1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-26 00:47:00 +00:00
hyperrogue/cell.cpp
2018-12-14 19:27:11 +01:00

1790 lines
50 KiB
C++

// Hyperbolic Rogue -- cells
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
// cells the game is played on
namespace hr {
int fix6(int a) { return (a+MODFIXER)%S6; }
int fix7(int a) { return (a+MODFIXER)%S7; }
int dirdiff(int dd, int t) {
dd %= t;
if(dd<0) dd += t;
if(t-dd < dd) dd = t-dd;
return dd;
}
int fixdir(int a, cell *c) { a %= c->type; if(a<0) a += c->type; return a; }
int cellcount = 0;
void initcell(cell *c); // from game.cpp
cell *newCell(int type, heptagon *master) {
cell *c = tailored_alloc<cell> (type);
c->type = type;
c->master = master;
initcell(c);
return c;
}
struct cdata {
int val[4];
int bits;
};
// -- hrmap ---
hrmap *currentmap;
vector<hrmap*> allmaps;
// --- auxiliary hyperbolic map for horocycles ---
struct hrmap_alternate : hrmap {
heptagon *origin;
hrmap_alternate(heptagon *o) { origin = o; }
~hrmap_alternate() { clearfrom(origin); }
};
hrmap *newAltMap(heptagon *o) { return new hrmap_alternate(o); }
// --- hyperbolic geometry ---
hrmap_hyperbolic::hrmap_hyperbolic() {
// printf("Creating hyperbolic map: %p\n", this);
origin = tailored_alloc<heptagon> (S7);
heptagon& h = *origin;
h.s = hsOrigin;
h.emeraldval = a46 ? 0 : 98;
h.zebraval = 40;
h.fiftyval = 0;
h.fieldval = 0;
h.rval0 = h.rval1 = 0;
h.cdata = NULL;
h.alt = NULL;
h.distance = 0;
mvar = variation;
if(binarytiling) {
#if DEBUG_BINARY_TILING
binary::xcode.clear();
binary::rxcode.clear();
binary::xcode[&h] = (1 << 16);
binary::rxcode[1<<16] = &h;
#endif
h.zebraval = 0,
h.c7 = newCell(6, origin);
}
else if(IRREGULAR)
irr::link_start(origin);
else
h.c7 = newCell(S7, origin);
}
// --- spherical geometry ---
int spherecells() {
if(S7 == 5) return (elliptic?6:12);
if(S7 == 4) return (elliptic?3:6);
if(S7 == 3) return 4;
if(S7 == 2) return (elliptic?1:2);
if(S7 == 1) return 1;
return 12;
}
vector<int> siblings;
struct hrmap_spherical : hrmap {
heptagon *dodecahedron[12];
eVariation mvar;
hrmap_spherical() {
mvar = variation;
for(int i=0; i<spherecells(); i++) {
heptagon& h = *(dodecahedron[i] = new heptagon);
h.s = hsOrigin;
h.emeraldval = i;
h.zebraval = i;
h.fiftyval = i;
h.rval0 = h.rval1 = 0;
h.alt = NULL;
h.cdata = NULL;
h.c.fullclear();
h.fieldval = i;
if(!IRREGULAR) h.c7 = newCell(S7, &h);
}
if(S7 == 5)
siblings = {1, 0, 10, 4, 3, 8, 9, 11, 5, 6, 2, 7};
else
siblings = {1, 0, 3, 2, 5, 4};
if(S7 == 4 && elliptic) {
for(int i=0; i<3; i++) {
int i1 = (i+1)%3;
int i2 = (i+2)%3;
dodecahedron[i]->move(0) = dodecahedron[i1];
dodecahedron[i]->c.setspin(0, 1, false);
dodecahedron[i]->move(1) = dodecahedron[i2];
dodecahedron[i]->c.setspin(1, 0, false);
dodecahedron[i]->move(2) = dodecahedron[i1];
dodecahedron[i]->c.setspin(2, 3, true);
dodecahedron[i]->move(3) = dodecahedron[i2];
dodecahedron[i]->c.setspin(3, 2, true);
}
}
else for(int i=0; i<S7; i++) {
dodecahedron[0]->move(i) = dodecahedron[i+1];
dodecahedron[0]->c.setspin(i, 0, false);
dodecahedron[i+1]->move(0) = dodecahedron[0];
dodecahedron[i+1]->c.setspin(0, i, false);
dodecahedron[i+1]->move(1) = dodecahedron[(i+S7-1)%S7+1];
dodecahedron[i+1]->c.setspin(1, S7-1, false);
dodecahedron[i+1]->move(S7-1) = dodecahedron[(i+1)%S7+1];
dodecahedron[i+1]->c.setspin(S7-1, 1, false);
if(S7 == 5 && elliptic) {
dodecahedron[i+1]->move(2) = dodecahedron[(i+2)%S7+1];
dodecahedron[i+1]->c.setspin(2, 3, true);
dodecahedron[i+1]->move(3) = dodecahedron[(i+3)%S7+1];
dodecahedron[i+1]->c.setspin(3, 2, true);
}
else if(S7 == 5) {
dodecahedron[6]->move(i) = dodecahedron[7+i];
dodecahedron[6]->c.setspin(i, 0, false);
dodecahedron[7+i]->move(0) = dodecahedron[6];
dodecahedron[7+i]->c.setspin(0, i, false);
dodecahedron[i+7]->move(1) = dodecahedron[(i+4)%5+7];
dodecahedron[i+7]->c.setspin(1, 4, false);
dodecahedron[i+7]->move(4) = dodecahedron[(i+1)%5+7];
dodecahedron[i+7]->c.setspin(4, 1, false);
dodecahedron[i+1]->move(2) = dodecahedron[7+(10-i)%5];
dodecahedron[i+1]->c.setspin(2, 2, false);
dodecahedron[7+(10-i)%5]->move(2) = dodecahedron[1+i];
dodecahedron[7+(10-i)%5]->c.setspin(2, 2, false);
dodecahedron[i+1]->move(3) = dodecahedron[7+(9-i)%5];
dodecahedron[i+1]->c.setspin(3, 3, false);
dodecahedron[7+(9-i)%5]->move(3) = dodecahedron[i+1];
dodecahedron[7+(9-i)%5]->c.setspin(3, 3, false);
}
if(S7 == 4) {
dodecahedron[5]->move(3-i) = dodecahedron[i+1];
dodecahedron[5]->c.setspin(3-i, 2, false);
dodecahedron[i+1]->move(2) = dodecahedron[5];
dodecahedron[i+1]->c.setspin(2, 3-i, false);
}
}
if(IRREGULAR) {
irr::link_start(dodecahedron[0]);
for(int i=0; i<spherecells(); i++)
for(int j=0; j<S7; j++)
irr::may_link_next(dodecahedron[i], j);
}
}
heptagon *getOrigin() { return dodecahedron[0]; }
~hrmap_spherical() {
dynamicval<eVariation> ph(variation, mvar);
for(int i=0; i<spherecells(); i++) clearHexes(dodecahedron[i]);
for(int i=0; i<spherecells(); i++) delete dodecahedron[i];
}
void verify() {
for(int i=0; i<spherecells(); i++) for(int k=0; k<S7; k++) {
heptspin hs(dodecahedron[i], k, false);
heptspin hs2 = hs + wstep + (S7-1) + wstep + (S7-1) + wstep + (S7-1);
if(hs2.at != hs.at) printf("error %d,%d\n", i, k);
}
for(int i=0; i<spherecells(); i++) verifycells(dodecahedron[i]);
}
};
heptagon *getDodecahedron(int i) {
hrmap_spherical *s = dynamic_cast<hrmap_spherical*> (currentmap);
if(!s) return NULL;
return s->dodecahedron[i];
}
// --- euclidean geometry ---
// NOTE: patterns assume that pair_to_vec(0,1) % 3 == 2!
// Thus, pair_to_vec(0,1) must not be e.g. a power of four
int pair_to_vec(int x, int y) {
return x + (y << 15);
}
pair<int, int> vec_to_pair(int vec) {
int x = vec & ((1<<15)-1);
int y = (vec >> 15);
if(x >= (1<<14)) x -= (1<<15), y++;
return {x, y};
}
namespace torusconfig {
// the configuration of the torus topology.
// torus cells are indexed [0..qty),
// where the cell to the right from i is indexed i+dx,
// and the cell to the down-right is numbered i+dy
// Changed with command line option: -tpar <qty>,<dx>,<dy>
// Ideally, qty, dx, and dy should have the same "modulo 3"
// values as the default -- otherwise the three-color
// pattern breaks. Also, they should have no common
// prime divisor.
int def_qty = 127*3, dx = 1, def_dy = -11*2;
int qty = def_qty, dy = def_dy;
int sdx = 12, sdy = 12;
// new values to change
int newqty, newdy, newsdx, newsdy;
int torus_cx, torus_cy;
vector<torusmode_info> tmodes = {
{"single row (hex)", TF_SINGLE | TF_HEX},
{"single row (squares)", TF_SINGLE | TF_SQUARE},
{"parallelogram (hex)", TF_SIMPLE | TF_HEX},
{"rectangle (squares)", TF_SIMPLE | TF_SQUARE},
{"rectangle (hex)", TF_WEIRD | TF_HEX},
{"Klein bottle (squares)", TF_SIMPLE | TF_KLEIN | TF_SQUARE},
{"Klein bottle (hex)", TF_WEIRD | TF_KLEIN | TF_HEX},
{"cylinder (squares)", TF_SIMPLE | TF_CYL },
{"cylinder (hex)", TF_SIMPLE | TF_CYL | TF_HEX},
{"Möbius band (squares)", TF_SIMPLE | TF_CYL | TF_KLEIN},
{"Möbius band (hex)", TF_SIMPLE | TF_CYL | TF_HEX | TF_KLEIN},
};
eTorusMode torus_mode, newmode;
flagtype tmflags() { return tmodes[torus_mode].flags; }
int getqty() {
if(tmflags() & TF_SINGLE)
return qty;
else
return sdx * sdy;
}
int getvec(int x, int y) {
if(tmflags() & TF_SINGLE)
return x * dx + y * dy;
else if(tmflags() & TF_SIMPLE)
return pair_to_vec(x, y);
else
return pair_to_vec(-y - 2 * x, 3 * y);
}
int id_to_vec(int id, bool mirrored = false) {
if(tmflags() & TF_SINGLE)
return id;
else {
int dx = id % sdx;
int dy = id / sdx;
if(mirrored)
dy = -dy, dx += sdx;
if(tmflags() & TF_SIMPLE)
return pair_to_vec(dx, dy);
else
return pair_to_vec(- 2 * dx - (dy & 1), 3 * dy);
}
}
pair<int, bool> vec_to_id_mirror(int vec) {
if(tmflags() & TF_SINGLE) {
return {gmod(vec, qty), false};
}
else {
int x, y;
tie(x,y) = vec_to_pair(vec);
bool mirror = false;
if(tmflags() & TF_KLEIN) {
if(tmflags() & TF_WEIRD) {
x = gmod(x, 4 * sdx);
mirror = x > 0 && x <= 2 * sdx;
}
else {
x = gmod(x, 2 * sdx);
mirror = x >= sdx;
}
if(mirror) y = -y;
}
if(tmflags() & TF_WEIRD) {
y /= 3; x = (x + (y&1)) / -2;
}
x = gmod(x, sdx), y = gmod(y, sdy);
return {y * sdx + x, mirror};
}
}
int vec_to_id(int vec) {
return vec_to_id_mirror(vec).first;
}
void torus_test() {
printf("Testing torus vec_to_pair/pair_to_vec...\n");
for(int x=-10; x<=10; x++)
for(int y=-10; y<=10; y++) {
auto p = vec_to_pair(pair_to_vec(x, y));
if(p.first != x || p.second != y)
printf("Failed for (%d,%d) -> [%d] -> (%d,%d)\n", x, y, pair_to_vec(x,y), p.first, p.second);
}
printf("Testing id_to_vec / vec_to_id...\n");
for(int i=0; i < getqty(); i++)
for(int m=0; m< (torus_mode == tmKlein ? 2 : 1); m++)
if(vec_to_id_mirror(id_to_vec(i, m)) != pair<int,bool> (i,m))
printf("Failed for id %d.%d [%d] (%d.%d)\n", i, m, id_to_vec(i,m), vec_to_id(id_to_vec(i,m)), vec_to_id_mirror(id_to_vec(i,m)).second);
}
int tester = addHook(hooks_tests, 0, torus_test);
void activate() {
if(tmflags() & TF_HEX)
ginf[gTorus].vertex = 3, ginf[gTorus].sides = 6;
else
ginf[gTorus].vertex = 4, ginf[gTorus].sides = 4;
flagtype& flags = ginf[gTorus].flags;
set_flag(flags, qNONORIENTABLE, tmflags() & TF_KLEIN);
set_flag(flags, qBOUNDED, !(tmflags() & TF_CYL));
}
int dscalar(gp::loc e1, gp::loc e2) {
return 2 * (e1.first * e2.first + e1.second*e2.second) + (S3 == 3 ? e1.first*e2.second + e2.first * e1.second : 0);
}
gp::loc sdxy() { return gp::loc(sdx, sdy); }
int mobius_dir_basic() {
int dscalars[6];
for(int a=0; a<SG6; a++)
dscalars[a] = dscalar(gp::eudir(a), sdxy());
for(int a=0; a<SG6; a++)
for(int b=0; b<SG6; b++)
if(a != b && dscalars[a] == dscalars[b]) {
return (a + b) % SG6;
}
return -1;
}
bool mobius_symmetric(bool square, int dx, int dy) {
dynamicval<eGeometry> g(geometry, square ? gEuclidSquare : gEuclid);
dynamicval<int> gx(sdx, dx);
dynamicval<int> gy(sdy, dy);
return mobius_dir_basic() != -1;
}
void mobius_flip(int&x, int& y) {
int d = mobius_dir_basic();
int a, b;
if(d == 0) a = 1, b = SG6-1;
else a = 0, b = d;
auto p1 = gp::eudir(a);
auto p2 = gp::eudir(b);
// x = sdx * s + px * t
// y = sdy * s + py * t
// py * x = py * sdx * s + px * py * t
// px * y = px * sdy * s + px + py * t
// py * x - px * y = py * sdx * s - px * sdy * s
// s = (py * x - px * y) / (py * sdx - px * sdy)
int det = p1.second * sdx - p1.first * sdy;
int smul = p1.second * x - p1.first * y;
int tmul = sdx * y - sdy * x;
x = (tmul * p2.first + smul * sdx) / det;
y = (tmul * p2.second + smul * sdy) / det;
// println(hlog, make_pair(ox,oy), " [", d, "] ", make_pair(x,y), " p1 = ", p1, " p2 = ", p2, " det = ", det, " smul = ", smul, " tmul = ", tmul);
}
int mobius_dir(cell *c) {
if(c->type == 8) return mobius_dir_basic() * 2;
else return mobius_dir_basic();
}
bool be_canonical(int& x, int& y) {
using namespace torusconfig;
int periods = gdiv(dscalar(gp::loc(x,y), sdxy()), dscalar(sdxy(), sdxy()));
y -= sdy * periods;
x -= sdx * periods;
bool b = false;
if(nonorientable && (periods & 1)) {
mobius_flip(x, y);
b = true;
}
return b;
}
int cyldist(int id1, int id2) {
int x1, y1, x2, y2;
tie(x1, y1) = vec_to_pair(id1);
tie(x2, y2) = vec_to_pair(id2);
be_canonical(x1, y1);
be_canonical(x2, y2);
int dist = 1000000000;
for(int a1=-1; a1<=1; a1++)
for(int a2=-1; a2<=1; a2++) {
int ax1 = x1 + sdx * a1;
int ay1 = y1 + sdy * a1;
if(nonorientable && a1) mobius_flip(ax1, ay1);
int ax2 = x2 + sdx * a2;
int ay2 = y2 + sdy * a2;
if(nonorientable && a2) mobius_flip(ax2, ay2);
dist = min(dist, eudist(ax1 - ax2, ay1 - ay2));
}
return dist;
}
}
int euclid_getvec(int dx, int dy) {
if(euwrap) return torusconfig::getvec(dx, dy);
else return pair_to_vec(dx, dy);
}
template<class T> void build_euclidean_moves(cell *c, int vec, const T& builder) {
int x, y;
tie(x,y) = vec_to_pair(vec);
c->type = a4 ? (PURE || ((x^y^1) & 1) ? 4 : 8) : 6;
if(c->type == 4) {
int m = PURE ? 1 : 2;
builder(euclid_getvec(+1,+0), 0, 2 * m);
builder(euclid_getvec(+0,+1), 1, 3 * m);
builder(euclid_getvec(-1,+0), 2, 0 * m);
builder(euclid_getvec(+0,-1), 3, 1 * m);
}
else if(c->type == 8) {
builder(euclid_getvec(+1,+0), 0, 2);
builder(euclid_getvec(+1,+1), 1, 5);
builder(euclid_getvec(+0,+1), 2, 3);
builder(euclid_getvec(-1,+1), 3, 7);
builder(euclid_getvec(-1,+0), 4, 0);
builder(euclid_getvec(-1,-1), 5, 1);
builder(euclid_getvec(+0,-1), 6, 1);
builder(euclid_getvec(+1,-1), 7, 3);
}
else /* 6 */ {
builder(euclid_getvec(+1,+0), 0, 3);
builder(euclid_getvec(+0,+1), 1, 4);
builder(euclid_getvec(-1,+1), 2, 5);
builder(euclid_getvec(-1,+0), 3, 0);
builder(euclid_getvec(+0,-1), 4, 1);
builder(euclid_getvec(+1,-1), 5, 2);
}
}
struct hrmap_torus : hrmap {
vector<cell*> all;
vector<int> dists;
virtual vector<cell*>& allcells() { return all; }
cell *gamestart() {
return all[0];
}
hrmap_torus() {
using namespace torusconfig;
int q = getqty();
all.resize(q);
for(int i=0; i<q; i++) {
all[i] = newCell(8, encodeId(i));
}
for(int i=0; i<q; i++) {
int iv = id_to_vec(i);
build_euclidean_moves(all[i], iv, [&] (int delta, int d, int d2) {
auto im = vec_to_id_mirror(iv + delta);
all[i]->move(d) = all[im.first];
all[i]->c.setspin(d, im.second, false);
});
}
for(cell *c: all) for(int d=0; d<c->type; d++) {
cell *c2 = c->move(d);
for(int d2=0; d2<c2->type; d2++)
if(c2->move(d2) == c)
c->c.setspin(d, d2, c->c.spin(d));
}
celllister cl(gamestart(), 100, 100000000, NULL);
dists.resize(q);
for(int i=0; i<isize(cl.lst); i++)
dists[decodeId(cl.lst[i]->master)] = cl.dists[i];
}
~hrmap_torus() {
for(cell *c: all) delete c;
}
};
hrmap_torus *torusmap() {
return dynamic_cast<hrmap_torus*> (currentmap);
}
/* cell *getTorusId(int id) {
hrmap_torus *cur = torusmap();
if(!cur) return NULL;
return cur->all[id];
} */
struct hrmap_euclidean : hrmap {
cell *gamestart() {
return *(euclideanAtCreate(0).first);
}
struct euclideanSlab {
cell* a[256][256];
euclideanSlab() {
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
a[y][x] = NULL;
}
~euclideanSlab() {
for(int y=0; y<256; y++) for(int x=0; x<256; x++)
if(a[y][x]) delete a[y][x];
}
};
static const int slabs = max_vec / 256;
euclideanSlab* euclidean[slabs][slabs];
hrmap_euclidean() {
for(int y=0; y<slabs; y++) for(int x=0; x<slabs; x++)
euclidean[y][x] = NULL;
}
euc_pointer at(int vec) {
auto p = vec_to_pair(vec);
int x = p.first, y = p.second;
bool mobius = false;
if(euwrap)
mobius = torusconfig::be_canonical(x, y);
euclideanSlab*& slab = euclidean[(y>>8)&(slabs-1)][(x>>8)&(slabs-1)];
if(!slab) slab = new hrmap_euclidean::euclideanSlab;
return make_pair(&(slab->a[y&255][x&255]), mobius);
}
map<int, struct cdata> eucdata;
~hrmap_euclidean() {
for(int y=0; y<slabs; y++) for(int x=0; x<slabs; x++)
if(euclidean[y][x]) {
delete euclidean[y][x];
euclidean[y][x] = NULL;
}
eucdata.clear();
}
};
cellwalker vec_to_cellwalker(int vec) {
if(!fulltorus) {
auto p = euclideanAtCreate(vec);
if(p.second)
return cellwalker(*p.first, torusconfig::mobius_dir(*p.first), true);
else
return cellwalker(*p.first, 0, false);
}
else {
hrmap_torus *cur = torusmap();
if(!cur) return cellwalker(NULL, 0);
auto p = torusconfig::vec_to_id_mirror(vec);
return cellwalker(cur->all[p.first], 0, p.second);
}
}
int cellwalker_to_vec(cellwalker cw) {
int id = decodeId(cw.at->master);
if(!fulltorus) {
if(nonorientable) {
auto ep = euclideanAt(id);
if(ep.second != cw.mirrored) {
int x, y;
tie(x, y) = vec_to_pair(id);
x += torusconfig::sdx;
y += torusconfig::sdy;
torusconfig::mobius_flip(x, y);
return pair_to_vec(x, y);
}
}
return id;
}
return torusconfig::id_to_vec(id, cw.mirrored);
}
int cell_to_vec(cell *c) {
int id = decodeId(c->master);
if(!fulltorus) return id;
return torusconfig::id_to_vec(id, false);
}
pair<int, int> cell_to_pair(cell *c) {
return vec_to_pair(cell_to_vec(c));
}
union heptacoder {
heptagon *h;
int id;
};
int decodeId(heptagon* h) {
heptacoder u;
u.h = h; return u.id;
}
heptagon* encodeId(int id) {
heptacoder u;
u.id = id;
return u.h;
}
// --- quotient geometry ---
namespace quotientspace {
struct code {
int c[MAX_EDGE+1];
};
bool operator == (const code& c1, const code &c2) {
for(int i=0; i<=S7; i++) if(c1.c[i] != c2.c[i]) return false;
return true;
}
bool operator < (const code& c1, const code &c2) {
for(int i=0; i<=S7; i++) if(c1.c[i] != c2.c[i]) return c1.c[i] < c2.c[i];
return false;
}
int cod(heptagon *h) {
return zebra40(h->c7);
}
code get(heptspin hs) {
code res;
res.c[0] = cod(hs.at);
for(int i=1; i<=S7; i++) {
res.c[i] = cod((hs + wstep).at);
hs += 1;
}
return res;
}
int rvadd = 0, rvdir = 1;
int rv(int x) { return (rvadd+x*rvdir) % S7; }
struct hrmap_quotient : hrmap {
hrmap_hyperbolic base;
vector<cell*> celllist;
cell *origin;
map<quotientspace::code, int> reachable;
vector<heptspin> bfsq;
vector<int> connections;
void add(const heptspin& hs) {
code g = get(hs);
if(!reachable.count(g)) {
reachable[g] = bfsq.size();
bfsq.push_back(hs);
add(hs + 1);
}
}
vector<heptagon*> allh;
hrmap_quotient() {
static int symmask = (1<<30);
connections.clear();
switch(geometry) {
case gFieldQuotient: {
connections = currfp.connections;
break;
}
case gZebraQuotient: {
heptspin hs(base.origin);
reachable.clear();
bfsq.clear();
add(hs);
for(int i=0; i<(int)bfsq.size(); i++) {
hs = bfsq[i] + wstep;
add(hs);
connections.push_back(reachable[get(hs)]);
}
break;
}
case gMinimal: {
int altzebra[6][7] = {
{ 16,125,111, 45, 32, 56, 20 },
{ 26,102,146,152, 35,124, 00 },
{ 06, 55,143,134,115,101, 10 },
{ 41, 50, 04, 44,123, 14,153 },
{ 51, 30,154,122, 33, 03,112 },
{ 31, 40,113,136,142, 21, 05 }
};
// int ok = 0;
for(int a=0; a<6; a++) {
for(int b=0; b<7; b++) {
int s = altzebra[a][b];
int mirr = s/100; s %= 100;
int which = s/10; s %= 10;
int shouldbe = a*10+b+mirr*100;
if(altzebra[which][s] != shouldbe) {
printf("error at %d:%d (is=%d shouldbe=%d)\n", a, b, altzebra[which][s], shouldbe);
}
connections.push_back(which * 7 + s + (mirr ? symmask : 0) );
}
}
break;
}
case gKleinQuartic: {
connections = {
/* 000 */ 7, 14, 21, 28, 35, 42, 49,
/* 001 */ 0, 55, 56, 63, 70, 77, 15,
/* 002 */ 1, 13, 83, 84, 91, 98, 22,
/* 003 */ 2, 20, 104, 105, 112, 119, 29,
/* 004 */ 3, 27, 125, 74, 126, 133, 36,
/* 005 */ 4, 34, 139, 95, 66, 140, 43,
/* 006 */ 5, 41, 146, 116, 87, 147, 50,
/* 007 */ 6, 48, 153, 130, 108, 57, 8,
/* 008 */ 9, 54, 107, 102, 154, 142, 64,
/* 009 */ 10, 62, 141, 39, 94, 161, 71,
/* 010 */ 11, 69, 167, 127, 31, 124, 78,
/* 011 */ 12, 76, 123, 158, 149, 85, 16,
/* 012 */ 17, 82, 148, 46, 115, 163, 92,
/* 013 */ 18, 90, 162, 67, 38, 138, 99,
/* 014 */ 19, 97, 137, 155, 59, 106, 23,
/* 015 */ 24, 103, 58, 53, 129, 165, 113,
/* 016 */ 25, 111, 164, 88, 45, 145, 120,
/* 017 */ 26, 118, 144, 159, 79, 75, 30,
/* 018 */ 32, 73, 166, 109, 52, 152, 134,
/* 019 */ 33, 132, 151, 156, 100, 96, 37,
/* 020 */ 40, 65, 61, 160, 121, 117, 44,
/* 021 */ 47, 86, 81, 157, 135, 131, 51,
/* 022 */ 60, 101, 136, 150, 80, 122, 143,
/* 023 */ 68, 93, 89, 114, 110, 128, 72,
};
break;
}
case gBolza: {
connections = {
/* 000 */ 8, 16, 24, 32, 12, 20, 28, 36,
/* 001 */ 0, 35, 47, 21, 4, 39, 43, 17,
/* 002 */ 1, 15, 42, 29, 5, 11, 46, 25,
/* 003 */ 2, 23, 45, 37, 6, 19, 41, 33,
/* 004 */ 3, 31, 40, 9, 7, 27, 44, 13,
/* 005 */ 34, 30, 18, 14, 38, 26, 22, 10,
};
break;
}
case gBolza2: {
connections = {
/* 000 */ 16, 32, 48, 64, 24, 40, 56, 72,
/* 001 */ 20, 44, 52, 76, 28, 36, 60, 68,
/* 002 */ 0, 79, 83, 45, 8, 67, 95, 33,
/* 003 */ 4, 71, 87, 37, 12, 75, 91, 41,
/* 004 */ 1, 23, 94, 61, 13, 27, 86, 49,
/* 005 */ 5, 31, 90, 53, 9, 19, 82, 57,
/* 006 */ 2, 39, 85, 77, 10, 43, 89, 65,
/* 007 */ 6, 47, 81, 69, 14, 35, 93, 73,
/* 008 */ 3, 55, 88, 21, 15, 59, 80, 25,
/* 009 */ 7, 63, 92, 29, 11, 51, 84, 17,
/* 010 */ 70, 58, 46, 18, 78, 50, 38, 26,
/* 011 */ 66, 54, 42, 30, 74, 62, 34, 22,
};
break;
}
case gMacbeath: {
connections = {
/* 000 */ 359, 498, 189, 215, 424, 381, 20,
/* 001 */ 366, 491, 217, 187, 431, 346, 27,
/* 002 */ 380, 484, 168, 208, 438, 360, 6,
/* 003 */ 345, 477, 196, 180, 445, 367, 13,
/* 004 */ 352, 470, 203, 173, 396, 388, 48,
/* 005 */ 373, 463, 175, 201, 403, 339, 55,
/* 006 */ 387, 456, 210, 194, 410, 353, 34,
/* 007 */ 338, 449, 182, 222, 417, 374, 41,
/* 008 */ 254, 459, 140, 138, 414, 248, 69,
/* 009 */ 247, 480, 112, 166, 435, 255, 62,
/* 010 */ 233, 452, 161, 117, 407, 269, 83,
/* 011 */ 268, 487, 133, 145, 442, 234, 76,
/* 012 */ 261, 473, 126, 152, 400, 241, 97,
/* 013 */ 240, 494, 154, 124, 421, 262, 90,
/* 014 */ 226, 466, 119, 159, 393, 276, 111,
/* 015 */ 275, 501, 147, 131, 428, 227, 104,
/* 016 */ 65, 479, 343, 355, 408, 73, 167,
/* 017 */ 100, 465, 371, 383, 422, 94, 160,
/* 018 */ 86, 472, 350, 348, 429, 108, 153,
/* 019 */ 79, 486, 378, 376, 415, 59, 146,
/* 020 */ 58, 458, 385, 369, 443, 80, 139,
/* 021 */ 107, 500, 357, 341, 401, 87, 132,
/* 022 */ 93, 493, 364, 390, 394, 101, 125,
/* 023 */ 72, 451, 336, 362, 436, 66, 118,
/* 024 */ 16, 483, 294, 313, 397, 31, 209,
/* 025 */ 37, 462, 322, 285, 446, 24, 202,
/* 026 */ 51, 448, 287, 334, 432, 10, 223,
/* 027 */ 2, 497, 315, 306, 411, 45, 216,
/* 028 */ 23, 476, 308, 299, 404, 38, 181,
/* 029 */ 30, 469, 280, 327, 439, 17, 174,
/* 030 */ 44, 455, 329, 292, 425, 3, 195,
/* 031 */ 9, 490, 301, 320, 418, 52, 188,
/* 032 */ 324, 467, 98, 110, 427, 332, 258,
/* 033 */ 289, 453, 70, 82, 441, 283, 265,
/* 034 */ 303, 495, 91, 89, 399, 297, 272,
/* 035 */ 310, 481, 63, 61, 413, 318, 279,
/* 036 */ 331, 460, 56, 68, 434, 325, 230,
/* 037 */ 282, 474, 84, 96, 420, 290, 237,
/* 038 */ 296, 488, 77, 75, 406, 304, 244,
/* 039 */ 317, 502, 105, 103, 392, 311, 251,
/* 040 */ 205, 475, 259, 236, 447, 178, 328,
/* 041 */ 184, 454, 231, 264, 426, 213, 335,
/* 042 */ 170, 489, 266, 243, 405, 199, 314,
/* 043 */ 219, 496, 238, 271, 412, 192, 321,
/* 044 */ 198, 482, 245, 278, 398, 171, 300,
/* 045 */ 191, 503, 273, 250, 419, 220, 307,
/* 046 */ 177, 468, 224, 257, 440, 206, 286,
/* 047 */ 212, 461, 252, 229, 433, 185, 293,
/* 048 */ 163, 450, 49, 40, 402, 150, 363,
/* 049 */ 114, 478, 21, 12, 430, 129, 356,
/* 050 */ 128, 471, 28, 47, 409, 115, 349,
/* 051 */ 149, 499, 0, 19, 437, 164, 342,
/* 052 */ 156, 492, 7, 26, 444, 143, 391,
/* 053 */ 121, 464, 35, 54, 416, 136, 384,
/* 054 */ 135, 485, 14, 5, 423, 122, 377,
/* 055 */ 142, 457, 42, 33, 395, 157, 370,
/* 056 */ 277, 102, 158, 389, 32, 172, 312,
/* 057 */ 242, 88, 151, 340, 39, 200, 298,
/* 058 */ 270, 74, 116, 354, 46, 193, 305,
/* 059 */ 249, 60, 137, 375, 53, 221, 319,
/* 060 */ 263, 95, 123, 382, 4, 214, 291,
/* 061 */ 228, 109, 130, 347, 11, 186, 333,
/* 062 */ 256, 67, 165, 361, 18, 207, 326,
/* 063 */ 235, 81, 144, 368, 25, 179, 284,
/* 064 */ 183, 50, 337, 162, 71, 232, 288,
/* 065 */ 211, 43, 386, 141, 57, 253, 330,
/* 066 */ 176, 36, 372, 120, 99, 225, 323,
/* 067 */ 204, 29, 351, 127, 85, 260, 281,
/* 068 */ 197, 22, 344, 113, 64, 246, 309,
/* 069 */ 169, 15, 379, 134, 78, 267, 295,
/* 070 */ 218, 8, 365, 155, 92, 239, 302,
/* 071 */ 190, 1, 358, 148, 106, 274, 316,
};
break;
}
case gBring: {
connections = {
/* 000 */ 5, 92, 46, 33, 14,
/* 001 */ 0, 62, 56, 38, 24,
/* 002 */ 15, 97, 76, 63, 4,
/* 003 */ 10, 32, 86, 68, 29,
/* 004 */ 25, 67, 106, 93, 9,
/* 005 */ 20, 37, 116, 98, 19,
/* 006 */ 35, 102, 16, 3, 44,
/* 007 */ 30, 72, 26, 8, 54,
/* 008 */ 45, 107, 66, 73, 34,
/* 009 */ 40, 2, 81, 78, 59,
/* 010 */ 55, 77, 96, 103, 39,
/* 011 */ 50, 7, 111, 108, 49,
/* 012 */ 65, 112, 6, 13, 74,
/* 013 */ 60, 42, 21, 18, 84,
/* 014 */ 75, 117, 36, 43, 64,
/* 015 */ 70, 12, 51, 48, 89,
/* 016 */ 85, 47, 91, 113, 69,
/* 017 */ 80, 17, 101, 118, 79,
/* 018 */ 95, 82, 1, 23, 104,
/* 019 */ 90, 52, 11, 28, 114,
/* 020 */ 105, 87, 31, 53, 94,
/* 021 */ 100, 22, 41, 58, 119,
/* 022 */ 115, 57, 61, 83, 99,
/* 023 */ 110, 27, 71, 88, 109,
};
break;
}
case gSchmutzM2: {
connections = {
23, 47, 27, 14, 38, 30, 17, 41, 33, 20, 44, 24,
35, 39, 3, 26, 42, 6, 29, 45, 9, 32, 36, 0,
11, 43, 15, 2, 46, 18, 5, 37, 21, 8, 40, 12,
22, 31, 4, 13, 34, 7, 16, 25, 10, 19, 28, 1,
};
break;
}
case gSchmutzM3: {
connections = {
23, 47, 64, 28, 15, 39, 68, 32, 19, 43, 60, 24,
35, 52, 40, 4, 27, 56, 44, 8, 31, 48, 36, 0,
11, 71, 57, 16, 3, 63, 49, 20, 7, 67, 53, 12,
22, 59, 69, 5, 14, 51, 61, 9, 18, 55, 65, 1,
21, 30, 62, 41, 13, 34, 66, 45, 17, 26, 70, 37,
10, 42, 50, 29, 2, 46, 54, 33, 6, 38, 58, 25,
};
break;
}
default: break;
}
int TOT = connections.size() / S7;
// printf("heptagons = %d\n", TOT);
// printf("all cells = %d\n", TOT*(S7+S3)/S3);
if(!TOT) exit(1);
allh.resize(TOT);
for(int i=0; i<TOT; i++) allh[i] = new heptagon;
// heptagon *oldorigin = origin;
allh[0]->alt = base.origin;
for(int i=0; i<TOT; i++) {
heptagon *h = allh[i];
if(i) {
h->alt = NULL;
}
if(true) {
h->s = hsOrigin;
h->emeraldval = 0;
h->zebraval = 0;
h->fiftyval = 0;
h->fieldval = S7*i;
h->rval0 = h->rval1 = 0; h->cdata = NULL;
h->distance = 0;
if(!IRREGULAR) h->c7 = newCell(S7, h);
}
for(int j=0; j<S7; j++) {
int co = connections[i*S7+j];
bool swapped = co & symmask;
co &= ~symmask;
h->move(rv(j)) = allh[co/S7];
h->c.setspin(rv(j), rv(co%S7), swapped);
}
}
vector<heptagon*> by_dist;
by_dist.push_back(allh[0]);
for(int i=0; i<TOT; i++) {
if(i >= isize(by_dist)) { printf("too fast\n"); exit(1); }
for(int a=0; a<S7; a++) if(by_dist[i]->move(a)->alt == NULL) by_dist.push_back(by_dist[i]->move(a));
generateAlts(by_dist[i], 0, false);
}
for(int i=0; i<TOT; i++) {
allh[i]->emeraldval = allh[i]->alt->emeraldval;
allh[i]->zebraval = allh[i]->alt->zebraval;
allh[i]->fiftyval = allh[i]->alt->fiftyval;
allh[i]->distance = allh[i]->alt->distance;
/* for(int j=0; j<7; j++)
allh[i]->move[j]->alt = createStep(allh[i]->alt, j); */
}
if(IRREGULAR) {
irr::link_start(allh[0]);
for(int i=0; i<TOT; i++)
for(int j=0; j<S7; j++)
irr::may_link_next(allh[i], j);
}
celllister cl(gamestart(), 100, 100000000, NULL);
celllist = cl.lst;
}
heptagon *getOrigin() { return allh[0]; }
~hrmap_quotient() {
for(int i=0; i<isize(allh); i++) {
clearHexes(allh[i]);
delete allh[i];
}
}
vector<cell*>& allcells() { return celllist; }
};
};
// --- general ---
// very similar to createMove in heptagon.cpp
cell *createMov(cell *c, int d) {
if(d<0 || d>= c->type) {
printf("ERROR createmov\n");
}
if(masterless && !c->move(d)) {
int id = decodeId(c->master);
for(int dx=-1; dx<=1; dx++)
for(int dy=-1; dy<=1; dy++)
euclideanAtCreate(id + pair_to_vec(dx, dy));
if(!c->move(d)) {
println(hlog, "id = ", id, " vec_to_pair(id) = ", vec_to_pair(id), ": failed to create move ", d, " in Euclidean\n");
exit(0);
}
}
if(c->move(d)) return c->move(d);
else if(IRREGULAR) {
irr::link_cell(c, d);
}
else if(GOLDBERG) {
gp::extend_map(c, d);
if(!c->move(d)) {
printf("extend failed to create for %p/%d\n", c, d);
exit(1);
}
}
else if(archimedean && PURE) {
if(arcm::id_of(c->master) < arcm::current.N * 2) {
heptspin hs = heptspin(c->master, d) + wstep + 2 + wstep + 1;
c->c.connect(d, hs.at->c7, hs.spin, hs.mirrored);
}
else c->c.connect(d, c, d, false);
}
else if(archimedean && DUAL) {
if(arcm::id_of(c->master) >= arcm::current.N * 2) {
heptagon *h2 = createStep(c->master, d*2);
int d1 = c->master->c.spin(d*2);
c->c.connect(d, h2->c7, d1/2, false);
}
else {
printf("bad connection\n");
c->c.connect(d,c,d,false);
}
}
else if(archimedean || PURE) {
heptagon *h2 = createStep(c->master, d);
c->c.connect(d, h2->c7,c->master->c.spin(d),false);
}
else if(c == c->master->c7) {
cell *n = newCell(S6, c->master);
heptspin hs(c->master, d, false);
int alt3 = c->type/2;
int alt4 = alt3+1;
for(int u=0; u<S6; u+=2) {
if(hs.mirrored && geometry == gSmallElliptic) hs+=1;
hs.at->c7->c.connect(hs.spin, n, u, hs.mirrored);
if(hs.mirrored && geometry == gSmallElliptic) hs+=-1;
hs = hs + alt3 + wstep - alt4;
}
extern void verifycell(cell *c);
verifycell(n);
}
else {
cellwalker cw(c, d, false);
cellwalker cw2 = cw - 1 + wstep - 1 + wstep - 1;
c->c.connect(d, cw2);
}
return c->move(d);
}
cell *createMovR(cell *c, int d) {
d %= MODFIXER; d += MODFIXER; d %= c->type;
return createMov(c, d);
}
cell *getMovR(cell *c, int d) {
d %= MODFIXER; d += MODFIXER; d %= c->type;
return c->move(d);
}
void eumerge(cell* c1, int s1, cell *c2, int s2, bool mirror) {
if(!c2) return;
c1->move(s1) = c2; c1->c.setspin(s1, s2, mirror);
c2->move(s2) = c1; c2->c.setspin(s2, s1, mirror);
}
// map<pair<eucoord, eucoord>, cell*> euclidean;
euc_pointer euclideanAt(int vec) {
if(fulltorus) { printf("euclideanAt called\n"); exit(1); }
hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
return euc->at(vec);
}
euc_pointer euclideanAtCreate(int vec) {
euc_pointer ep = euclideanAt(vec);
cell*& c = *ep.first;
if(!c) {
if(euwrap) {
int x, y;
tie(x, y) = vec_to_pair(vec);
torusconfig::be_canonical(x, y);
vec = pair_to_vec(x, y);
}
c = newCell(8, encodeId(vec));
// euclideanAt(vec) = c;
build_euclidean_moves(c, vec, [ep, c,vec] (int delta, int d, int d2) {
euc_pointer ep2 = euclideanAt(vec + delta);
cell* c2 = *ep2.first;
if(!c2) return;
// if(ep.second) d = c->c.fix(torusconfig::mobius_dir(c) - d);
if(ep2.second) d2 = c2->c.fix(torusconfig::mobius_dir(c2) - d2);
eumerge(c, d, c2, d2, ep2.second);
});
}
return ep;
}
hookset<hrmap*()> *hooks_newmap;
// initializer (also inits origin from heptagon.cpp)
void initcells() {
DEBB(DF_INIT, (debugfile,"initcells\n"));
hrmap* res = callhandlers((hrmap*)nullptr, hooks_newmap);
if(res) currentmap = res;
else if(geometry == gCrystal) currentmap = crystal::new_map();
else if(archimedean) currentmap = arcm::new_map();
else if(fulltorus) currentmap = new hrmap_torus;
else if(euclid) currentmap = new hrmap_euclidean;
else if(sphere) currentmap = new hrmap_spherical;
else if(quotient) currentmap = new quotientspace::hrmap_quotient;
else currentmap = new hrmap_hyperbolic;
allmaps.push_back(currentmap);
windmap::create();
// origin->emeraldval =
}
void clearcell(cell *c) {
if(!c) return;
DEBMEM ( printf("c%d %p\n", c->type, c); )
for(int t=0; t<c->type; t++) if(c->move(t)) {
DEBMEM ( printf("mov %p [%p] S%d\n", c->move(t), c->move(t)->move(c->c.spin(t)), c->c.spin(t)); )
if(c->move(t)->move(c->c.spin(t)) != NULL &&
c->move(t)->move(c->c.spin(t)) != c) {
printf("type = %d %d -> %d\n", c->type, t, c->c.spin(t));
printf("cell error\n");
exit(1);
}
c->move(t)->move(c->c.spin(t)) = NULL;
}
DEBMEM ( printf("DEL %p\n", c); )
delete c;
}
heptagon deletion_marker;
template<class T> void subcell(cell *c, const T& t) {
if(GOLDBERG) {
forCellEx(c2, c) if(c2->move(0) == c && c2 != c2->master->c7) {
subcell(c2, t);
}
}
else if(BITRUNCATED && !archimedean && !binarytiling)
forCellEx(c2, c) t(c2);
t(c);
}
void clearHexes(heptagon *at) {
if(at->c7 && at->cdata) {
delete at->cdata;
at->cdata = NULL;
}
if(IRREGULAR) irr::clear_links(at);
else if(at->c7) subcell(at->c7, clearcell);
}
void unlink_cdata(heptagon *h) {
if(h->alt && h->c7) {
if(h->alt->cdata == (cdata*) h)
h->alt->cdata = NULL;
}
}
void clearfrom(heptagon *at) {
queue<heptagon*> q;
unlink_cdata(at);
q.push(at);
at->alt = &deletion_marker;
//int maxq = 0;
while(!q.empty()) {
at = q.front();
// if(q.size() > maxq) maxq = q.size();
q.pop();
DEBMEM ( printf("from %p\n", at); )
if(!at->c7) {
heptagon *h = (heptagon*) at->cdata;
if(h) {
if(h->alt != at) printf("alt error :: h->alt = %p\n", h->alt);
cell *c = h->c7;
subcell(c, destroycellcontents);
h->alt = NULL;
at->cdata = NULL;
}
}
int edges = at->degree();
if(binarytiling) edges = at->c7->type;
for(int i=0; i<edges; i++) if(at->move(i)) {
if(at->move(i)->alt != &deletion_marker)
q.push(at->move(i));
unlink_cdata(at->move(i));
at->move(i)->alt = &deletion_marker;
DEBMEM ( printf("!mov %p [%p]\n", at->move(i), at->move(i)->move[at->c.spin(i)]); )
if(at->move(i)->move(at->c.spin(i)) != NULL &&
at->move(i)->move(at->c.spin(i)) != at) {
printf("hept error\n");
exit(1);
}
at->move(i)->move(at->c.spin(i)) = NULL;
at->move(i) = NULL;
}
clearHexes(at);
delete at;
}
//printf("maxq = %d\n", maxq);
}
void verifycell(cell *c) {
int t = c->type;
for(int i=0; i<t; i++) {
cell *c2 = c->move(i);
if(c2) {
if(!masterless && BITRUNCATED && c == c->master->c7) verifycell(c2);
if(c2->move(c->c.spin(i)) && c2->move(c->c.spin(i)) != c) {
printf("cell error %p:%d [%d] %p:%d [%d]\n", c, i, c->type, c2, c->c.spin(i), c2->type);
exit(1);
}
}
}
}
void verifycells(heptagon *at) {
if(GOLDBERG || IRREGULAR || archimedean) return;
for(int i=0; i<S7; i++) if(at->move(i) && at->move(i)->move(at->c.spin(i)) && at->move(i)->move(at->c.spin(i)) != at) {
printf("hexmix error %p [%d s=%d] %p %p\n", at, i, at->c.spin(i), at->move(i), at->move(i)->move(at->c.spin(i)));
}
if(!sphere && !quotient)
for(int i=0; i<S7; i++) if(at->move(i) && at->c.spin(i) == 0 && at->s != hsOrigin)
verifycells(at->move(i));
verifycell(at->c7);
}
int eudist(int sx, int sy) {
int z0 = abs(sx);
int z1 = abs(sy);
if(a4 && BITRUNCATED)
return (z0 == z1 && z0 > 0) ? z0+1: max(z0, z1);
if(a4) return z0 + z1;
int z2 = abs(sx+sy);
return max(max(z0,z1), z2);
}
int eudist(int vec) {
auto p = vec_to_pair(vec);
return eudist(p.first, p.second);
}
int compdist(int dx[]) {
int mi = dx[0];
for(int u=0; u<S3; u++) mi = min(mi, dx[u]);
for(int u=0; u<S3; u++)
if(dx[u] > mi+2)
return -1; // { printf("cycle error!\n"); exit(1); }
for(int u=0; u<S3; u++)
if(dx[u] == mi+2)
return mi+1;
int cnt = 0;
for(int u=0; u<S3; u++)
if(dx[u] == mi) cnt++;
if(cnt < 2)
return mi+1;
return mi;
}
int celldist(cell *c) {
if(fulltorus)
return torusmap()->dists[decodeId(c->master)];
if(euwrap)
return torusconfig::cyldist(decodeId(c->master), 0);
if(masterless)
return eudist(decodeId(c->master));
if(sphere || binarytiling || geometry == gCrystal) return celldistance(c, currentmap->gamestart());
if(IRREGULAR) return irr::celldist(c, false);
if(archimedean || ctof(c)) return c->master->distance;
if(GOLDBERG) return gp::compute_dist(c, celldist);
int dx[MAX_S3];
for(int u=0; u<S3; u++)
dx[u] = createMov(c, u+u)->master->distance;
return compdist(dx);
}
#define ALTDIST_BOUNDARY 99999
#define ALTDIST_UNKNOWN 99998
#define ALTDIST_ERROR 90000
int celldistAlt(cell *c) {
if(masterless) {
if(fulltorus) return celldist(c);
int x, y;
tie(x,y) = vec_to_pair(decodeId(c->master));
return euclidAlt(x, y);
}
if(binarytiling) return c->master->distance + (specialland == laCamelot && !tactic::on? 30 : 0);
if(geometry == gCrystal)
return crystal::dist_alt(c);
if(sphere || quotient) {
return celldist(c) - 3;
}
if(!c->master->alt) return 0;
if(IRREGULAR) return irr::celldist(c, true);
if(ctof(c)) return c->master->alt->distance;
if(GOLDBERG) return gp::compute_dist(c, celldistAlt);
int dx[MAX_S3]; dx[0] = 0;
for(int u=0; u<S3; u++) if(createMov(c, u+u)->master->alt == NULL)
return ALTDIST_UNKNOWN;
for(int u=0; u<S3; u++)
dx[u] = createMov(c, u+u)->master->alt->distance;
// return compdist(dx); -> not OK because of boundary conditions
int mi = dx[0];
for(int i=1; i<S3; i++) mi = min(mi, dx[i]);
for(int i=0; i<S3; i++) if(dx[i] > mi+2)
return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); }
for(int i=0; i<S3; i++) if(dx[i] == mi+2)
return mi+1;
return mi;
}
int dirfromto(cell *cfrom, cell *cto) {
for(int i=0; i<cfrom->type; i++) if(cfrom->move(i) == cto) return i;
return -1;
}
#define RPV_MODULO 5
#define RPV_RAND 0
#define RPV_ZEBRA 1
#define RPV_EMERALD 2
#define RPV_PALACE 3
#define RPV_CYCLE 4
int getCdata(cell *c, int j);
// x mod 5 = pattern type
// x mod (powers of 2) = pattern type specific
// (x/5) mod 15 = picture for drawing floors
// x mod 7 = chance of pattern-specific pic
// whole = randomization
bool randpattern(cell *c, int rval) {
int i, sw=0;
switch(rval%5) {
case 0:
if(rval&1) {
return hrandpos() < rval;
}
else {
int cd = getCdata(c, 0);
return !((cd/(((rval/2)&15)+1))&1);
}
case 1:
i = zebra40(c);
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
i >>= 2;
i--; i /= 3;
if(rval & (16<<i)) sw^=1;
return sw;
case 2:
i = emeraldval(c);
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
i >>= 2; i--;
if(rval & (16<<i)) sw^=1;
return sw;
case 3:
if(polara50(c)) { if(rval&4) sw^=1; }
if(polarb50(c)) { if(rval&8) sw^=1; }
i = fiftyval049(c); i += 6; i /= 7;
if(rval & (16<<i)) sw^=1;
return sw;
case 4:
i = (rval&3);
if(i == 1 && (celldist(c)&1)) sw ^= 1;
if(i == 2 && (celldist(c)&2)) sw ^= 1;
if(i == 3 && ((celldist(c)/3)&1)) sw ^= 1;
if(rval & (4<<towerval(c, celldist))) sw ^= 1;
return sw;
}
return 0;
}
string describeRPM(eLand l) {
int rval = randompattern[l];
switch(rval%5) {
case 0:
if(rval&1)
return "R:"+its(rval/(HRANDMAX/100))+"%";
else
return "Landscape/"+its(((rval/2)&15)+1);
case 1:
return "Z/"+its((rval>>2)&3)+"/"+its((rval>>4)&15);
case 2:
return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047);
case 3:
return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255);
case 4:
return "C/"+its(rval&3)+"/"+its((rval>>2)&65535);
}
return "?";
}
int randpatternCode(cell *c, int rval) {
switch(rval % RPV_MODULO) {
case 1:
return zebra40(c);
case 2:
return emeraldval(c);
case 3:
return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0);
case 4:
return towerval(c, celldist) * 6 + celldist(c) % 6;
}
return 0;
}
#define RANDITER 31
char rpm_memoize[3][256][RANDITER+1];
void clearMemoRPM() {
for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; i<RANDITER+1; i++)
rpm_memoize[a][b][i] = 2;
}
bool randpatternMajority(cell *c, int ival, int iterations) {
int rval = 0;
if(ival == 0) rval = randompattern[laCaves];
if(ival == 1) rval = randompattern[laLivefjord];
if(ival == 2) rval = randompattern[laEmerald];
if(rval%RPV_MODULO == RPV_RAND) return randpattern(c, rval);
int code = randpatternCode(c, rval);
char& memo(rpm_memoize[ival][code][iterations]);
if(memo < 2) return memo;
int z = 0;
if(iterations) for(int i=0; i<c->type; i++) {
if(randpatternMajority(createMov(c,i), ival, iterations-1))
z++;
else
z--;
}
if(z!=0) memo = (z>0);
else memo = randpattern(c, rval);
// printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo);
return memo;
}
map<heptagon*, int> spins;
#define RVAL_MASK 0x10000000
#define DATA_MASK 0x20000000
cdata orig_cdata;
void affect(cdata& d, short rv, signed char signum) {
if(rv&1) d.val[0]+=signum; else d.val[0]-=signum;
if(rv&2) d.val[1]+=signum; else d.val[1]-=signum;
if(rv&4) d.val[2]+=signum; else d.val[2]-=signum;
if(rv&8) d.val[3]+=signum; else d.val[3]-=signum;
int id = (rv>>4) & 63;
if(id < 32)
d.bits ^= (1 << id);
}
void setHeptagonRval(heptagon *h) {
if(!(h->rval0 || h->rval1)) {
h->rval0 = hrand(0x10000);
h->rval1 = hrand(0x10000);
}
}
cdata *getHeptagonCdata(heptagon *h) {
if(h->cdata) return h->cdata;
if(sphere || quotient) h = currentmap->gamestart()->master;
if(h == currentmap->gamestart()->master) {
return h->cdata = new cdata(orig_cdata);
}
cdata mydata = *getHeptagonCdata(h->move(0));
for(int di=3; di<5; di++) {
heptspin hs(h, di, false);
int signum = +1;
while(true) {
heptspin hstab[15];
hstab[7] = hs;
for(int i=8; i<12; i++) {
hstab[i] = hstab[i-1];
hstab[i] += ((i&1) ? 4 : 3);
hstab[i] += wstep;
hstab[i] += ((i&1) ? 3 : 4);
}
for(int i=6; i>=3; i--) {
hstab[i] = hstab[i+1];
hstab[i] += ((i&1) ? 3 : 4);
hstab[i] += wstep;
hstab[i] += ((i&1) ? 4 : 3);
}
if(hstab[3].at->distance < hstab[7].at->distance) {
hs = hstab[3]; continue;
}
if(hstab[11].at->distance < hstab[7].at->distance) {
hs = hstab[11]; continue;
}
int jj = 7;
for(int k=3; k<12; k++) if(hstab[k].at->distance < hstab[jj].at->distance) jj = k;
int ties = 0, tiespos = 0;
for(int k=3; k<12; k++) if(hstab[k].at->distance == hstab[jj].at->distance)
ties++, tiespos += (k-jj);
// printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj);
if(ties == 2) jj += tiespos/2;
if(jj&1) signum = -1;
hs = hstab[jj];
break;
}
hs = hs + 3 + wstep;
setHeptagonRval(hs.at);
affect(mydata, hs.spin ? hs.at->rval0 : hs.at->rval1, signum);
/* if(!(spins[hs.at] & hs.spin)) {
spins[hs.at] |= (1<<hs.spin);
int t = 0;
for(int k=0; k<7; k++) if(spins[hs.at] & (1<<k)) t++;
static bool wast[256];
if(!wast[spins[hs.at]]) {
printf("%p %4x\n", hs.at, spins[hs.at]);
wast[spins[hs.at]] = true;
}
} */
}
return h->cdata = new cdata(mydata);
}
cdata *getEuclidCdata(int h) {
if(euwrap) { // fix cylinder?
static cdata xx;
return &xx;
}
int x, y;
hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
if(euc->eucdata.count(h)) return &(euc->eucdata[h]);
tie(x,y) = vec_to_pair(h);
if(x == 0 && y == 0) {
cdata xx;
for(int i=0; i<4; i++) xx.val[i] = 0;
xx.bits = 0;
return &(euc->eucdata[h] = xx);
}
int ord = 1, bid = 0;
while(!((x|y)&ord)) ord <<= 1, bid++;
for(int k=0; k<3; k++) {
int x1 = x + (k<2 ? ord : 0);
int y1 = y - (k>0 ? ord : 0);
if((x1&ord) || (y1&ord)) continue;
int x2 = x - (k<2 ? ord : 0);
int y2 = y + (k>0 ? ord : 0);
cdata *d1 = getEuclidCdata(pair_to_vec(x1,y1));
cdata *d2 = getEuclidCdata(pair_to_vec(x2,y2));
cdata xx;
double disp = pow(2, bid/2.) * 6;
for(int i=0; i<4; i++) {
double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp;
xx.val[i] = floor(dv);
if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++;
}
xx.bits = 0;
for(int b=0; b<32; b++) {
bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1;
int flipchance = (1<<bid);
if(flipchance > 512) flipchance = 512;
if(hrand(1024) < flipchance) gbit = !gbit;
if(gbit) xx.bits |= (1<<b);
}
return &(euc->eucdata[h] = xx);
}
// impossible!
return NULL;
}
int getCdata(cell *c, int j) {
if(masterless) return getEuclidCdata(decodeId(c->master))->val[j];
else if(geometry) return 0;
else if(ctof(c)) return getHeptagonCdata(c->master)->val[j]*3;
else {
int jj = 0;
auto ar = gp::get_masters(c);
for(int k=0; k<3; k++)
jj += getHeptagonCdata(ar[k])->val[j];
return jj;
}
}
int getBits(cell *c) {
if(masterless) return getEuclidCdata(decodeId(c->master))->bits;
else if(geometry) return 0;
else if(c->type != 6) return getHeptagonCdata(c->master)->bits;
else {
auto ar = gp::get_masters(c);
int b0 = getHeptagonCdata(ar[0])->bits;
int b1 = getHeptagonCdata(ar[1])->bits;
int b2 = getHeptagonCdata(ar[2])->bits;
return (b0 & b1) | (b1 & b2) | (b2 & b0);
}
}
cell *heptatdir(cell *c, int d) {
if(d&1) {
cell *c2 = createMov(c, d);
int s = c->c.spin(d);
s += 3; s %= 6;
return createMov(c2, s);
}
else return createMov(c, d);
}
int heptdistance(heptagon *h1, heptagon *h2) {
// very rough distance
int d = 0;
while(true) {
if(h1 == h2) return d;
for(int i=0; i<S7; i++) if(h1->move(i) == h2) return d + 1;
int d1 = h1->distance, d2 = h2->distance;
if(d1 >= d2) d++, h1 = createStep(h1, binarytiling ? 5 : 0);
if(d2 > d1) d++, h2 = createStep(h2, binarytiling ? 5 : 0);
}
}
int heptdistance(cell *c1, cell *c2) {
if(!hyperbolic || quotient) return celldistance(c1, c2);
else return heptdistance(c1->master, c2->master);
}
map<pair<cell*, cell*>, int> saved_distances;
int celldistance(cell *c1, cell *c2) {
if((masterless) && (euclid6 || (euclid4 && PURE))) {
if(!euwrap)
return eudist(decodeId(c1->master) - decodeId(c2->master)); // fix cylinder
else if(euwrap && torusconfig::torus_mode == 0)
return torusmap()->dists[torusconfig::vec_to_id(decodeId(c1->master)-decodeId(c2->master))];
else if(euwrap && !fulltorus)
return torusconfig::cyldist(decodeId(c1->master), decodeId(c2->master));
}
if(geometry == gFieldQuotient && !GOLDBERG)
return currfp.getdist(fieldpattern::fieldval(c1), fieldpattern::fieldval(c2));
if(bounded) {
if(saved_distances.count(make_pair(c1,c2)))
return saved_distances[make_pair(c1,c2)];
celllister cl(c1, 100, 100000000, NULL);
for(int i=0; i<isize(cl.lst); i++)
saved_distances[make_pair(c1, cl.lst[i])] = cl.dists[i];
if(saved_distances.count(make_pair(c1,c2)))
return saved_distances[make_pair(c1,c2)];
return 64;
}
if(masterless || archimedean || quotient) {
if(saved_distances.count(make_pair(c1,c2)))
return saved_distances[make_pair(c1,c2)];
if(isize(saved_distances) > 1000000) saved_distances.clear();
celllister cl(c1, 64, 1000, c2);
for(int i=0; i<isize(cl.lst); i++)
saved_distances[make_pair(c1, cl.lst[i])] = cl.dists[i];
if(saved_distances.count(make_pair(c1,c2)))
return saved_distances[make_pair(c1,c2)];
return 64;
}
return hyperbolic_celldistance(c1, c2);
}
void clearCellMemory() {
for(int i=0; i<isize(allmaps); i++)
if(allmaps[i])
delete allmaps[i];
allmaps.clear();
last_cleared = NULL;
saved_distances.clear();
pd_from = NULL;
}
auto cellhooks = addHook(clearmemory, 500, clearCellMemory);
}