mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-12 10:20:32 +00:00
1005 lines
31 KiB
C++
1005 lines
31 KiB
C++
// Hyperbolic Rogue -- Euclidean geometry
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file euclid.cpp
|
|
* \brief Euclidean geometry, including 2D, 3D, and quotient spaces
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
namespace hr {
|
|
|
|
// 3D Euclidean space
|
|
|
|
#if MAXMDIM == 4
|
|
|
|
EX namespace euclid3 {
|
|
|
|
#if HDR
|
|
typedef long long coord;
|
|
constexpr long long COORDMAX = (1<<16);
|
|
typedef array<coord, 3> axes;
|
|
typedef array<array<int, 3>, 3> intmatrix;
|
|
#endif
|
|
|
|
static const axes main_axes = make_array<coord>(1, COORDMAX, COORDMAX * COORDMAX );
|
|
|
|
EX array<int, 3> getcoord(coord x) {
|
|
array<int, 3> res;
|
|
for(int k=0; k<3; k++) {
|
|
int next = x % COORDMAX;
|
|
if(next>COORDMAX/2) next -= COORDMAX;
|
|
if(next<-COORDMAX/2) next += COORDMAX;
|
|
res[k] = next;
|
|
x -= next;
|
|
x /= COORDMAX;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
EX coord ascoord(array<int, 3> x) {
|
|
return x[0] * main_axes[0] + x[1] * main_axes[1] + x[2] * main_axes[2];
|
|
}
|
|
|
|
EX vector<coord> get_shifttable() {
|
|
static const coord D0 = main_axes[0];
|
|
static const coord D1 = main_axes[1];
|
|
static const coord D2 = main_axes[2];
|
|
vector<coord> shifttable;
|
|
switch(geometry) {
|
|
case gCubeTiling:
|
|
shifttable = { +D0, +D1, +D2 };
|
|
break;
|
|
|
|
case gRhombic3:
|
|
shifttable = { D0+D1, D0+D2, D1+D2, D1-D2, D0-D2, D0-D1 };
|
|
break;
|
|
|
|
case gBitrunc3:
|
|
shifttable = { 2*D0, 2*D1, 2*D2, D0+D1+D2, D0+D1-D2, D0-D1-D2, D0-D1+D2 };
|
|
break;
|
|
|
|
case gEuclid:
|
|
shifttable = { D0, D1, D1-D0, -D0, -D1, D0-D1 };
|
|
break;
|
|
|
|
case gEuclidSquare:
|
|
shifttable = { D0, D1, -D0, -D1 };
|
|
break;
|
|
|
|
default:
|
|
printf("euclid3::get_shifttable() called in geometry that is not euclid3");
|
|
exit(1);
|
|
}
|
|
|
|
// reverse everything
|
|
int s = isize(shifttable);
|
|
for(int i=0; i<s; i++) shifttable.push_back(-shifttable[i]);
|
|
return shifttable;
|
|
}
|
|
|
|
EX coord canonicalize(coord x);
|
|
EX int twisted;
|
|
EX intmatrix T0;
|
|
EX gp::loc twisted_vec, ortho_vec;
|
|
|
|
struct hrmap_euclid3 : hrmap_standard {
|
|
vector<coord> shifttable;
|
|
vector<transmatrix> tmatrix;
|
|
map<coord, heptagon*> spacemap;
|
|
map<heptagon*, coord> ispacemap;
|
|
cell *camelot_center;
|
|
|
|
map<gp::loc, struct cdata> eucdata;
|
|
|
|
vector<cell*> toruscells;
|
|
vector<cell*>& allcells() override {
|
|
if(bounded) {
|
|
if(isize(toruscells) == 0) {
|
|
celllister cl(getOrigin()->c7, 1000, 1000000, NULL);
|
|
toruscells = cl.lst;
|
|
}
|
|
return toruscells;
|
|
}
|
|
return hrmap::allcells();
|
|
}
|
|
|
|
hrmap_euclid3() {
|
|
shifttable = get_shifttable();
|
|
tmatrix.resize(S7);
|
|
for(int i=0; i<S7; i++)
|
|
tmatrix[i] = eumove(shifttable[i]);
|
|
camelot_center = NULL;
|
|
build_torus3(geometry);
|
|
}
|
|
|
|
heptagon *getOrigin() override {
|
|
return get_at(0);
|
|
}
|
|
|
|
heptagon *get_at(coord at) {
|
|
if(spacemap.count(at))
|
|
return spacemap[at];
|
|
else {
|
|
auto h = tailored_alloc<heptagon> (S7);
|
|
if(!IRREGULAR)
|
|
h->c7 = newCell(S7, h);
|
|
else
|
|
irr::link_to_base(h, ((hrmap_euclid3*)irr::base)->get_at(at));
|
|
h->distance = 0;
|
|
h->cdata = NULL;
|
|
h->alt = NULL;
|
|
auto co = getcoord(at);
|
|
if(S7 != 14)
|
|
h->zebraval = gmod(co[0] + co[1] * 2 + co[2] * 4, 5);
|
|
else
|
|
h->zebraval = co[0] & 1;
|
|
spacemap[at] = h;
|
|
ispacemap[h] = at;
|
|
return h;
|
|
}
|
|
}
|
|
|
|
heptagon *build(heptagon *parent, int d, coord at) {
|
|
auto h = get_at(at);
|
|
int d1 = (d+S7/2)%S7;
|
|
bool mirr = false;
|
|
if(twisted) {
|
|
transmatrix I;
|
|
auto st = getcoord(shifttable[d1]);
|
|
twist(ispacemap[parent] + shifttable[d], st, I, mirr);
|
|
for(int i=0; i<S7; i++) if(getcoord(shifttable[i]) == st) d1 = i;
|
|
}
|
|
h->c.connect(d1, parent, d, mirr);
|
|
return h;
|
|
}
|
|
|
|
heptagon *create_step(heptagon *parent, int d) override {
|
|
return build(parent, d, canonicalize(ispacemap[parent] + shifttable[d]));
|
|
}
|
|
|
|
transmatrix adj(heptagon *h, int i) override {
|
|
if(!twisted) return tmatrix[i];
|
|
transmatrix res = tmatrix[i];
|
|
coord id = ispacemap[h];
|
|
id += shifttable[i];
|
|
auto dummy = getcoord(0);
|
|
bool dm = false;
|
|
twist(id, dummy, res, dm);
|
|
|
|
return res;
|
|
}
|
|
|
|
void draw() {
|
|
dq::visited_by_matrix.clear();
|
|
dq::enqueue_by_matrix(centerover->master, cview() * master_relative(centerover, true));
|
|
|
|
while(!dq::drawqueue.empty()) {
|
|
auto& p = dq::drawqueue.front();
|
|
heptagon *h = get<0>(p);
|
|
transmatrix V = get<1>(p);
|
|
dynamicval<ld> b(band_shift, get<2>(p));
|
|
bandfixer bf(V);
|
|
dq::drawqueue.pop();
|
|
|
|
cell *c = h->c7;
|
|
|
|
bool draw = drawcell_subs(c, V * spin(master_to_c7_angle()));
|
|
if(wallopt && isWall3(c) && isize(dq::drawqueue) > 1000) continue;
|
|
|
|
if(draw) for(int i=0; i<S7; i++)
|
|
dq::enqueue_by_matrix(h->move(i), V * adj(h, i));
|
|
}
|
|
}
|
|
|
|
transmatrix warppush(coord dif) {
|
|
auto v = getcoord(dif);
|
|
for(int i: {0, 1})
|
|
if(T0[i][i])
|
|
v[i] = gmod(v[i] + T0[i][i] / 2, T0[i][i]) - T0[i][i] / 2;
|
|
return eupush3(v[0], v[1], v[2]);
|
|
}
|
|
|
|
transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
|
|
if(twisted) {
|
|
if(h1 == h2) return Id;
|
|
for(int s=0; s<S7; s++) if(h2 == h1->move(s)) return adj(h1, s);
|
|
coord c1 = ispacemap[h1];
|
|
coord c2 = ispacemap[h2];
|
|
transmatrix T = warppush(c2 - c1);
|
|
for(int d: {-1, 1}) {
|
|
transmatrix I = Id;
|
|
coord cs = c1;
|
|
for(int s=0; s<3; s++) {
|
|
cs += d * T0[2][2] * main_axes[2];
|
|
I = I * eupush3(0, 0, d * T0[2][2]);
|
|
auto dummy = getcoord(0);
|
|
bool dm = false;
|
|
cs = twist(cs, dummy, I, dm);
|
|
transmatrix T1 = I * warppush(c2 - cs);
|
|
if(hdist0(tC0(T1)) < hdist0(tC0(T)))
|
|
T = T1;
|
|
}
|
|
}
|
|
return T;
|
|
}
|
|
auto d = ispacemap[h2] - ispacemap[h1];
|
|
d = canonicalize(d);
|
|
return eumove(d);
|
|
}
|
|
|
|
vector<hyperpoint> get_vertices(cell* c) override {
|
|
vector<hyperpoint> res;
|
|
if(S7 < 14)
|
|
for(ld a: {-.5,.5}) for(ld b: {-.5,.5}) for(ld c: {-.5, .5}) res.push_back(hpxy3(a,b,c));
|
|
if(S7 == 12) {
|
|
res.push_back(hpxy3(1,0,0));
|
|
res.push_back(hpxy3(-1,0,0));
|
|
res.push_back(hpxy3(0,1,0));
|
|
res.push_back(hpxy3(0,-1,0));
|
|
res.push_back(hpxy3(0,0,1));
|
|
res.push_back(hpxy3(0,0,-1));
|
|
}
|
|
if(S7 == 14) {
|
|
for(ld a: {-1.,-.5,0.,.5,1.})
|
|
for(ld b: {-1.,-.5,0.,.5,1.})
|
|
for(ld c: {-1.,-.5,0.,.5,1.})
|
|
if(a == 0 || b == 0 || c == 0)
|
|
if(a == .5 || a == -.5 || b == .5 || b == -.5 || c == .5 || c == -.5)
|
|
if(a == 1 || a == -1 || b == 1 || b == -1 || c == 1 || c == -1)
|
|
res.push_back(hpxy3(a,b,c));
|
|
}
|
|
return res;
|
|
}
|
|
};
|
|
|
|
hrmap_euclid3* cubemap() {
|
|
return ((hrmap_euclid3*) currentmap);
|
|
}
|
|
|
|
hrmap_euclid3* eucmap() { return cubemap(); }
|
|
|
|
EX vector<coord>& get_current_shifttable() { return cubemap()->shifttable; }
|
|
EX map<coord, heptagon*>& get_spacemap() { return cubemap()->spacemap; }
|
|
EX map<heptagon*, coord>& get_ispacemap() { return cubemap()->ispacemap; }
|
|
EX cell *& get_camelot_center() { return cubemap()->camelot_center; }
|
|
|
|
EX hrmap* new_map() {
|
|
return new hrmap_euclid3;
|
|
}
|
|
|
|
EX transmatrix move_matrix(heptagon *h, int i) {
|
|
return cubemap()->adj(h, i);
|
|
}
|
|
|
|
EX bool pseudohept(cell *c) {
|
|
coord co = cubemap()->ispacemap[c->master];
|
|
auto v = getcoord(co);
|
|
if(S7 == 12) {
|
|
for(int i=0; i<3; i++) if((v[i] & 1)) return false;
|
|
}
|
|
else {
|
|
for(int i=0; i<3; i++) if(!(v[i] & 1)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
EX int dist_alt(cell *c) {
|
|
if(specialland == laCamelot) return dist_relative(c) + roundTableRadius(c);
|
|
coord co = cubemap()->ispacemap[c->master];
|
|
auto v = getcoord(co);
|
|
if(S7 == 6) return v[2];
|
|
else if(S7 == 12) return (v[0] + v[1] + v[2]) / 2;
|
|
else return v[2]/2;
|
|
}
|
|
|
|
EX bool get_emerald(cell *c) {
|
|
auto v = getcoord(cubemap()->ispacemap[c->master]);
|
|
int s0 = 0, s1 = 0;
|
|
for(int i=0; i<3; i++) {
|
|
v[i] = gmod(v[i], 6);
|
|
int d = min(v[i], 6-v[i]);;
|
|
s0 += min(v[i], 6-v[i]);
|
|
s1 += 3-d;
|
|
}
|
|
if(s0 == s1) println(hlog, "equality");
|
|
return s0 > s1;
|
|
}
|
|
|
|
bool cellvalid(coord co) {
|
|
auto v = getcoord(co);
|
|
if(S7 == 6) return true;
|
|
if(S7 == 12) return (v[0] + v[1] + v[2]) % 2 == 0;
|
|
if(S7 == 14) return v[0] % 2 == v[1] % 2 && v[0] % 2 == v[2] % 2;
|
|
return false;
|
|
}
|
|
|
|
EX int celldistance(coord co) {
|
|
auto v = getcoord(co);
|
|
if(S7 == 6)
|
|
return abs(v[0]) + abs(v[1]) + abs(v[2]);
|
|
else {
|
|
for(int i=0; i<3; i++) v[i] = abs(v[i]);
|
|
sort(v.begin(), v.end());
|
|
int dist = 0;
|
|
if(S7 == 12) {
|
|
int d = v[1] - v[0]; v[1] -= d; v[2] -= d;
|
|
dist += d;
|
|
int m = min((v[2] - v[0]), v[0]);
|
|
dist += 2 * m;
|
|
v[0] -= m; v[1] -= m; v[2] -= m * 2;
|
|
if(v[0])
|
|
dist += (v[0] + v[1] + v[2]) / 2;
|
|
else
|
|
dist += v[2];
|
|
}
|
|
else {
|
|
dist = v[0] + (v[1] - v[0]) / 2 + (v[2] - v[0]) / 2;
|
|
}
|
|
return dist;
|
|
}
|
|
}
|
|
|
|
EX int celldistance(cell *c1, cell *c2) {
|
|
auto cm = cubemap();
|
|
return celldistance(canonicalize(cm->ispacemap[c1->master] - cm->ispacemap[c2->master]));
|
|
}
|
|
|
|
EX void set_land(cell *c) {
|
|
setland(c, specialland);
|
|
auto m = cubemap();
|
|
auto co = getcoord(m->ispacemap[c->master]);
|
|
|
|
int dv = 1;
|
|
if(geometry != gCubeTiling) dv = 2;
|
|
|
|
int hash = 0;
|
|
for(int a=0; a<3; a++) hash = 1317 * hash + co[a] / 4;
|
|
|
|
set_euland3(c, co[0]*120, co[1]*120, (co[1]+co[2]) / dv, hash);
|
|
}
|
|
|
|
EX int dist_relative(cell *c) {
|
|
auto m = cubemap();
|
|
auto& cc = m->camelot_center;
|
|
int r = roundTableRadius(NULL);
|
|
cell *start = m->gamestart();
|
|
if(!cc) {
|
|
cc = start;
|
|
while(euclid3::celldistance(cc, start) < r + 5)
|
|
cc = cc->cmove(hrand(cc->type));
|
|
}
|
|
|
|
return euclid3::celldistance(cc, c) - r;
|
|
}
|
|
|
|
/* quotient spaces */
|
|
|
|
intmatrix make_intmatrix(axes a) {
|
|
intmatrix T;
|
|
T[0] = getcoord(a[0]);
|
|
T[1] = getcoord(a[1]);
|
|
T[2] = getcoord(a[2]);
|
|
return T;
|
|
}
|
|
|
|
int determinant(const intmatrix T) {
|
|
int det = 0;
|
|
for(int i=0; i<3; i++)
|
|
det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3];
|
|
for(int i=0; i<3; i++)
|
|
det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3];
|
|
return det;
|
|
}
|
|
|
|
intmatrix scaled_inverse(const intmatrix T) {
|
|
intmatrix T2;
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++)
|
|
T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]);
|
|
return T2;
|
|
}
|
|
|
|
axes user_axes;
|
|
axes optimal_axes;
|
|
axes regular_axes;
|
|
|
|
intmatrix T, T2, T_edit;
|
|
EX int det;
|
|
int infinite_dims;
|
|
int twisted0, twisted_edit;
|
|
|
|
EX void set_torus3(int x, int y, int z) {
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++) T0[i][j] = 0;
|
|
tie(T0[0][0], T0[1][1], T0[2][2]) = make_tuple(x, y, z);
|
|
twisted = 0;
|
|
}
|
|
|
|
EX void clear_torus3() {
|
|
set_torus3(0, 0, 0);
|
|
}
|
|
|
|
unordered_map<coord, int> canonical_hash;
|
|
vector<coord> canonical_seq;
|
|
int canonical_index;
|
|
|
|
coord compute_cat(coord co) {
|
|
auto coo = getcoord(co);
|
|
coord cat = 0;
|
|
for(int i=0; i<3; i++) {
|
|
int val = T2[0][i] * coo[0] + T2[1][i] * coo[1] + T2[2][i] * coo[2];
|
|
if(i < WDIM - infinite_dims) val = gmod(val, det);
|
|
cat += val * main_axes[i];
|
|
}
|
|
return cat;
|
|
};
|
|
|
|
|
|
void add_canonical(coord val) {
|
|
auto cat = compute_cat(val);
|
|
if(canonical_hash.count(cat)) return;
|
|
canonical_hash[cat] = isize(canonical_seq);
|
|
canonical_seq.push_back(val);
|
|
}
|
|
|
|
EX void build_torus3(eGeometry g) {
|
|
|
|
int dim = ginf[g].g.gameplay_dimension;
|
|
|
|
for(int i=0; i<dim; i++) {
|
|
user_axes[i] = 0;
|
|
for(int j=0; j<dim; j++) user_axes[i] += main_axes[j] * T0[i][j];
|
|
}
|
|
if(dim == 2) user_axes[2] = 0;
|
|
|
|
optimal_axes = user_axes;
|
|
|
|
again:
|
|
for(int i=0; i<dim; i++) if(optimal_axes[i] < 0) optimal_axes[i] = -optimal_axes[i];
|
|
if(optimal_axes[0] < optimal_axes[1]) swap(optimal_axes[0], optimal_axes[1]);
|
|
if(optimal_axes[1] < optimal_axes[dim]) swap(optimal_axes[1], optimal_axes[dim]);
|
|
if(optimal_axes[0] < optimal_axes[1]) swap(optimal_axes[0], optimal_axes[1]);
|
|
for(int i=0; i<3; i++) {
|
|
int i1 = (i+1) % 3;
|
|
int i2 = (i+2) % 3;
|
|
for(int a=-10; a<=10; a++)
|
|
for(int b=-10; b<=10; b++) {
|
|
coord cand = optimal_axes[i] + optimal_axes[i1] * a + optimal_axes[i2] * b;
|
|
if(celldistance(cand) < celldistance(optimal_axes[i])) {
|
|
optimal_axes[i] = cand;
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
|
|
regular_axes = optimal_axes;
|
|
infinite_dims = dim;
|
|
for(int i=0; i<dim; i++) if(optimal_axes[i]) infinite_dims--;
|
|
|
|
int attempt = 0;
|
|
next_attempt:
|
|
for(int i=dim-infinite_dims; i<3; i++)
|
|
regular_axes[i] = main_axes[(attempt+i)%3];
|
|
|
|
T = make_intmatrix(regular_axes);
|
|
det = determinant(T);
|
|
if(det == 0) {
|
|
attempt++;
|
|
if(attempt == 3) {
|
|
println(hlog, "weird singular!\n");
|
|
exit(1);
|
|
}
|
|
goto next_attempt;
|
|
}
|
|
|
|
if(det < 0) det = -det;
|
|
|
|
T2 = scaled_inverse(T);
|
|
canonical_hash.clear();
|
|
canonical_seq.clear();
|
|
canonical_index = 0;
|
|
add_canonical(0);
|
|
|
|
twisted = twisted0;
|
|
if(dim == 3) {
|
|
twisted &= 7;
|
|
if(g != gCubeTiling && ((T0[0][0]+T0[2][2]) & 1)) twisted &=~ 1;
|
|
if(g != gCubeTiling && ((T0[1][1]+T0[2][2]) & 1)) twisted &=~ 2;
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
|
|
if(i != j && T0[i][j]) twisted = 0;
|
|
if(T0[2][2] == 0) twisted = 0;
|
|
if(T0[0][0] != T0[1][1]) twisted &= 3;
|
|
}
|
|
else {
|
|
twisted &= 8;
|
|
twisted_vec = as_gp(T0[1]);
|
|
ortho_vec = as_gp(T0[0]);
|
|
if(twisted_vec == gp::loc{0,0}) twisted = 0;
|
|
if(chiral(twisted_vec)) twisted = 0;
|
|
if(dscalar(twisted_vec, ortho_vec))
|
|
twisted = 0;
|
|
}
|
|
|
|
set_flag(ginf[g].flags, qANYQ, infinite_dims < dim);
|
|
set_flag(ginf[g].flags, qBOUNDED, infinite_dims == 0);
|
|
bool nonori = false;
|
|
if(twisted&1) nonori = !nonori;
|
|
if(twisted&2) nonori = !nonori;
|
|
if(twisted&4) nonori = !nonori;
|
|
set_flag(ginf[g].flags, qNONORIENTABLE, nonori);
|
|
}
|
|
|
|
void build_torus3() {
|
|
for(eGeometry g: { gEuclid, gEuclidSquare, gCubeTiling, gRhombic3, gBitrunc3})
|
|
build_torus3(g);
|
|
}
|
|
|
|
void swap01(transmatrix& M) {
|
|
for(int i=0; i<4; i++) swap(M[i][0], M[i][1]);
|
|
}
|
|
|
|
gp::loc ort1() { return (S3 == 3 ? gp::loc(1, -2) : gp::loc(0, 1)); }
|
|
|
|
EX coord twist(coord x, array<int, 3>& d, transmatrix& M, bool& mirr) {
|
|
if(WDIM == 3) {
|
|
auto coo = getcoord(x);
|
|
while(coo[2] >= T0[2][2]) {
|
|
coo[2] -= T0[2][2];
|
|
if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX;
|
|
if(twisted & 2) coo[1] *= -1, d[1] *= -1, M = M * MirrorY;
|
|
if(twisted & 4) swap(coo[0], coo[1]), swap01(M), swap(d[0], d[1]);
|
|
}
|
|
while(coo[2] < 0) {
|
|
coo[2] += T0[2][2];
|
|
if(twisted & 4) swap(coo[0], coo[1]), swap(d[0], d[1]), swap01(M);
|
|
if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX;
|
|
if(twisted & 2) coo[1] *= -1, d[1] *= -1, M = M * MirrorY;
|
|
}
|
|
for(int i: {0,1})
|
|
if(T0[i][i]) coo[i] = gmod(coo[i], T0[i][i]);
|
|
return coo[0] * main_axes[0] + coo[1] * main_axes[1] + coo[2] * main_axes[2];
|
|
}
|
|
else {
|
|
auto crd = getcoord(x);
|
|
gp::loc coo = gp::loc(crd[0], crd[1]);
|
|
gp::loc ort = ort1() * twisted_vec;
|
|
int dsc = dscalar(twisted_vec, twisted_vec);
|
|
gp::loc d0 (d[0], d[1]);
|
|
hyperpoint h = eumove(as_coord(twisted_vec)) * C0;
|
|
while(true) {
|
|
int dsx = dscalar(coo, twisted_vec);
|
|
if(dsx >= dsc) coo = coo - twisted_vec;
|
|
else if (dsx < 0) coo = coo + twisted_vec;
|
|
else break;
|
|
M = M * spintox(h) * MirrorY * rspintox(h);
|
|
auto s = ort * dscalar(d0, ort) * 2;
|
|
auto v = dscalar(ort, ort);
|
|
s.first /= v;
|
|
s.second /= v;
|
|
d0 = d0 - s;
|
|
s = ort * dscalar(coo, ort) * 2;
|
|
s.first /= v;
|
|
s.second /= v;
|
|
coo = coo - s;
|
|
mirr = !mirr;
|
|
}
|
|
if(ortho_vec != gp::loc{0,0}) {
|
|
int osc = dscalar(ortho_vec, ortho_vec);
|
|
while(true) {
|
|
int dsx = dscalar(coo, ortho_vec);
|
|
if(dsx >= osc) coo = coo - ortho_vec;
|
|
else if(dsx < 0) coo = coo + ortho_vec;
|
|
else break;
|
|
}
|
|
}
|
|
d[0] = d0.first; d[1] = d0.second;
|
|
return coo.first * main_axes[0] + coo.second * main_axes[1];
|
|
}
|
|
}
|
|
|
|
coord canonicalize(coord x) {
|
|
if(twisted) {
|
|
transmatrix M = Id;
|
|
auto dummy = getcoord(0);
|
|
bool dm = false;
|
|
return twist(x, dummy, M, dm);
|
|
}
|
|
if(infinite_dims == WDIM) return x;
|
|
if(infinite_dims == WDIM-1) {
|
|
while(celldistance(x + optimal_axes[0]) <= celldistance(x)) x += optimal_axes[0];
|
|
while(celldistance(x - optimal_axes[0]) < celldistance(x)) x -= optimal_axes[0];
|
|
return x;
|
|
}
|
|
auto cat = compute_cat(x);
|
|
auto& st = cubemap()->shifttable;
|
|
while(!canonical_hash.count(cat)) {
|
|
if(canonical_index == isize(canonical_seq)) throw hr_exception();
|
|
auto v = canonical_seq[canonical_index++];
|
|
for(auto s: st) add_canonical(v + s);
|
|
}
|
|
return canonical_seq[canonical_hash[cat]];
|
|
}
|
|
|
|
EX void prepare_torus3() {
|
|
T_edit = T0;
|
|
twisted_edit = twisted0;
|
|
}
|
|
|
|
EX void show_fundamental() {
|
|
initquickqueue();
|
|
transmatrix M = ggmatrix(cwt.at);
|
|
hyperpoint h0 = M*C0;
|
|
hyperpoint ha = M*(eumove(ascoord(T_edit[0])) * C0 - C0) / 2;
|
|
hyperpoint hb = M*(eumove(ascoord(T_edit[1])) * C0 - C0) / 2;
|
|
if(WDIM == 3) {
|
|
hyperpoint hc = M*(eumove(ascoord(T_edit[2])) * C0 - C0) / 2;
|
|
for(int d:{-1,1}) for(int e:{-1,1}) {
|
|
queueline(h0+d*ha+e*hb-hc, h0+d*ha+e*hb+hc, 0xFFFFFFFF);
|
|
queueline(h0+d*hb+e*hc-ha, h0+d*hb+e*hc+ha, 0xFFFFFFFF);
|
|
queueline(h0+d*hc+e*ha-hb, h0+d*hc+e*ha+hb, 0xFFFFFFFF);
|
|
}
|
|
}
|
|
else {
|
|
queueline(h0+ha+hb, h0+ha-hb, 0xFFFFFFFF);
|
|
queueline(h0-ha+hb, h0-ha-hb, 0xFFFFFFFF);
|
|
queueline(h0+ha+hb, h0-ha+hb, 0xFFFFFFFF);
|
|
queueline(h0+ha-hb, h0-ha-hb, 0xFFFFFFFF);
|
|
}
|
|
quickqueue();
|
|
}
|
|
|
|
using torus_config = pair<euclid3::intmatrix, int>;
|
|
|
|
euclid3::intmatrix on_periods(gp::loc a, gp::loc b) {
|
|
euclid3::intmatrix res;
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++) res[i][j] = 0;
|
|
res[0][0] = a.first;
|
|
res[0][1] = a.second;
|
|
res[1][0] = b.first;
|
|
res[1][1] = b.second;
|
|
res[2][2] = 1;
|
|
return res;
|
|
}
|
|
|
|
torus_config single_row_torus(int qty, int dy) {
|
|
return { on_periods({qty, 0}, {dy, -1}), false };
|
|
}
|
|
|
|
torus_config regular_torus(gp::loc p) {
|
|
return { on_periods(p, gp::loc(0,1) * p), false };
|
|
}
|
|
|
|
torus_config rectangular_torus(int x, int y, bool klein) {
|
|
if(S3 == 3) y /= 2;
|
|
return { on_periods(euclid3::ort1() * gp::loc(y,0), gp::loc(x,0)), klein?8:0 };
|
|
}
|
|
|
|
void torus_config_option(string name, char key, torus_config tc) {
|
|
dialog::addBoolItem(name, make_pair(T_edit, twisted_edit) == tc && PURE, key);
|
|
dialog::add_action([tc] {
|
|
tie(euclid3::T0, euclid3::twisted0) = tc;
|
|
tie(T_edit, twisted_edit) = tc;
|
|
set_variation(eVariation::pure);
|
|
start_game();
|
|
});
|
|
}
|
|
|
|
EX void show_torus3() {
|
|
int dim = WDIM;
|
|
cmode = sm::SIDE | sm::MAYDARK | sm::TORUSCONFIG;
|
|
gamescreen(1);
|
|
dialog::init(XLAT("Euclidean quotient spaces"));
|
|
|
|
for(int y=0; y<dim+1; y++)
|
|
dialog::addBreak(100);
|
|
|
|
dialog::addInfo(XLAT("columns specify periods"));
|
|
dialog::addInfo(XLAT("(vectors you need to take to get back to start)"));
|
|
|
|
dialog::addBreak(50);
|
|
|
|
show_fundamental();
|
|
if(dim == 3) {
|
|
bool nondiag = false;
|
|
for(int i=0; i<dim; i++)
|
|
for(int j=0; j<dim; j++)
|
|
if(T_edit[i][j] && i != j) nondiag = true;
|
|
|
|
if(nondiag) {
|
|
dialog::addInfo(XLAT("twisting implemented only for diagonal matrices"));
|
|
dialog::addBreak(200);
|
|
}
|
|
else if(T_edit[dim-1][dim-1] == 0) {
|
|
dialog::addInfo(XLAT("nothing to twist"));
|
|
dialog::addInfo(XLAT("change the bottom left corner"));
|
|
dialog::addBreak(100);
|
|
}
|
|
else {
|
|
auto g = geometry;
|
|
if(g == gCubeTiling || (T_edit[0][0]+T_edit[2][2]) % 2 == 0)
|
|
dialog::addBoolItem(XLAT("flip X coordinate"), twisted_edit & 1, 'x');
|
|
else
|
|
dialog::addBoolItem(XLAT("flipping X impossible"), twisted_edit & 1, 'x');
|
|
dialog::add_action([] { twisted_edit ^= 1; });
|
|
|
|
if(g == gCubeTiling || (T_edit[1][1]+T_edit[2][2]) % 2 == 0)
|
|
dialog::addBoolItem(XLAT("flip Y coordinate"), twisted_edit & 2, 'y');
|
|
else
|
|
dialog::addBoolItem(XLAT("flipping Y impossible"), twisted_edit & 2, 'y');
|
|
dialog::add_action([] { twisted_edit ^= 2; });
|
|
|
|
if(T_edit[0][0] == T_edit[1][1])
|
|
dialog::addBoolItem(XLAT("swap X and Y"), twisted_edit & 4, 'z');
|
|
else
|
|
dialog::addBoolItem(XLAT("swapping impossible"), twisted_edit & 4, 'z');
|
|
dialog::add_action([] { twisted_edit ^= 4; });
|
|
}
|
|
}
|
|
else {
|
|
if(T_edit[1][0] == 0 && T_edit[1][1] == 0)
|
|
dialog::addInfo(XLAT("change the second column for Möbius bands and Klein bottles"));
|
|
else if(chiral(as_gp(T_edit[1])))
|
|
dialog::addInfo(XLAT("second period is chiral -- cannot be mirrored"));
|
|
else if(dscalar(as_gp(T_edit[1]), as_gp(T_edit[0])))
|
|
dialog::addInfo(XLAT("periods must be orthogonal for mirroring"));
|
|
else {
|
|
dialog::addBoolItem(XLAT("mirror flip in the second period"), twisted_edit & 8, 'x');
|
|
dialog::add_action([] { twisted_edit ^= 8; });
|
|
}
|
|
|
|
dialog::addBreak(50);
|
|
torus_config_option(XLAT("single-cell torus"), 'A', regular_torus({1,0}));
|
|
torus_config_option(XLAT("large regular torus"), 'B', regular_torus({12, 0}));
|
|
torus_config_option(XLAT("Klein bottle"), 'C', rectangular_torus(12, 6, true));
|
|
torus_config_option(XLAT("cylinder"), 'D', rectangular_torus(6, 0, false));
|
|
torus_config_option(XLAT("Möbius band"), 'E', rectangular_torus(6, 0, true));
|
|
if(S3 == 3) torus_config_option(XLAT("seven-colorable torus"), 'F', regular_torus({1,2}));
|
|
if(S3 == 3) torus_config_option(XLAT("HyperRogue classic torus"), 'G', single_row_torus(381, -22));
|
|
}
|
|
|
|
dialog::addBreak(50);
|
|
|
|
char xch = 'p';
|
|
for(eGeometry g: {gCubeTiling, gRhombic3, gBitrunc3}) {
|
|
if(dim == 2) g = geometry;
|
|
dialog::addItem(XLAT(ginf[g].menu_displayed_name), xch++);
|
|
dialog::add_action([g] {
|
|
stop_game();
|
|
set_geometry(g);
|
|
T0 = T_edit;
|
|
twisted0 = twisted_edit;
|
|
start_game();
|
|
});
|
|
if(dim == 2) break;
|
|
}
|
|
|
|
dialog::addBreak(50);
|
|
dialog::addBack();
|
|
dialog::display();
|
|
|
|
int i = -1;
|
|
for(auto& v: dialog::items) if(v.type == dialog::diBreak) {
|
|
if(i >= 0 && i < dim) {
|
|
for(int j=0; j < dim; j++) {
|
|
char ch = 'a' + i * 3 + j;
|
|
if(displayfr(dialog::dcenter + dialog::dfspace * 4 * (j-(dim-1.)/2), v.position, 2, dialog::dfsize, its(T_edit[j][i]), 0xFFFFFF, 8))
|
|
getcstat = ch;
|
|
dialog::add_key_action(ch, [=] {
|
|
dialog::editNumber(T_edit[j][i], -10, +10, 1, 0, "", XLAT(
|
|
"This matrix lets you play on the quotient spaces of three-dimensional. "
|
|
"Euclidean space. Every column specifies a translation vector which "
|
|
"takes you back to the starting point. For example, if you put "
|
|
"set 2, 6, 0 on the diagonal, you get back to the starting point "
|
|
"if you move 2 steps in the X direction, 6 steps in the Y direction "
|
|
"(the quotient space is infinite in the Z direction).\n\n"
|
|
"You can also introduce twists for diagonal matrices: after going "
|
|
"the given number of steps in the Z direction, the space is also "
|
|
"mirrored or rotated. (More general 'twisted' spaces are currently "
|
|
"not implemented.)"
|
|
)
|
|
);
|
|
dialog::extra_options = show_fundamental;
|
|
});
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
#if CAP_COMMANDLINE
|
|
int euArgs() {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-t3")) {
|
|
PHASEFROM(2);
|
|
stop_game();
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++) {
|
|
shift(); T0[i][j] = argi();
|
|
}
|
|
build_torus3();
|
|
}
|
|
else if(argis("-t2")) {
|
|
PHASEFROM(2);
|
|
stop_game();
|
|
for(int i=0; i<2; i++)
|
|
for(int j=0; j<2; j++) {
|
|
shift(); T0[i][j] = argi();
|
|
}
|
|
shift(); twisted0 = argi();
|
|
build_torus3();
|
|
}
|
|
else if(argis("-twist3")) {
|
|
PHASEFROM(2);
|
|
stop_game();
|
|
for(int i=0; i<3; i++)
|
|
for(int j=0; j<3; j++) T0[i][j] = 0;
|
|
|
|
for(int i=0; i<3; i++) {
|
|
shift(); T0[i][i] = argi();
|
|
}
|
|
shift(); twisted0 = argi();
|
|
build_torus3();
|
|
}
|
|
else if(argis("-twisttest")) {
|
|
start_game();
|
|
celllister cl(cwt.at, 10000, 10000, NULL);
|
|
for(cell *c: cl.lst) {
|
|
heptagon *h = c->master;
|
|
for(int i=0; i<S7; i++)
|
|
for(int j=0; j<S7; j++)
|
|
for(int k=0; k<S7; k++)
|
|
for(int l=0; l<S7; l++)
|
|
if(h->move(i) && c->move(k) && h->move(i)->move(j) == h->move(k)->move(l) && h->move(i)->move(j)) {
|
|
transmatrix T1 = move_matrix(h, i) * move_matrix(h->move(i), j);
|
|
transmatrix T2 = move_matrix(h, k) * move_matrix(h->move(k), l);
|
|
if(!eqmatrix(T1, T2)) {
|
|
println(hlog, c, " @ ", getcoord(cubemap()->ispacemap[c->master]), " : ", i, "/", j, "/", k, "/", l, " :: ", T1, " vs ", T2);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
auto euhook = addHook(hooks_args, 100, euArgs);
|
|
#endif
|
|
EX }
|
|
|
|
#endif
|
|
|
|
EX int dscalar(gp::loc e1, gp::loc e2) {
|
|
return 2 * (e1.first * e2.first + e1.second*e2.second) + (S3 == 3 ? e1.first*e2.second + e2.first * e1.second : 0);
|
|
}
|
|
|
|
EX int dsquare(gp::loc e) { return dscalar(e, e)/2; }
|
|
|
|
EX int dcross(gp::loc e1, gp::loc e2) {
|
|
return e1.first * e2.second - e1.second*e2.first;
|
|
}
|
|
|
|
EX gp::loc euc2_coordinates(cell *c) {
|
|
auto vec = euclid3::eucmap()->ispacemap[c->master];
|
|
auto ans = euclid3::getcoord(vec);
|
|
if(BITRUNCATED)
|
|
return as_gp(ans) * gp::loc(1,1) + (c == c->master->c7 ? gp::loc(0,0) : gp::eudir((c->c.spin(0)+4)%6));
|
|
if(GOLDBERG) {
|
|
auto li = gp::get_local_info(c);
|
|
gp::loc shift(0,0);
|
|
if(li.first_dir >= 0) shift = gp::eudir(li.last_dir) * li.relative;
|
|
return as_gp(ans) * gp::param + shift;
|
|
}
|
|
return as_gp(ans);
|
|
}
|
|
|
|
/** this is slow, but we use it only for small p's */
|
|
EX cell* at_euc2_coordinates(gp::loc p) {
|
|
cellwalker cw(currentmap->gamestart());
|
|
while(p.first--) cw += revstep;
|
|
cw ++;
|
|
while(p.second--) cw += revstep;
|
|
return cw.at;
|
|
}
|
|
|
|
EX euclid3::coord as_coord(gp::loc p) { return p.first + p.second * euclid3::COORDMAX; }
|
|
|
|
EX gp::loc sdxy() { return as_gp(euclid3::T[1]) * gp::univ_param(); }
|
|
|
|
EX pair<bool, string> coord_display(const transmatrix& V, cell *c) {
|
|
if(c != c->master->c7) return {false, ""};
|
|
hyperpoint hx = eumove(1) * C0;
|
|
hyperpoint hy = eumove(euclid3::COORDMAX) * C0;
|
|
hyperpoint hz = WDIM == 2 ? C0 : eumove(euclid3::main_axes[2]) * C0;
|
|
hyperpoint h = kz(inverse(build_matrix(hx, hy, hz, C03)) * inverse(ggmatrix(cwt.at->master->c7)) * V * C0);
|
|
|
|
if(WDIM == 3)
|
|
return {true, fts(h[0]) + "," + fts(h[1]) + "," + fts(h[2]) };
|
|
else
|
|
return {true, fts(h[0]) + "," + fts(h[1]) };
|
|
}
|
|
|
|
EX gp::loc as_gp(const array<int, 3>& v) { return gp::loc(v[0], v[1]); }
|
|
|
|
EX map<gp::loc, cdata>& get_cdata() { return euclid3::eucmap()->eucdata; }
|
|
|
|
EX transmatrix eumove(euclid3::coord vec) {
|
|
constexpr double q3 = sqrt(double(3));
|
|
auto co = euclid3::getcoord(vec);
|
|
if(WDIM == 3) {
|
|
return eupush3(co[0], co[1], co[2]);
|
|
}
|
|
transmatrix Mat = Id;
|
|
if(a4) {
|
|
Mat[0][LDIM] += co[0] * cgi.tessf;
|
|
Mat[1][LDIM] += co[1] * cgi.tessf;
|
|
}
|
|
else {
|
|
Mat[0][LDIM] += (co[0] + co[1] * .5) * cgi.tessf;
|
|
Mat[1][LDIM] += co[1] * q3 /2 * cgi.tessf;
|
|
}
|
|
return Mat;
|
|
}
|
|
|
|
EX bool chiral(gp::loc g) {
|
|
int x = g.first;
|
|
int y = g.second;
|
|
if(x == 0) return false;
|
|
if(y == 0) return false;
|
|
if(x+y == 0) return false;
|
|
if(x==y) return false;
|
|
if(S3 == 3 && y == -2*x) return false;
|
|
if(S3 == 3 && x == -2*y) return false;
|
|
return true;
|
|
}
|
|
|
|
EX void twist_once(gp::loc coo) {
|
|
coo = coo - euclid3::twisted_vec * gp::univ_param();
|
|
if(euclid3::twisted&8) {
|
|
gp::loc ort = euclid3::ort1() * euclid3::twisted_vec * gp::univ_param();
|
|
auto s = ort * dscalar(coo, ort) * 2;
|
|
auto v = dscalar(ort, ort);
|
|
s.first /= v;
|
|
s.second /= v;
|
|
coo = coo - s;
|
|
}
|
|
}
|
|
|
|
EX int eudist(int sx, int sy, bool reduce IS(true)) {
|
|
int z0 = abs(sx);
|
|
int z1 = abs(sy);
|
|
if(a4 && BITRUNCATED)
|
|
return (z0 == z1 && z0 > 0 && reduce) ? z0+1: max(z0, z1);
|
|
if(a4) return z0 + z1;
|
|
int z2 = abs(sx+sy);
|
|
return max(max(z0,z1), z2);
|
|
}
|
|
|
|
EX int eudist(gp::loc a, gp::loc b) {
|
|
return eudist(a.first-b.first, a.second-b.second, (a.first ^ a.second)&1);
|
|
}
|
|
|
|
EX int cyldist(gp::loc a, gp::loc b) {
|
|
a = as_gp(euclid3::getcoord(euclid3::canonicalize(as_coord(a))));
|
|
b = as_gp(euclid3::getcoord(euclid3::canonicalize(as_coord(b))));
|
|
|
|
if(!quotient) return eudist(a, b);
|
|
|
|
int best = 0;
|
|
for(int sa=0; sa<16; sa++) {
|
|
auto _a = a, _b = b;
|
|
if(sa&1) twist_once(_a);
|
|
if(sa&2) twist_once(_b);
|
|
if(sa&4) _a = _a + euclid3::ortho_vec * gp::univ_param();
|
|
if(sa&8) _b = _b + euclid3::ortho_vec * gp::univ_param();
|
|
int val = eudist(_a, _b);
|
|
if(sa == 0 || val < best) best = val;
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
}
|