = ", s->parent_dir, " vs ", t, " dist=", t->dist, " parent = ", t->parent_dir);
if(s == t) {
reverse(tpath.begin(), tpath.end());
auto& ba = u->backpaths;
if(!ba.count(tpath)) qroad++, qroad_for[s->id]++;
ba.insert(tpath);
return;
}
if(s->dist >= t->dist) {
twalker sw = s;
get_parent_dir(sw);
if(s->parent_dir == MYSTERY) throw hr_exception("unknown parent_dir (s) in add_road_shortcut");
if(!u->children.count(s->parent_dir)) u->children[s->parent_dir] = make_shared<road_shortcut_trie_vertex>();
u = u->children[s->parent_dir];
s = s->move(s->parent_dir);
}
if(t->dist > s->dist) {
twalker tw = t;
get_parent_dir(tw);
if(t->parent_dir == MYSTERY) throw hr_exception("unknown parent_dir (t) in add_road_shortcut");
tpath.push_back(t->c.spin(t->parent_dir));
t = t->move(t->parent_dir);
}
}
}
EX int newcon;
EX void apply_road_shortcut(tcell *s) {
auto& mem = qroad_memo[s];
if(mem == qroad_for[s->id]) return;
mem = qroad_for[s->id];
shared_ptr<road_shortcut_trie_vertex> u;
if(!road_shortcuts.count(s->id)) return;
u = road_shortcuts[s->id];
int q = tcellcount;
while(true) {
for(auto& v: u->backpaths) {
auto s1 = s;
for(auto x: v) {
s1 = s1->cmove(x);
be_solid(s1);
}
}
twalker s0 = s; get_parent_dir(s0);
if(!u->children.count(s->parent_dir)) break;
u = u->children[s->parent_dir];
s = s->move(s->parent_dir);
}
static int qmax = 0;
newcon += tcellcount - q;
if(tcellcount > q + qmax) println(hlog, "road shortcuts created ", qmax = tcellcount-q, " new connections");
}
/** next roadsign ID -- they start at -100 and go downwards */
int next_roadsign_id = -100;
/** get the ID of a roadsign path */
EX map<vector<int>, int> roadsign_id;
EX int get_roadsign(twalker what) {
int dlimit = what.at->dist - 1;
tcell *s = what.at, *t = what.peek();
apply_road_shortcut(s);
vector<int> result;
while(s->dist > dlimit) {
twalker s0 = s;
get_parent_dir(s0);
if(s->parent_dir == MYSTERY) throw hr_exception("parent_dir unknown");
result.push_back(s->parent_dir); s = s->move(s->parent_dir);
result.push_back(s->dist - dlimit);
}
vector<int> tail;
while(t->dist > dlimit) {
twalker t0 = t;
get_parent_dir(t0);
if(t->parent_dir == MYSTERY) throw hr_exception("parent_dir unknown");
tail.push_back(t->dist - dlimit);
tail.push_back(t->c.spin(t->parent_dir));
t = t->move(t->parent_dir);
}
map<tcell*, int> visited;
queue<tcell*> vqueue;
auto visit = [&] (tcell *c, int dir) {
if(visited.count(c)) return;
visited[c] = dir;
vqueue.push(c);
};
visit(s, MYSTERY);
while(true) {
if(vqueue.empty()) throw hr_exception("vqueue empty");
tcell *c = vqueue.front();
if(c == t) break;
vqueue.pop();
for(int i=0; i<c->type; i++)
if(c->move(i) && c->move(i)->dist <= dlimit)
visit(c->move(i), c->c.spin(i));
}
while(t != s) {
add_road_shortcut(s, t);
int d = visited.at(t);
tail.push_back(t->dist - dlimit);
tail.push_back(t->c.spin(d));
t = t->move(d);
}
reverse(tail.begin(), tail.end());
for(auto t: tail) result.push_back(t);
if(roadsign_id.count(result)) return roadsign_id[result];
return roadsign_id[result] = next_roadsign_id--;
}
map<pair<int, int>, vector<pair<int, int>> > all_edges;
EX vector<pair<int, int>>& check_all_edges(twalker cw, analyzer_state* a, int id) {
auto& ae = all_edges[{cw.at->id, cw.spin}];
if(ae.empty()) {
set<tcell*> seen;
vector<pair<twalker, transmatrix> > visited;
vector<pair<int, int>> ae1;
auto visit = [&] (twalker tw, const transmatrix& T, int id, int dir) {
if(seen.count(tw.at)) return;
seen.insert(tw.at);
auto& sh0 = currentmap->get_cellshape(tcell_to_cell[cw.at]);
auto& sh1 = currentmap->get_cellshape(tcell_to_cell[tw.at]);
int common = 0;
vector<hyperpoint> kleinized;
vector<hyperpoint> rotated;
for(auto v: sh0.vertices_only) kleinized.push_back(kleinize(sh0.from_cellcenter * v));
for(auto w: sh1.vertices_only) rotated.push_back(kleinize(T*sh1.from_cellcenter * w));
for(auto v: kleinized)
for(auto w: rotated)
if(sqhypot_d(MDIM, v-w) < 1e-6)
common++;
if(honeycomb_value >= 2) {
if(common < 1) { ae1.emplace_back(id, dir); return; }
}
else {
if(common < 2) { ae1.emplace_back(id, dir); return; }
}
visited.emplace_back(tw, T);
ae.emplace_back(id, dir);
};
visit(cw, Id, -1, -1);
for(int i=0; i<isize(visited); i++) {
auto tw = visited[i].first;
for(int j=0; j<tw.at->type; j++) {
visit(tw + j + wstep, visited[i].second * currentmap->adj(tcell_to_cell[tw.at], (tw+j).spin), i, j);
}
}
if(honeycomb_value >= 3) for(auto p: ae1) ae.push_back(p);
println(hlog, "for ", tie(cw.at->id, cw.spin), " generated all_edges structure: ", ae, " of size ", isize(ae));
}
return ae;
}
int last_qroad;
vector<vector<pair<int,int>>> possible_parents;
set<tcell*> imp_as_set;
int impcount;
struct vcell {
int tid;
vector<int> adj;
void become(int _tid) { tid = _tid; adj.clear(); adj.resize(isize(treestates[tid].rules), -1); }
};
struct vstate {
bool need_cycle;
vector<pair<int, int>> movestack;
vector<vcell> vcells;
vector<pair<int, pair<int, int>>> recursions;
int current_pos;
int current_root;
vector<pair<int, int>> rpath;
};
map<int, vector<int>> rev_roadsign_id;
int get_abs_rule(int tid, int j) {
auto& ts = treestates[tid];
int j1 = gmod(j - ts.giver.spin, isize(ts.rules));
return ts.rules[j1];
}
void be_important(tcell *c) {
if(imp_as_set.count(c)) {
return;
}
important.push_back(c);
imp_as_set.insert(c);
}
void build(vstate& vs, vector<tcell*>& places, int where, int where_last, tcell *g) {
places[where] = g;
twalker wh = g;
auto ts0 = get_treestate_id(wh);
println(hlog, "[", where, "<-", where_last, "] [", g, " ] expected treestate = ", vs.vcells[where].tid, " actual treestate = ", ts0);
vector<tcell*> v;
vector<int> spins;
for(int i=0; i<g->type; i++) {
v.push_back(g->cmove(i));
spins.push_back(g->c.spin(i));
}
println(hlog, g, " -> ", v, " spins: ", spins);
auto& c = vs.vcells[where];
for(int i=0; i<isize(c.adj); i++)
if(c.adj[i] != -1 && c.adj[i] != where_last) {
indenter ind(2);
int rule = get_abs_rule(vs.vcells[where].tid, i);
auto g1 = g->cmove(i);
twalker wh1 = g1;
auto ts = get_treestate_id(wh1).second;
if(ts != rule) {
be_important(g);
// be_important(treestates[ts0.second].giver.at);
be_important(g1);
// be_important(treestates[ts].giver.at);
continue;
}
build(vs, places, c.adj[i], where, g1);
}
}
EX int max_ignore_level_pre = 3;
EX int max_ignore_level_post = 0;
EX int max_ignore_time_pre = 999999;
EX int max_ignore_time_post = 999999;
int ignore_level;
int check_debug = 0;
void error_found(vstate& vs) {
println(hlog, "current root = ", vs.current_root);
int id = 0;
for(auto& v: vs.vcells) {
println(hlog, "vcells[", id++, "]: tid=", v.tid, " adj = ", v.adj);
}
vector<tcell*> places(isize(vs.vcells), nullptr);
tcell *g = treestates[vs.vcells[vs.current_root].tid].giver.at;
int q = isize(important);
build(vs, places, vs.current_root, -1, g);
if(q == 0) for(auto& p: places) if(!p) throw rulegen_failure("bad tree");
// for(auto p: places) be_important(p);
// println(hlog, "added to important: ", places);
for(auto rec: vs.recursions) {
int at = rec.first;
int dir = rec.second.first;
int diff = rec.second.second;
auto p = places[at];
if(p) {
auto p1 = p->cmove(dir);
twalker pw = p;
pw.at->code = MYSTERY_LARGE;
int tsid = get_treestate_id(pw).second;
if(imp_as_set.count(p) && imp_as_set.count(p1))
println(hlog, "last: ", p, " -> ", p1, " actual diff = ", p1->dist, "-", p->dist, " expected diff = ", diff, " dir = ", dir, " ts = ", tsid);
indenter ind(2);
for(int i=0; i<pw.at->type; i++) {
int r = get_abs_rule(tsid, i);
if(r < 0 && r != DIR_PARENT) {
println(hlog, "rule ", tie(tsid, i), " is: ", r, " which means ", rev_roadsign_id[r]);
}
else {
println(hlog, "rule ", tie(tsid, i), " is: ", r);
}
}
int r = get_abs_rule(tsid, dir);
if(r < 0 && r != DIR_PARENT) {
tcell *px = p;
auto rr = rev_roadsign_id[r];
for(int i=0; i<isize(rr); i+=2) {
px = px->cmove(rr[i]);
println(hlog, " after step ", rr[i], " we get to ", px, " in distance ", px->dist);
}
println(hlog, "get_roadsign is ", get_roadsign(twalker(p, dir)));
}
// if(treestates[tsid].giver) be_important(treestates[tsid].giver.at);
// println(hlog, "the giver of ", tsid, " is ", treestates[tsid].giver.at);
be_important(p);
be_important(p1);
}
}
println(hlog, "added to important ", isize(important)-q, " places, solid_errors = ", solid_errors, " distance warnings = ", distance_warnings);
if(isize(important) == impcount) {
handle_distance_errors();
throw rulegen_failure("nothing important added");
}
throw rulegen_retry("3D error subtree found");
}
void check(vstate& vs) {
if(check_debug >= 3) println(hlog, "vcells=", isize(vs.vcells), " pos=", vs.current_pos, " stack=", vs.movestack, " rpath=", vs.rpath);
indenter ind(check_debug >= 3 ? 2 : 0);
if(vs.movestack.empty()) {
if(vs.need_cycle && vs.current_pos != 0) {
println(hlog, "rpath: ", vs.rpath, " does not cycle correctly");
error_found(vs);
}
if(check_debug >= 2) println(hlog, "rpath: ", vs.rpath, " successful");
return;
}
auto p = vs.movestack.back();
auto& c = vs.vcells[vs.current_pos];
int ctid = c.tid;
int rule = get_abs_rule(ctid, p.first);
/* connection already exists */
if(c.adj[p.first] != -1) {
int dif = (rule == DIR_PARENT) ? -1 : 1;
if(p.second != dif && p.second != MYSTERY) {
println(hlog, "error: connection ", p.first, " at ", vs.current_pos, " has distance ", dif, " but ", p.second, " is expected");
vs.recursions.push_back({vs.current_pos, p});
error_found(vs);
vs.recursions.pop_back();
}
dynamicval<int> d(vs.current_pos, c.adj[p.first]);
vs.movestack.pop_back();
check(vs);
vs.movestack.push_back(p);
}
/* parent connection */
else if(rule == DIR_PARENT) {
if(isize(vs.rpath) >= ignore_level) {
if(check_debug >= 1) println(hlog, "rpath: ", vs.rpath, " ignored for ", vs.movestack);
return;
}
if(check_debug >= 3) println(hlog, "parent connection");
dynamicval<int> r(vs.current_root, isize(vs.vcells));
vs.vcells[vs.current_pos].adj[p.first] = vs.current_root;
for(auto pp: possible_parents[ctid]) {
if(check_debug >= 3) println(hlog, tie(vs.current_pos, p.first), " is a child of ", pp);
vs.rpath.emplace_back(pp);
vs.vcells.emplace_back();
vs.vcells.back().become(pp.first);
vs.vcells.back().adj[pp.second] = vs.current_pos;
check(vs);
vs.vcells.pop_back();
vs.rpath.pop_back();
}
vs.vcells[vs.current_pos].adj[p.first] = -1;
}
/* child connection */
else if(rule >= 0) {
if(check_debug >= 3) println(hlog, "child connection");
vs.vcells[vs.current_pos].adj[p.first] = isize(vs.vcells);
vs.vcells.emplace_back();
vs.vcells.back().become(rule);
vs.vcells.back().adj[treestates[rule].giver.spin] = vs.current_pos;
check(vs);
vs.vcells.pop_back();
vs.vcells[vs.current_pos].adj[p.first] = -1;
}
/* side connection */
else {
vs.recursions.push_back({vs.current_pos, p});
auto& v = rev_roadsign_id[rule];
if(v.back() != p.second + 1 && p.second != MYSTERY) {
println(hlog, "error: side connection");
error_found(vs);
}
int siz = isize(vs.movestack);
vs.movestack.pop_back();
if(check_debug >= 3) {
println(hlog, "side connection: ", v);
println(hlog, "entered recursions as ", vs.recursions.back(), " on position ", isize(vs.recursions)-1);
}
for(int i=v.size()-2; i>=0; i-=2) vs.movestack.emplace_back(v[i], i == 0 ? -1 : v[i+1] - v[i-1]);
check(vs);
vs.movestack.resize(siz);
vs.movestack.back() = p;
vs.recursions.pop_back();
}
}
void check_det(vstate& vs) {
indenter ind(check_debug >= 3 ? 2 : 0);
back: ;
if(check_debug >= 3) println(hlog, "vcells=", isize(vs.vcells), " pos=", vs.current_pos, " stack=", vs.movestack, " rpath=", vs.rpath);
if(vs.movestack.empty()) {
if(check_debug >= 2) println(hlog, "rpath: ", vs.rpath, " successful");
return;
}
auto p = vs.movestack.back();
auto& c = vs.vcells[vs.current_pos];
int ctid = c.tid;
int rule = get_abs_rule(ctid, p.first);
/* connection already exists */
if(c.adj[p.first] != -1) {
vs.current_pos = c.adj[p.first];
int dif = (rule == DIR_PARENT) ? -1 : 1;
if(p.second != dif && p.second != MYSTERY)
error_found(vs);
vs.movestack.pop_back();
goto back;
}
/* parent connection */
else if(rule == DIR_PARENT) {
throw rulegen_failure("checking PARENT");
}
/* child connection */
else if(rule >= 0) {
if(check_debug >= 3) println(hlog, "child connection");
vs.vcells[vs.current_pos].adj[p.first] = isize(vs.vcells);
vs.vcells.emplace_back();
vs.vcells.back().become(rule);
vs.vcells.back().adj[treestates[rule].giver.spin] = vs.current_pos;
goto back;
}
/* side connection */
else {
auto& v = rev_roadsign_id[rule];
if(v.back() != p.second + 1 && p.second != MYSTERY)
error_found(vs);
vs.movestack.pop_back();
if(check_debug >= 3) println(hlog, "side connection: ", v);
for(int i=v.size()-2; i>=0; i-=2) vs.movestack.emplace_back(v[i], i == 0 ? -1 : v[i+1] - v[i-1]);
goto back;
}
}
const int ENDED = -1;
struct transducer_state {
int tstate1, tstate2;
tcell *relation;
bool operator < (const transducer_state& ts2) const { return tie(tstate1, tstate2, relation) < tie(ts2.tstate1, ts2.tstate2, ts2.relation); }
bool operator == (const transducer_state& ts2) const { return tie(tstate1, tstate2, relation) == tie(ts2.tstate1, ts2.tstate2, ts2.relation); }
};
struct transducer_transitions {
flagtype accepting_directions;
map<pair<int, int>, transducer_transitions*> t;
transducer_transitions() { accepting_directions = 0; }
};
inline void print(hstream& hs, transducer_transitions* h) { print(hs, "T", index_pointer(h)); }
inline void print(hstream& hs, const transducer_state& s) { print(hs, "S", tie(s.tstate1, s.tstate2, s.relation)); }
using transducer = map<transducer_state, transducer_transitions>;
transducer autom;
int comp_step;
tcell* rev_move(tcell *t, int dir) {
vector<int> dirs;
while(t->dist) {
twalker tw = t; get_parent_dir(tw);
if(t->parent_dir == MYSTERY) {
println(hlog, "dist = ", t->dist, " for ", t);
throw rulegen_failure("no parent dir");
}
dirs.push_back(t->c.spin(t->parent_dir));
t = t->move(t->parent_dir);
}
t->cmove(dir);
dirs.push_back(t->c.spin(dir));
t = t_origin[t->cmove(dir)->id].at;
while(!dirs.empty()) {
t = t->cmove(dirs.back());
twalker tw = t; get_parent_dir(tw);
if(t->dist && t->parent_dir == MYSTERY) throw rulegen_failure("no parent_dir assigned!");
dirs.pop_back();
}
return t;
}
tcell* get_move(tcell *c, int dir) {
if(dir == ENDED) return c;
return c->cmove(dir);
}
tcell *rev_move2(tcell *t, int dir1, int dir2) {
if(dir1 != ENDED) t = rev_move(t, dir1);
if(dir2 != ENDED) {
t = t->cmove(dir2);
twalker tw = t; get_parent_dir(tw);
if(t->dist && t->parent_dir == MYSTERY) throw rulegen_failure("no parent_dir assigned!");
}
twalker tw = t; get_parent_dir(tw);
if(t->dist && t->parent_dir == MYSTERY) throw rulegen_failure("no parent_dir assigned after rev_move2!");
return t;
}
vector<int> desc(tcell *t) {
vector<int> dirs;
while(t->dist) {
if(t->parent_dir < 0) throw rulegen_failure("no parent dir");
dirs.push_back(t->c.spin(t->parent_dir));
t = t->move(t->parent_dir);
}
reverse(dirs.begin(), dirs.end());
return dirs;
}
template<class T> int build_vstate(vstate& vs, vector<int>& path1, const vector<int>& parent_dir, const vector<int>& parent_id, int at, T state) {
vs.current_pos = vs.current_root = isize(vs.vcells);
vs.vcells.emplace_back();
vs.vcells.back().become(state(at));
while(parent_id[at] != -1) {
int ots = state(at);
int dir = parent_dir[at];
path1.push_back(dir);
at = parent_id[at];
if(dir == -1) continue;
vs.vcells.emplace_back();
vs.vcells.back().become(state(at));
vs.vcells[vs.current_root].adj[treestates[ots].giver.at->parent_dir] = vs.current_root+1;
vs.vcells[vs.current_root+1].adj[dir] = vs.current_root;
vs.current_root++;
}
reverse(path1.begin(), path1.end());
return at;
}
void gen_path(vstate &vs, vector<int>& path2) {
while(vs.current_pos != vs.current_root) {
auto g = treestates[vs.vcells[vs.current_pos].tid].giver;
int dir = g.at->parent_dir;
path2.push_back(g.at->c.spin(dir));
vs.current_pos = vs.vcells[vs.current_pos].adj[dir];
}
reverse(path2.begin(), path2.end());
}
int get_abs_rule1(int ts, int dir) {
if(dir == ENDED) return ts;
return get_abs_rule(ts, dir);
}
void extract_identity(int tid, int ruleid, transducer& identity) {
identity.clear();
comp_step = 0;
struct searcher { int ts; transducer_transitions *ires;
bool operator < (const searcher& s2) const { return tie(ts, ires) < tie(s2.ts, s2.ires); }
};
set<searcher> in_queue;
vector<searcher> q;
auto enqueue = [&] (const searcher& s) {
if(in_queue.count(s)) return;
in_queue.insert(s);
q.push_back(s);
};
for(auto t: t_origin) {
transducer_state ts;
ts.tstate1 = ts.tstate2 = get_treestate_id(t).second;
ts.relation = t.at;
searcher sch = searcher{ ts.tstate1, &(identity[ts]) };
enqueue(sch);
}
for(int i=0; i<isize(q); i++) {
auto sch = q[i];
int dirs = isize(treestates[sch.ts].rules);
bool ok = true;
if(tid != -1 && treestates[sch.ts].giver.at->id != tid) ok = false;
if(ruleid != -1 && ok) {
ok = false;
for(int d=0; d<dirs; d++) if(get_abs_rule(sch.ts, d) == ruleid) ok = true;
}
if(ok) sch.ires->accepting_directions = 1;
for(int s=0; s<dirs; s++) {
auto r = get_abs_rule(sch.ts, s);
if(r < 0) continue;
transducer_state ts;
ts.tstate1 = ts.tstate2 = r;
ts.relation = t_origin[treestates[r].giver.at->id].at;
auto added = &(identity[ts]);
sch.ires->t[{s, s}] = added;
searcher next;
next.ires = added;
next.ts = r;
enqueue(next);
}
}
}
void compose_with(const transducer& tr, const transducer& dir, transducer& result) {
println(hlog, "composing ", isize(tr), " x ", isize(dir));
indenter ind(2);
struct searcher {
int ts1, ts2, ts3;
bool fin1, fin2, fin3;
tcell *tat;
transducer_transitions *ires;
const transducer_transitions *t1;
const transducer_transitions *t2;
bool operator < (const searcher& s2) const { return tie(ts1, ts2, ts3, tat, fin1, fin2, fin3, ires, t1, t2) < tie(s2.ts1, s2.ts2, s2.ts3, s2.tat, s2.fin1, s2.fin2, s2.fin3, s2.ires, s2.t1, s2.t2); };
};
set<searcher> in_queue;
vector<searcher> q;
auto enqueue = [&] (const searcher& s) {
if(in_queue.count(s)) return;
in_queue.insert(s);
q.push_back(s);
};
for(auto t: t_origin) {
transducer_state ts;
ts.tstate1 = ts.tstate2 = get_treestate_id(t).second;
ts.relation = t.at;
if(!tr.count(ts)) continue;
if(!dir.count(ts)) continue;
searcher sch = searcher{ ts.tstate1, ts.tstate1, ts.tstate1, false, false, false, t.at, &(result[ts]), &(tr.at(ts)), &(dir.at(ts)) };
enqueue(sch);
}
for(int i=0; i<isize(q); i++) {
auto sch = q[i];
if(sch.t1->accepting_directions && sch.t2->accepting_directions)
sch.ires->accepting_directions = 1;
int dirs1 = isize(treestates[sch.ts1].rules);
int dirs2 = isize(treestates[sch.ts2].rules);
int dirs3 = isize(treestates[sch.ts3].rules);
searcher next;
for(int d1=ENDED; d1<dirs1; d1++) {
if(d1 != ENDED && sch.fin1) break;
auto r1 = get_abs_rule1(sch.ts1, d1);
if(r1 < 0) continue;
for(int d2=ENDED; d2<dirs2; d2++) {
if(d2 != ENDED && sch.fin2) break;
auto r2 = get_abs_rule1(sch.ts2, d2);
if(r2 < 0) continue;
next.t1 = sch.t1;
if(d1 != ENDED || d2 != ENDED) {
if(!sch.t1->t.count({d1, d2})) continue;
next.t1 = sch.t1->t.at({d1, d2});
}
for(int d3=ENDED; d3<dirs3; d3++) {
if(d3 != ENDED && sch.fin3) break;
auto r3 = get_abs_rule1(sch.ts3, d3);
if(r3 < 0) continue;
next.t2 = sch.t2;
if(d2 != ENDED || d3 != ENDED) {
if(!sch.t2->t.count({d2, d3})) continue;
next.t2 = sch.t2->t.at({d2, d3});
}
next.ts1 = r1; next.fin1 = d1 == ENDED;
next.ts2 = r2; next.fin2 = d2 == ENDED;
next.ts3 = r3; next.fin3 = d3 == ENDED;
next.tat = rev_move2(sch.tat, d1, d3);
auto nstate_key = transducer_state { next.ts1, next.ts3, next.tat };
next.ires = sch.ires;
if(d1 != ENDED || d3 != ENDED)
next.ires = sch.ires->t[{d1, d3}] = &(result[nstate_key]);
enqueue(next);
}
}
}
}
}
void throw_identity_errors(const transducer& id, const vector<int>& cyc) {
struct searcher {
int ts;
bool split;
const transducer_transitions *at;
bool operator < (const searcher& s2) const { return tie(ts, split, at) < tie(s2.ts, s2.split, s2.at); }
};
set<searcher> in_queue;
vector<searcher> q;
vector<int> parent_id;
vector<int> parent_dir;
auto enqueue = [&] (const searcher& s, int id, int dir) {
if(in_queue.count(s)) return;
in_queue.insert(s);
q.push_back(s);
parent_id.push_back(id);
parent_dir.push_back(dir);
};
for(auto t: t_origin) {
transducer_state ts;
ts.tstate1 = ts.tstate2 = get_treestate_id(t).second;
ts.relation = t.at;
if(!id.count(ts)) continue;
searcher sch = searcher{ ts.tstate1, false, &(id.at(ts)) };
enqueue(sch, -1, -1);
}
for(int i=0; i<isize(q); i++) {
auto sch = q[i];
if(sch.at->accepting_directions && sch.split) {
vstate vs;
vs.need_cycle = true;
for(auto v: cyc) vs.movestack.emplace_back(v, MYSTERY);
vector<int> path1;
build_vstate(vs, path1, parent_dir, parent_id, i, [&] (int i) { return q[i].ts; });
println(hlog, "suspicious path found at ", path1);
check_det(vs);
throw rulegen_failure("suspicious path worked");
}
for(auto p: sch.at->t) {
int d = p.first.first;
auto r = get_abs_rule1(sch.ts, d);
if(r < 0) throw rulegen_failure("r<0");
searcher next;
next.ts = r;
next.split = sch.split || p.first.first != p.first.second;
next.at = p.second;
enqueue(next, i, d);
}
}
}
void throw_distance_errors(const transducer& id, int dir, int delta) {
struct searcher {
int ts;
int diff;
const transducer_transitions *at;
bool operator < (const searcher& s2) const { return tie(ts, diff, at) < tie(s2.ts, s2.diff, s2.at); }
};
set<searcher> in_queue;
vector<searcher> q;
vector<int> parent_id;
vector<int> parent_dir;
auto enqueue = [&] (const searcher& s, int id, int dir) {
if(in_queue.count(s)) return;
in_queue.insert(s);
q.push_back(s);
parent_id.push_back(id);
parent_dir.push_back(dir);
};
for(auto t: t_origin) {
transducer_state ts;
ts.tstate1 = ts.tstate2 = get_treestate_id(t).second;
ts.relation = t.at;
if(!id.count(ts)) continue;
searcher sch = searcher{ ts.tstate1, false, &(id.at(ts)) };
enqueue(sch, -1, -1);
}
for(int i=0; i<isize(q); i++) {
auto sch = q[i];
if(sch.at->accepting_directions && sch.diff != delta) {
vstate vs;
vs.need_cycle = true;
vs.movestack = {{dir, MYSTERY}};
vector<int> path1;
build_vstate(vs, path1, parent_dir, parent_id, i, [&] (int i) { return q[i].ts; });
println(hlog, "suspicious distance path found at ", path1);
check_det(vs);
throw rulegen_failure("suspicious distance path worked");
}
for(auto p: sch.at->t) {
int d = p.first.first;
auto r = get_abs_rule1(sch.ts, d);
if(r < 0) throw rulegen_failure("r<0");
searcher next;
next.ts = r;
next.diff = sch.diff - (p.first.first == ENDED ? 0:1) + (p.first.second == ENDED ? 0:1);
next.at = p.second;
enqueue(next, i, d);
}
}
}
void extract(transducer& duc, transducer& res, int id, int dir) {
map<transducer_transitions*, vector<transducer_transitions*>> edges;
set<transducer_transitions*> productive;
vector<transducer_transitions*> q;
int acc = 0;
for(auto& d: duc)
for(auto edge: d.second.t)
edges[edge.second].push_back(&d.second);
auto enqueue = [&] (transducer_transitions* t) {
if(productive.count(t)) return;
productive.insert(t);
q.push_back(t);
};
for(auto& d: duc)
if(d.second.accepting_directions & (1<<dir))
if(treestates[d.first.tstate1].giver.at->id == id)
enqueue(&d.second), acc++;
for(int i=0; i<isize(q); i++) {
auto d = q[i];
for(auto d2: edges[d])
enqueue(d2);
}
println(hlog, "extract ", tie(id, dir), ": ", isize(duc), " -> ", isize(productive), " (acc = ", acc, ")");
res.clear();
map<transducer_transitions*, transducer_transitions*> xlat;
for(auto& d: duc) if(productive.count(&d.second)) {
xlat[&d.second] = &(res[d.first]);
if(d.second.accepting_directions & (1<<dir))
if(treestates[d.first.tstate1].giver.at->id == id)
res[d.first].accepting_directions = 1;
}
for(auto &p: productive) {
auto &r = xlat[p];
for(auto rem: p->t) if(productive.count(rem.second)) r->t[rem.first] = xlat.at(rem.second);
}
}
void be_productive(transducer& duc) {
map<transducer_transitions*, vector<transducer_transitions*>> edges;
set<transducer_transitions*> productive;
vector<transducer_transitions*> q;
int acc = 0;
for(auto& d: duc)
for(auto edge: d.second.t)
edges[edge.second].push_back(&d.second);
auto enqueue = [&] (transducer_transitions* t) {
if(productive.count(t)) return;
productive.insert(t);
q.push_back(t);
};
for(auto& d: duc)
if(d.second.accepting_directions)
enqueue(&d.second), acc++;
for(int i=0; i<isize(q); i++) {
auto d = q[i];
for(auto d2: edges[d])
enqueue(d2);
}
println(hlog, "productive: ", isize(duc), " -> ", isize(productive), " (acc = ", acc, ")");
vector<transducer_state> unproductive;
for(auto p: productive) {
map<pair<int, int>, transducer_transitions*> remaining;
for(auto rem: p->t) if(productive.count(rem.second)) remaining[rem.first] = rem.second;
p->t = std::move(remaining);
}
for(auto& d: duc) if(productive.count(&d.second) == 0) unproductive.push_back(d.first);
for(auto u: unproductive) duc.erase(u);
}
EX void trace_relation(vector<int> path1, vector<int> path2, int id) {
int trans = max(isize(path1), isize(path2));
int ts1 = get_treestate_id(t_origin[id]).second;
int ts2 = ts1;
tcell *tat = t_origin[id].at;
for(int i=0; i<trans; i++) {
println(hlog, "states = ", tie(ts1, ts2), " relation = ", tat);
int t1 = i < isize(path1) ? path1[i] : ENDED;
int t2 = i < isize(path2) ? path2[i] : ENDED;
tat = rev_move2(tat, t1, t2);
ts1 = get_abs_rule1(ts1, t1);
ts2 = get_abs_rule1(ts2, t2);
println(hlog, "after moves: ", tie(t1, t2));
}
println(hlog, "states = ", tie(ts1, ts2), " relation = ", tat);
}
EX void make_path_important(tcell *s, vector<int> p) {
for(auto i: p) if(i >= 0) {
s = s->cmove(i);
be_important(s);
}
}
EX void find_multiple_interpretation() {
println(hlog, "looking for multiple_interpretations");
struct searcher {
int ts1, ts2, ts3;
bool fin1, fin2, fin3;
bool split;
transducer_transitions *q2, *q3;
bool operator < (const searcher& s2) const { return tie(ts1, ts2, ts3, fin1, fin2, fin3, split, q2, q3) < tie(s2.ts1, s2.ts2, s2.ts3, s2.fin1, s2.fin2, s2.fin3, s2.split, s2.q2, s2.q3); }
};
set<searcher> in_queue;
vector<searcher> q;
vector<int> parent_id, parent_dir1, parent_dir2, parent_dir3;
auto enqueue = [&] (const searcher& sch, int pid, int pdir1, int pdir2, int pdir3) {
if(in_queue.count(sch)) return;
in_queue.insert(sch);
q.emplace_back(sch);
parent_id.emplace_back(pid);
parent_dir1.emplace_back(pdir1);
parent_dir2.emplace_back(pdir2);
parent_dir3.emplace_back(pdir3);
};
for(auto t: t_origin) {
transducer_state ts;
ts.tstate1 = ts.tstate2 = get_treestate_id(t).second;
ts.relation = t.at;
searcher sch = searcher{ ts.tstate1, ts.tstate1, ts.tstate1, false, false, false, false, &(autom[ts]), &(autom[ts]) };
enqueue(sch, -1, -1, -1, -1);
}
for(int i=0; i<isize(q); i++) {
searcher sch = q[i];
println(hlog, i, ": ", tie(sch.ts1, sch.ts2, sch.ts3, sch.fin1, sch.fin2, sch.fin3, sch.split), tie(parent_id[i], parent_dir1[i], parent_dir2[i], parent_dir3[i]));
flagtype both = sch.q2->accepting_directions & sch.q3->accepting_directions;
if(both && !(sch.fin1 && sch.fin2 && sch.fin3) && sch.split) {
int at = i;
while(at >= 0) {
auto& sch = q[at];
println(hlog, at, ": ", tie(sch.ts1, sch.ts2, sch.ts3, sch.fin1, sch.fin2, sch.fin3, sch.split, sch.q2, sch.q3), tie(parent_id[at], parent_dir1[at], parent_dir2[at], parent_dir3[at]));
for(auto& r: autom) {
if(&r.second == q[at].q2) println(hlog, "q2 relation is ", r.first.relation, ": ", desc(r.first.relation));
if(&r.second == q[at].q3) println(hlog, "q3 relation is ", r.first.relation, ": ", desc(r.first.relation));
}
at = parent_id[at];
}
vector<int> path1, path2, path3, path4;
int xdir = -1;
for(int dir=0; dir<64; dir++) if(both & (1ll<<dir)) xdir = dir;
println(hlog, "multiple interpretation found for xdir = ", xdir);
vstate vs;
at = build_vstate(vs, path1, parent_dir1, parent_id, i, [&] (int i) { return q[i].ts1; });
int at0 = at;
println(hlog, path1);
vs.movestack = {{xdir, MYSTERY}};
check_det(vs);
gen_path(vs, path4);
println(hlog, "path4 = ", path4);
build_vstate(vs, path2, parent_dir2, parent_id, i, [&] (int i) { return q[i].ts2; });
println(hlog, path2);
build_vstate(vs, path3, parent_dir3, parent_id, i, [&] (int i) { return q[i].ts3; });
println(hlog, path3);
tcell *s = treestates[q[at].ts1].giver.at;
auto s1=s, s2=s, s3=s;
for(auto p: path1) s1 = rev_move2(s1, ENDED, p);
for(auto p: path2) s2 = rev_move2(s2, ENDED, p);
for(auto p: path3) s3 = rev_move2(s3, ENDED, p);
println(hlog, "reached: ", tie(s1, s2, s3), " should reach: ", s1->cmove(xdir));
trace_relation(path1, path2, treestates[q[at0].ts1].giver.at->id);
trace_relation(path1, path3, treestates[q[at0].ts1].giver.at->id);
make_path_important(s1, path1);
make_path_important(s2, path1);
make_path_important(s3, path1);
if(isize(important) == impcount) throw rulegen_failure("nothing important added");
throw rulegen_retry("multiple interpretation");
}
int dirs1 = isize(treestates[sch.ts1].rules);
int dirs2 = isize(treestates[sch.ts2].rules);
int dirs3 = isize(treestates[sch.ts3].rules);
for(int dir1=ENDED; dir1<dirs1; dir1++)
for(int dir2=ENDED; dir2<dirs2; dir2++)
for(int dir3=ENDED; dir3<dirs3; dir3++) {
if(dir1 >= 0 && sch.fin1) continue;
if(dir2 >= 0 && sch.fin2) continue;
if(dir3 >= 0 && sch.fin3) continue;
searcher next;
next.ts1 = get_abs_rule(sch.ts1, dir1);
if(next.ts1 < 0) continue;
next.ts2 = get_abs_rule(sch.ts2, dir2);
if(next.ts2 < 0) continue;
next.ts3 = get_abs_rule(sch.ts3, dir3);
if(next.ts3 < 0) continue;
if(!sch.q2->t.count({dir1, dir2})) continue;
if(!sch.q3->t.count({dir1, dir3})) continue;
next.q2 = sch.q2->t[{dir1, dir2}];
next.q3 = sch.q3->t[{dir1, dir3}];
next.fin1 = dir1 == ENDED;
next.fin2 = dir2 == ENDED;
next.fin3 = dir3 == ENDED;
next.split = sch.split || (dir2 != dir3);
enqueue(next, i, dir1, dir2, dir3);
}
}
println(hlog, "no multiple interpretation found");
fflush(stdout);
exit(0);
}
EX void test_transducers() {
if(flags & w_skip_transducers) return;
autom.clear();
int iterations = 0;
while(true) {
next_iteration:
check_timeout();
iterations++;
int changes = 0;
struct searcher {
int ts;
vector<transducer_transitions*> pstates;
bool operator < (const searcher& s2) const { return tie(ts, pstates) < tie(s2.ts, s2.pstates); }
};
set<searcher> in_queue;
vector<searcher> q;
vector<int> parent_id;
vector<int> parent_dir;
auto enqueue = [&] (const searcher& sch, int pid, int pdir) {
if(in_queue.count(sch)) return;
in_queue.insert(sch);
q.emplace_back(sch);
parent_id.emplace_back(pid);
parent_dir.emplace_back(pdir);
};
for(auto t: t_origin) {
transducer_state ts;
ts.tstate1 = ts.tstate2 = get_treestate_id(t).second;
ts.relation = t.at;
searcher sch = searcher{ ts.tstate1, { &(autom[ts]) } };
enqueue(sch, -1, -1);
}
for(int i=0; i<isize(q); i++) {
searcher sch = q[i];
int dirs = isize(treestates[sch.ts].rules);
// println(hlog, i, ". ", "ts ", sch.ts, " states=", isize(sch.pstates), " from = ", tie(q[i].parent_dir, q[i].parent_dir));
for(int dir=0; dir<dirs; dir++) {
int qty = 0;
for(auto v: sch.pstates) if(v->accepting_directions & (1<<dir)) qty++;
for(auto v: sch.pstates) for(auto& p: v->t) if(p.first.first == ENDED && (p.second->accepting_directions & (1<<dir))) qty++;
if(qty > 1) {
vstate vs;
vector<int> path1;
int at = build_vstate(vs, path1, parent_dir, parent_id, i, [&] (int i) { return q[i].ts; });
println(hlog, "after path = ", path1, " got multiple interpretation");
for(auto v: sch.pstates) if(v->accepting_directions & (1<<dir)) println(hlog, "state ", v);
for(auto v: sch.pstates) for(auto& p: v->t) if(p.first.first == ENDED && (p.second->accepting_directions & (1<<dir))) println(hlog, "state ", v, " after accepting END/", p.first.second);
println(hlog, "starting at state: ", q[at].ts, " reached state ", q[i].ts);
at = i;
while(true) {
println(hlog, "state ", q[at].ts, " vs ", q[at].pstates, " dir = ", parent_dir[at]);
at = parent_id[at];
if(at == -1) break;
}
// print_transducer(autom);
find_multiple_interpretation();
}
if(qty == 0) {
vstate vs;
vs.need_cycle = false;
vs.movestack = { { dir, MYSTERY } };
vector<int> path1, path2;
int at = build_vstate(vs, path1, parent_dir, parent_id, i, [&] (int j) { return q[j].ts; });
check_det(vs);
gen_path(vs, path2);
int trans = max(isize(path1), isize(path2));
int ts1 = q[at].ts;
int ts2 = q[at].ts;
tcell *tat = treestates[ts1].giver.at;
// println(hlog, "root ", tat->id, " connecting ", path1, " dir ", dir, " to ", path2);
auto cstate = q[at].pstates[0];
auto cstate_key = transducer_state {ts1, ts1, tat };
for(int i=0; i<trans; i++) {
int t1 = i < isize(path1) ? path1[i] : ENDED;
int t2 = i < isize(path2) ? path2[i] : ENDED;
tat = rev_move2(tat, t1, t2);
ts1 = get_abs_rule1(ts1, t1);
ts2 = get_abs_rule1(ts2, t2);
auto nstate_key = transducer_state {ts1, ts2, tat};
auto nstate = &(autom[nstate_key]);
if(cstate->t[{t1, t2}] && cstate->t[{t1,t2}] != nstate) {
println(hlog, "conflict!");
exit(1);
}
// println(hlog, cstate, " at ", cstate_key, " gets ", nstate, " at ", nstate_key, " in direction ", tie(t1, t2));
cstate->t[{t1, t2}] = nstate;
cstate = nstate;
cstate_key = nstate_key;
}
cstate->accepting_directions |= (1<<dir);
changes++;
// goto next_iteration;
}
}
/* all OK here */
for(int s=0; s<dirs; s++) {
auto r = get_abs_rule(sch.ts, s);
if(r < 0) continue;
searcher next;
next.ts = r;
for(auto v: sch.pstates) for(auto& p: v->t) if(p.first.first == s) next.pstates.push_back(p.second);
sort(next.pstates.begin(), next.pstates.end());
auto ip = std::unique(next.pstates.begin(), next.pstates.end());
next.pstates.resize(ip - next.pstates.begin());
enqueue(next, i, s);
}
}
if(changes) {
println(hlog, "changes = ", changes);
goto next_iteration;
}
println(hlog, "transducers found successfully after ", iterations, " iterations, ", isize(autom), " states checked, queue size = ", isize(q));
vector<vector<transducer>> special(isize(t_origin));
for(int tid=0; tid<isize(t_origin); tid++) {
int dirs = t_origin[tid].at->type;
special[tid].resize(dirs);
for(int dir=0; dir<dirs; dir++)
extract(autom, special[tid][dir], tid, dir);
}
if(!(flags & w_skip_transducer_loops)) for(int tid=0; tid<isize(t_origin); tid++) {
int id = 0;
/* if correct, each loop iteration recovers the identity, so we can build it just once */
transducer cum;
extract_identity(tid, -1, cum);
be_productive(cum);
int id_size = isize(cum);
for(auto& cyc: cycle_data[tid]) {
println(hlog, "Working on tid=", tid, " cycle ", cyc, " (", id++, "/", isize(cycle_data[tid]), ")");
check_timeout();
indenter ind(2);
int ctid = tid;
for(auto c: cyc.first) {
transducer result;
println(hlog, "special is ", tie(ctid, c));
compose_with(cum, special[ctid][c], result);
be_productive(result);
swap(cum, result);
ctid = t_origin[ctid].at->cmove(c)->id;
}
int err = 0;
for(auto duc: cum) for(auto p: duc.second.t)
if(p.first.first == ENDED || p.first.second != p.first.first) err++;
throw_identity_errors(cum, cyc.first);
if(id_size != isize(cum)) println(hlog, "error: identity not recovered correctly");
}
}
if(!(flags & w_skip_transducer_terminate)) {
println(hlog, "Verifying distances");
map<pair<int, int>, vector< pair<int, int>> > by_roadsign;
for(int tsid=0; tsid<isize(treestates); tsid++)
for(int dir=0; dir<treestates[tsid].giver.at->type; dir++) {
int r = get_abs_rule(tsid, dir);
if(r >= 0 || r == DIR_PARENT) continue;
by_roadsign[{treestates[tsid].giver.at->id, r}].emplace_back(tsid, dir);
}
int id = 0;
for(auto& p: by_roadsign) {
int ctid = p.first.first;
int r = p.first.second;
auto& v = rev_roadsign_id.at(r);
println(hlog, "Working on rule ", v, " at ", ctid, " (#", id++, "/", isize(by_roadsign), "), found in ", p.second);
check_timeout();
indenter ind(2);
transducer cum;
extract_identity(-1, r, cum);
be_productive(cum);
if(cum.empty()) { println(hlog, "does not exist!"); continue; }
for(int i=0; i<isize(v); i+=2) {
int c = v[i];
transducer result;
println(hlog, "special is ", tie(ctid, c));
compose_with(cum, special[ctid][c], result);
be_productive(result);
swap(cum, result);
println(hlog, "should be ", v[i+1] - 1);
throw_distance_errors(cum, p.second[0].second, v[i+1] - 1);
ctid = t_origin[ctid].at->cmove(c)->id;
}
}
}
break;
}
}
EX void check_upto(int lev, int t) {
vstate vs;
int N = isize(treestates);
Uint32 start = SDL_GetTicks();
for(ignore_level=1; ignore_level <= lev; ignore_level++) {
println(hlog, "test ignore_level ", ignore_level);
vs.need_cycle = false;
for(int i=0; i<N; i++) {
for(int j=0; j<isize(treestates[i].rules); j++) {
if(SDL_GetTicks() > start + t) return;
check_timeout();
int r = get_abs_rule(i, j);
if(r < 0 && r != DIR_PARENT) {
vs.vcells.clear();
vs.vcells.resize(1);
vs.vcells[0].become(i);
vs.current_pos = vs.current_root = 0;
vs.movestack = { {j, MYSTERY} };
if(check_debug >= 1) println(hlog, "checking ", tie(i, j));
indenter ind(2);
check(vs);
}
}
}
vs.need_cycle = true;
for(int i=0; i<N; i++) {
int id = treestates[i].giver.at->id;
for(auto &cd: cycle_data[id]) {
if(SDL_GetTicks() > start + t) return;
check_timeout();
vs.vcells.clear();
vs.vcells.resize(1);
vs.vcells[0].become(i);
vs.current_pos = vs.current_root = 0;
vs.movestack.clear();
for(auto v: cd.first) vs.movestack.emplace_back(v, MYSTERY);
reverse(vs.movestack.begin(), vs.movestack.end());
if(check_debug >= 1) println(hlog, "checking ", tie(i, id, cd));
indenter ind(2);
check(vs);
}
}
}
}
EX void check_road_shortcuts() {
println(hlog, "road shortcuts = ", qroad, " treestates = ", isize(treestates), " roadsigns = ", next_roadsign_id, " tcellcount = ", tcellcount);
if(qroad > last_qroad) {
println(hlog, "qroad_for = ", qroad_for);
println(hlog, "newcon = ", newcon, " tcellcount = ", tcellcount); newcon = 0;
clear_codes();
last_qroad = qroad;
roadsign_id.clear();
next_roadsign_id = -100;
throw rulegen_retry("new road shortcuts");
}
println(hlog, "checking validity, important = ", important);
imp_as_set.clear();
for(auto t: important) imp_as_set.insert(t.at);
impcount = isize(important);
possible_parents.clear();
int N = isize(treestates);
possible_parents.resize(N);
for(int i=0; i<N; i++) {
auto& ts = treestates[i];
for(int j=0; j<isize(ts.rules); j++) if(ts.rules[j] >= 0)
possible_parents[ts.rules[j]].emplace_back(i, gmod(j + ts.giver.spin, isize(ts.rules)));
}
rev_roadsign_id.clear();
for(auto& rs: roadsign_id) rev_roadsign_id[rs.second] = rs.first;
check_upto(max_ignore_level_pre, max_ignore_time_pre);
test_transducers();
check_upto(max_ignore_level_post, max_ignore_time_post);
println(hlog, "Got it!");
}
EX vector<vector<pair<vector<int>, vector<int>>>> cycle_data;
EX void build_cycle_data() {
cycle_data.clear();
cycle_data.resize(number_of_types());
for(int t=0; t<number_of_types(); t++) {
cell *start = tcell_to_cell[t_origin[t].at];
auto& sh0 = currentmap->get_cellshape(start);
for(int i=0; i<start->type; i++) {
auto& f = sh0.faces[i];
for(int j=0; j<isize(f); j++) {
hyperpoint v1 = kleinize(sh0.from_cellcenter * sh0.faces[i][j]);
hyperpoint v2 = kleinize(sh0.from_cellcenter * sh0.faces[i][(j+1) % isize(f)]);
vector<int> path = {i};
vector<int> rpath = {start->c.spin(i)};
transmatrix T = currentmap->adj(start, i);
cell *at = start->cmove(i);
cell *last = start;
while(at != start) {
auto &sh1 = currentmap->get_cellshape(at);
int dir = -1;
for(int d=0; d<at->type; d++) if(at->move(d) != last) {
int ok = 0;
for(auto rv: sh1.faces[d]) {
hyperpoint v = kleinize(T * sh1.from_cellcenter * rv);
if(sqhypot_d(3, v-v1) < 1e-6) ok |= 1;
if(sqhypot_d(3, v-v2) < 1e-6) ok |= 2;
}
if(ok == 3) dir = d;
}
if(dir == -1) throw hr_exception("cannot cycle");
path.push_back(dir);
rpath.push_back(at->c.spin(dir));
T = T * currentmap->adj(at, dir);
last = at;
at = at->cmove(dir);
}
cycle_data[t].push_back({std::move(path), std::move(rpath)});
}
}
}
println(hlog, "cycle data = ", cycle_data);
}
using classdata = pair<vector<int>, int>;
vector<classdata> nclassify;
vector<int> representative;
void genhoneycomb(string fname) {
if(WDIM != 3) throw hr_exception("genhoneycomb not in honeycomb");
int qc = isize(t_origin);
vector<short> data;
string side_data;
map<int, vector<int>> rev_roadsign_id;
for(auto& rs: roadsign_id) rev_roadsign_id[rs.second] = rs.first;
int N = isize(treestates);
nclassify.clear();
nclassify.resize(N);
for(int i=0; i<N; i++) nclassify[i] = {{0}, i};
int numclass = 1;
while(true) {
println(hlog, "N = ", N, " numclass = ", numclass);
for(int i=0; i<N; i++) {
auto& ts = treestates[i];
for(int j=0; j<isize(ts.rules); j++) {
int j1 = gmod(j - ts.giver.spin, isize(ts.rules));
auto r = ts.rules[j1];
if(r < 0) nclassify[i].first.push_back(r);
else nclassify[i].first.push_back(nclassify[r].first[0]);
}
}
sort(nclassify.begin(), nclassify.end());
vector<int> last = {}; int newclass = 0;
for(int i=0; i<N; i++) {
if(nclassify[i].first != last) {
newclass++;
last = nclassify[i].first;
}
nclassify[i].first = {newclass-1};
}
sort(nclassify.begin(), nclassify.end(), [] (const classdata& a, const classdata& b) { return a.second < b.second; });
if(numclass == newclass) break;
numclass = newclass;
}
representative.resize(numclass);
for(int i=0; i<isize(treestates); i++) representative[nclassify[i].first[0]] = i;
println(hlog, "Minimized rules (", numclass, " states):");
for(int i=0; i<numclass; i++) {
auto& ts = treestates[representative[i]];
print(hlog, lalign(4, i), ":");
for(int j=0; j<isize(ts.rules); j++) {
int j1 = gmod(j - ts.giver.spin, isize(ts.rules));
auto r =ts.rules[j1];
if(r == DIR_PARENT) print(hlog, " P");
else if(r >= 0) print(hlog, " ", nclassify[r].first[0]);
else print(hlog, " S", r);
}
println(hlog);
}
println(hlog);
vector<int> childpos;
for(int i=0; i<numclass; i++) {
childpos.push_back(isize(data));
auto& ts = treestates[representative[i]];
for(int j=0; j<isize(ts.rules); j++) {
int j1 = gmod(j - ts.giver.spin, isize(ts.rules));
auto r =ts.rules[j1];
if(r == DIR_PARENT) {
data.push_back(-1);
side_data += ('A' + j);
side_data += ",";
}
else if(r >= 0) {
data.push_back(nclassify[r].first[0]);
}
else {
data.push_back(-1);
auto& str = rev_roadsign_id[r];
bool next = true;
for(auto ch: str) {
if(next) side_data += ('a' + ch);
next = !next;
}
side_data += ",";
}
}
}
childpos.push_back(isize(data));
shstream ss;
ss.write(ss.get_vernum());
mapstream::save_geometry(ss);
ss.write(fieldpattern::use_rule_fp);
ss.write(fieldpattern::use_quotient_fp);
ss.write(reg3::minimize_quotient_maps);
auto& fp = currfp;
hwrite_fpattern(ss, fp);
vector<int> root(qc, 0);
for(int i=0; i<qc; i++) root[i] = nclassify[get_treestate_id(t_origin[i]).second].first[0];
println(hlog, "root = ", root);
hwrite(ss, root);
println(hlog, "data = ", data);
hwrite(ss, data);
println(hlog, "side_data = ", side_data);
hwrite(ss, side_data);
println(hlog, "childpos = ", childpos);
hwrite(ss, childpos);
println(hlog, "compress_string");
string s = compress_string(ss.s);
fhstream of(fname, "wb");
print(of, s);
}
EX void cleanup3() {
all_edges.clear();
roadsign_id.clear();
rev_roadsign_id.clear();
next_roadsign_id = -100;
autom.clear();
cycle_data.clear();
road_shortcuts.clear();
qroad_for.clear();
qroad_memo.clear();
possible_parents.clear();
}
#if CAP_COMMANDLINE
int readRuleArgs3() {
using namespace arg;
if(0) ;
else if(argis("-gen-honeycomb")) {
shift(); genhoneycomb(args());
}
else if(argis("-urq")) {
// -urq 7 to prepare honeycomb generation
stop_game();
shift(); int i = argi();
reg3::reg3_rule_available = (i & 8) ? 0 : 1;
fieldpattern::use_rule_fp = (i & 1) ? 1 : 0;
fieldpattern::use_quotient_fp = (i & 2) ? 1 : 0;
reg3::minimize_quotient_maps = (i & 4) ? 1 : 0;
}
else if(argis("-subrule")) {
stop_game();
shift(); reg3::other_rule = args();
shstream ins(decompress_string(read_file_as_string(args())));
ins.read(ins.vernum);
mapstream::load_geometry(ins);
reg3::subrule = true;
}
else if(argis("-less-states")) {
shift(); rulegen::less_states = argi();
}
else if(argis("-clean-rules")) {
cleanup();
}
else return 1;
return 0;
}
auto hook3 = addHook(hooks_args, 100, readRuleArgs3);
#endif
}
}