mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-18 19:24:48 +00:00
1114 lines
44 KiB
C++
1114 lines
44 KiB
C++
// Hyperbolic Rogue -- models of hyperbolic geometry
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file models.cpp
|
|
* \brief models of hyperbolic geometry: their properties, projection menu
|
|
*
|
|
* The actual models are implemented in hypgraph.cpp. Also shaders.cpp,
|
|
* drawing.cpp, and basegraph.cpp are important.
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
namespace hr {
|
|
|
|
EX namespace polygonal {
|
|
|
|
#if ISMOBWEB
|
|
typedef double precise;
|
|
#else
|
|
typedef long double precise;
|
|
#endif
|
|
|
|
#if HDR
|
|
static const int MSI = 120;
|
|
#endif
|
|
|
|
typedef long double xld;
|
|
|
|
typedef complex<xld> cxld;
|
|
|
|
EX int SI = 4;
|
|
EX ld STAR = 0;
|
|
|
|
EX int deg = ISMOBWEB ? 2 : 20;
|
|
|
|
precise matrix[MSI][MSI];
|
|
precise ans[MSI];
|
|
|
|
cxld coef[MSI];
|
|
EX ld coefr[MSI], coefi[MSI];
|
|
EX int maxcoef, coefid;
|
|
|
|
EX void solve() {
|
|
if(pmodel == mdPolynomial) {
|
|
for(int i=0; i<MSI; i++) coef[i] = cxld(coefr[i], coefi[i]);
|
|
return;
|
|
}
|
|
if(pmodel != mdPolygonal) return;
|
|
if(SI < 3) SI = 3;
|
|
for(int i=0; i<MSI; i++) ans[i] = cos(M_PI / SI);
|
|
for(int i=0; i<MSI; i++)
|
|
for(int j=0; j<MSI; j++) {
|
|
precise i0 = (i+0.) / (MSI-1);
|
|
// i0 *= i0;
|
|
// i0 = 1 - i0;
|
|
i0 *= M_PI;
|
|
matrix[i][j] =
|
|
cos(i0 * (j + 1./SI)) * (STAR > 0 ? (1+STAR) : 1)
|
|
- sin(i0 * (j + 1./SI)) * (STAR > 0 ? STAR : STAR/(1+STAR));
|
|
}
|
|
|
|
for(int i=0; i<MSI; i++) {
|
|
precise dby = matrix[i][i];
|
|
for(int k=0; k<MSI; k++) matrix[i][k] /= dby;
|
|
ans[i] /= dby;
|
|
for(int j=i+1; j<MSI; j++) {
|
|
precise sub = matrix[j][i];
|
|
ans[j] -= ans[i] * sub;
|
|
for(int k=0; k<MSI; k++)
|
|
matrix[j][k] -= sub * matrix[i][k];
|
|
}
|
|
}
|
|
for(int i=MSI-1; i>=0; i--) {
|
|
for(int j=0; j<i; j++) {
|
|
precise sub = matrix[j][i];
|
|
ans[j] -= ans[i] * sub;
|
|
for(int k=0; k<MSI; k++)
|
|
matrix[j][k] -= sub * matrix[i][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
EX pair<ld, ld> compute(ld x, ld y, int prec) {
|
|
if(x*x+y*y > 1) {
|
|
xld r = hypot(x,y);
|
|
x /= r;
|
|
y /= r;
|
|
}
|
|
if(pmodel == mdPolynomial) {
|
|
cxld z(x,y);
|
|
cxld res (0,0);
|
|
for(int i=maxcoef; i>=0; i--) { res += coef[i]; if(i) res *= z; }
|
|
return make_pair(real(res), imag(res));
|
|
}
|
|
|
|
cxld z(x, y);
|
|
cxld res (0,0);
|
|
cxld zp = 1; for(int i=0; i<SI; i++) zp *= z;
|
|
|
|
for(int i=prec; i>0; i--) {
|
|
res += ans[i];
|
|
res *= zp;
|
|
}
|
|
res += ans[0]; res *= z;
|
|
return make_pair(real(res), imag(res));
|
|
}
|
|
|
|
EX pair<ld, ld> compute(ld x, ld y) { return compute(x,y,deg); }
|
|
EX }
|
|
|
|
#if HDR
|
|
inline bool mdAzimuthalEqui() { return (mdinf[pmodel].flags & mf::azimuthal) && (mdinf[pmodel].flags & (mf::equidistant | mf::equiarea | mf::equivolume) && !(mdinf[pmodel].flags & mf::twopoint)); }
|
|
inline bool mdBandAny() { return mdinf[pmodel].flags & mf::pseudocylindrical; }
|
|
inline bool mdPseudocylindrical() { return mdBandAny() && !(mdinf[pmodel].flags & mf::cylindrical); }
|
|
#endif
|
|
|
|
EX namespace models {
|
|
|
|
EX ld rotation = 0;
|
|
EX ld rotation_xz = 90;
|
|
EX ld rotation_xy2 = 90;
|
|
EX int do_rotate = 1;
|
|
EX ld cos_ball, sin_ball;
|
|
EX bool model_straight, model_straight_yz;
|
|
|
|
/** screen coordinates to orientation logical coordinates */
|
|
EX void ori_to_scr(hyperpoint& h) { if(!model_straight) h = pconf.mori().get() * h; }
|
|
EX void ori_to_scr(transmatrix& h) { if(!model_straight) h = pconf.mori().get() * h; }
|
|
|
|
/** orientation logical coordinates to screen coordinates */
|
|
EX void scr_to_ori(hyperpoint& h) { if(!model_straight) h = iso_inverse(pconf.mori().get()) * h; }
|
|
EX void scr_to_ori(transmatrix& h) { if(!model_straight) h = iso_inverse(pconf.mori().get()) * h; }
|
|
|
|
#if HDR
|
|
template<class A>
|
|
void apply_ball(A& x, A& y) { tie(x,y) = make_pair(x*cos_ball + y*sin_ball, y*cos_ball - x*sin_ball); }
|
|
#endif
|
|
|
|
EX transmatrix rotmatrix() {
|
|
if(GDIM == 2 || gproduct) return spin(rotation * degree);
|
|
return spin(rotation_xy2 * degree) * cspin(0, 2, -rotation_xz * degree) * spin(rotation * degree);
|
|
}
|
|
|
|
int spiral_id = 7;
|
|
|
|
EX cld spiral_multiplier;
|
|
EX ld spiral_cone_rad;
|
|
EX bool ring_not_spiral;
|
|
|
|
/** the matrix to rotate the Euclidean view from the standard coordinates to the screen coordinates */
|
|
EX transmatrix euclidean_spin;
|
|
|
|
EX void configure() {
|
|
ld ball = -pconf.ballangle * degree;
|
|
cos_ball = cos(ball), sin_ball = sin(ball);
|
|
model_straight = (pconf.mori().get()[0][0] > 1 - 1e-9);
|
|
model_straight_yz = GDIM == 2 || (pconf.mori().get()[2][2] > 1-1e-9);
|
|
if(history::on) history::apply();
|
|
|
|
if(!euclid) {
|
|
ld b = pconf.spiral_angle * degree;
|
|
ld cos_spiral = cos(b);
|
|
ld sin_spiral = sin(b);
|
|
spiral_cone_rad = pconf.spiral_cone * degree;
|
|
ring_not_spiral = abs(cos_spiral) < 1e-3;
|
|
ld mul = 1;
|
|
if(sphere) mul = .5 * pconf.sphere_spiral_multiplier;
|
|
else if(ring_not_spiral) mul = pconf.right_spiral_multiplier;
|
|
else mul = pconf.any_spiral_multiplier * cos_spiral;
|
|
|
|
spiral_multiplier = cld(cos_spiral, sin_spiral) * cld(spiral_cone_rad * mul / 2., 0);
|
|
}
|
|
if(euclid) {
|
|
euclidean_spin = pispin * iso_inverse(cview().T * currentmap->master_relative(centerover, true));
|
|
euclidean_spin = gpushxto0(euclidean_spin * C0) * euclidean_spin;
|
|
hyperpoint h = inverse(euclidean_spin) * (C0 + (euc::eumove(gp::loc{1,0})*C0 - C0) * vpconf.spiral_x + (euc::eumove(gp::loc{0,1})*C0 - C0) * vpconf.spiral_y);
|
|
spiral_multiplier = cld(0, TAU) / cld(h[0], h[1]);
|
|
}
|
|
|
|
if(centerover && !history::on)
|
|
if(isize(history::path_for_lineanimation) == 0 || ((quotient || arb::in()) && history::path_for_lineanimation.back() != centerover)) {
|
|
history::path_for_lineanimation.push_back(centerover);
|
|
}
|
|
}
|
|
|
|
/** mdRelPerspective and mdRelOrthogonal in hyperbolic space only make sense if it is actually a de Sitter visualization */
|
|
EX bool desitter_projections;
|
|
|
|
EX vector<bool_reaction_t> avail_checkers;
|
|
|
|
EX bool model_available(eModel pm) {
|
|
if(pm < isize(avail_checkers) && avail_checkers[pm]) return avail_checkers[pm]();
|
|
if(mdinf[pm].flags & mf::technical) return false;
|
|
if(gproduct) {
|
|
if(pm == mdPerspective) return true;
|
|
if(among(pm, mdBall, mdHemisphere)) return false;
|
|
return PIU(model_available(pm));
|
|
}
|
|
if(hyperbolic && desitter_projections && among(pm, mdRelPerspective, mdRelOrthogonal)) return true;
|
|
if(sl2) return among(pm, mdGeodesic, mdEquidistant, mdRelPerspective, mdRelOrthogonal, mdHorocyclic, mdPerspective);
|
|
if(among(pm, mdRelOrthogonal, mdRelPerspective)) return false;
|
|
if(nonisotropic) return among(pm, mdDisk, mdPerspective, mdHorocyclic, mdGeodesic, mdEquidistant, mdFisheye, mdLiePerspective, mdLieOrthogonal);
|
|
if(sphere && pm == mdBall) return false;
|
|
if(sphere && (mdinf[pm].flags & mf::horocyclic)) return false;
|
|
if(GDIM == 2 && is_perspective(pm)) return false;
|
|
if(pm == mdGeodesic && !nonisotropic) return false;
|
|
if(pm == mdLiePerspective && sphere) return false;
|
|
if(pm == mdLieOrthogonal && sphere) return false;
|
|
if(GDIM == 2 && pm == mdEquivolume) return false;
|
|
if(pm == mdThreePoint && !(GDIM == 3 && !nonisotropic && !gproduct)) return false;
|
|
if(GDIM == 3 && among(pm, mdBall, mdHyperboloid, mdFormula, mdPolygonal, mdRotatedHyperboles, mdSpiral, mdHemisphere)) return false;
|
|
if(pm == mdCentralInversion && !euclid) return false;
|
|
if(pm == mdPoorMan) return hyperbolic;
|
|
if(pm == mdRetroHammer) return hyperbolic;
|
|
return true;
|
|
}
|
|
|
|
EX bool has_orientation(eModel m) {
|
|
if(is_perspective(m) && panini_alpha) return true;
|
|
if(nonisotropic) return false;
|
|
return (mdinf[m].flags & mf::orientation);
|
|
}
|
|
|
|
/** @brief returns the broken coordinate, or zero */
|
|
EX int get_broken_coord(eModel m) {
|
|
if(mdinf[m].flags & mf::werner) return 1;
|
|
if(sphere) return (mdinf[m].flags & mf::broken) ? 2 : 0;
|
|
return 0;
|
|
}
|
|
|
|
EX bool is_hyperboloid(eModel m) {
|
|
return m == (sphere ? mdHemisphere : mdHyperboloid);
|
|
}
|
|
|
|
EX bool is_perspective(eModel m) {
|
|
return mdinf[m].flags & mf::perspective;
|
|
}
|
|
|
|
EX bool is_3d(const projection_configuration& p) {
|
|
if(GDIM == 3) return true;
|
|
return among(p.model, mdBall, mdHyperboloid, mdHemisphere) || (p.model == mdSpiral && p.spiral_cone != 360);
|
|
}
|
|
|
|
EX bool has_transition(eModel m) {
|
|
return (mdinf[m].flags & mf::transition) && GDIM == 2;
|
|
}
|
|
|
|
EX bool product_model(eModel m) {
|
|
if(!gproduct) return false;
|
|
if(mdinf[m].flags & mf::product_special) return false;
|
|
return true;
|
|
}
|
|
|
|
int editpos = 0;
|
|
|
|
EX string get_model_name(eModel m) {
|
|
if(m == mdDisk && GDIM == 3 && (hyperbolic || nonisotropic)) return XLAT("ball model/Gans");
|
|
if(m == mdPerspective && gproduct) return XLAT("native perspective");
|
|
if(gproduct) return PIU(get_model_name(m));
|
|
if(nonisotropic) {
|
|
if(m == mdHorocyclic && !sol) return XLAT("simple model: projection");
|
|
if(m == mdPerspective) return XLAT("simple model: perspective");
|
|
if(m == mdGeodesic) return XLAT("native perspective");
|
|
if(among(m, mdEquidistant, mdFisheye, mdHorocyclic, mdLiePerspective, mdLieOrthogonal, mdRelPerspective, mdRelOrthogonal)) return XLAT(mdinf[m].name_hyperbolic);
|
|
}
|
|
if(m == mdDisk && GDIM == 3) return XLAT("perspective in 4D");
|
|
if(m == mdHalfplane && GDIM == 3 && hyperbolic) return XLAT("half-space");
|
|
if(sphere)
|
|
return XLAT(mdinf[m].name_spherical);
|
|
if(euclid)
|
|
return XLAT(mdinf[m].name_euclidean);
|
|
if(hyperbolic)
|
|
return XLAT(mdinf[m].name_hyperbolic);
|
|
return "?";
|
|
}
|
|
|
|
vector<gp::loc> torus_zeros;
|
|
|
|
void match_torus_period() {
|
|
torus_zeros.clear();
|
|
for(int y=0; y<=200; y++)
|
|
for(int x=-200; x<=200; x++) {
|
|
if(y == 0 && x <= 0) continue;
|
|
transmatrix dummy = Id;
|
|
euc::coord v(x, y, 0);
|
|
bool mirr = false;
|
|
auto t = euc::eutester;
|
|
euc::eu.canonicalize(v, t, dummy, mirr);
|
|
if(v == euc::euzero && t == euc::eutester)
|
|
torus_zeros.emplace_back(x, y);
|
|
}
|
|
sort(torus_zeros.begin(), torus_zeros.end(), [] (const gp::loc p1, const gp::loc p2) {
|
|
ld d1 = hdist0(tC0(euc::eumove(p1)));
|
|
ld d2 = hdist0(tC0(euc::eumove(p2)));
|
|
if(d1 < d2 - 1e-6) return true;
|
|
if(d1 > d2 + 1e-6) return false;
|
|
return p1 < p2;
|
|
});
|
|
if(spiral_id > isize(torus_zeros)) spiral_id = 0;
|
|
dialog::editNumber(spiral_id, 0, isize(torus_zeros)-1, 1, 10, XLAT("match the period of the torus"), "");
|
|
dialog::get_di().reaction = [] () {
|
|
auto& co = torus_zeros[spiral_id];
|
|
vpconf.spiral_x = co.first;
|
|
vpconf.spiral_y = co.second;
|
|
};
|
|
dialog::bound_low(0);
|
|
dialog::bound_up(isize(torus_zeros)-1);
|
|
}
|
|
|
|
EX void edit_formula() {
|
|
if(vpconf.model != mdFormula) vpconf.basic_model = vpconf.model;
|
|
dialog::edit_string(vpconf.formula, "formula",
|
|
XLAT(
|
|
"This lets you specify the projection as a formula f. "
|
|
"The formula has access to the value 'z', which is a complex number corresponding to the (x,y) coordinates in the currently selected model; "
|
|
"the point z is mapped to f(z). You can also use the underlying coordinates ux, uy, uz."
|
|
)
|
|
);
|
|
#if CAP_QUEUE && CAP_CURVE
|
|
dialog::get_di().extra_options = [] () {
|
|
dialog::parser_help();
|
|
initquickqueue();
|
|
queuereset(mdPixel, PPR::LINE);
|
|
for(int a=-1; a<=1; a++) {
|
|
curvepoint(point2(-90._deg * current_display->radius, a*current_display->radius));
|
|
curvepoint(point2(+90._deg * current_display->radius, a*current_display->radius));
|
|
queuecurve(shiftless(Id), forecolor, 0, PPR::LINE);
|
|
curvepoint(point2(a*current_display->radius, -90._deg * current_display->radius));
|
|
curvepoint(point2(a*current_display->radius, +90._deg * current_display->radius));
|
|
queuecurve(shiftless(Id), forecolor, 0, PPR::LINE);
|
|
}
|
|
queuereset(vpconf.model, PPR::LINE);
|
|
quickqueue();
|
|
};
|
|
#endif
|
|
dialog::get_di().reaction_final = [] () {
|
|
vpconf.model = mdFormula;
|
|
};
|
|
}
|
|
|
|
EX void edit_rotation(ld& which) {
|
|
dialog::editNumber(which, 0, 360, 90, 0, XLAT("rotation"),
|
|
"This controls the automatic rotation of the world. "
|
|
"It affects the line animation in the history mode, and "
|
|
"lands which have a special direction. Note that if finding this special direction is a part of the puzzle, "
|
|
"it works only in the cheat mode.");
|
|
dialog::get_di().dialogflags |= sm::CENTER;
|
|
dialog::get_di().extra_options = [] () {
|
|
dialog::addBreak(100);
|
|
dialog::addBoolItem_choice("line animation only", models::do_rotate, 0, 'N');
|
|
dialog::addBoolItem_choice("gravity lands", models::do_rotate, 1, 'G');
|
|
dialog::addBoolItem_choice("all directional lands", models::do_rotate, 2, 'D');
|
|
if(GDIM == 3) {
|
|
dialog::addBreak(100);
|
|
dialog::addSelItem(XLAT("XY plane"), fts(models::rotation) + "°", 'A');
|
|
dialog::add_action([] { popScreen(); edit_rotation(models::rotation); });
|
|
dialog::addSelItem(XLAT("XZ plane"), fts(models::rotation_xz) + "°", 'B');
|
|
dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xz); });
|
|
dialog::addSelItem(XLAT("XY plane #2"), fts(models::rotation_xy2) + "°", 'C');
|
|
dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xy2); });
|
|
}
|
|
};
|
|
}
|
|
|
|
EX void model_list() {
|
|
cmode = sm::SIDE | sm::MAYDARK | sm::CENTER;
|
|
gamescreen();
|
|
dialog::init(XLAT("models & projections"));
|
|
#if CAP_RUG
|
|
USING_NATIVE_GEOMETRY_IN_RUG;
|
|
#endif
|
|
|
|
dialog::start_list(2000, 2000, 'a');
|
|
for(int i=0; i<isize(mdinf); i++) {
|
|
eModel m = eModel(i);
|
|
if(m == mdFormula && ISMOBILE) continue;
|
|
if(model_available(m)) {
|
|
dialog::addBoolItem(get_model_name(m), vpconf.model == m, dialog::list_fake_key++);
|
|
dialog::add_action([m] () {
|
|
if(m == mdFormula) {
|
|
edit_formula();
|
|
return;
|
|
}
|
|
vpconf.model = m;
|
|
polygonal::solve();
|
|
vpconf.alpha = 1; vpconf.scale = 1;
|
|
if(pmodel == mdBand && sphere)
|
|
vpconf.scale = .3;
|
|
if(pmodel == mdDisk && sphere)
|
|
vpconf.scale = .4;
|
|
popScreen();
|
|
});
|
|
}
|
|
}
|
|
|
|
dialog::end_list();
|
|
dialog::addBreak(100);
|
|
dialog::addBack();
|
|
dialog::display();
|
|
}
|
|
|
|
void stretch_extra() {
|
|
dialog::addBreak(100);
|
|
if(sphere && pmodel == mdBandEquiarea) {
|
|
dialog::addBoolItem("Gall-Peters", vpconf.stretch == 2, 'O');
|
|
dialog::add_action([] { vpconf.stretch = 2; dialog::get_ne().s = "2"; });
|
|
}
|
|
if(pmodel == mdBandEquiarea) {
|
|
// y = K * sin(phi)
|
|
// cos(phi) * cos(phi) = 1/K
|
|
if(sphere && vpconf.stretch >= 1) {
|
|
ld phi = acos(sqrt(1/vpconf.stretch));
|
|
dialog::addInfo(XLAT("The current value makes the map conformal at the latitude of %1 (%2°).", fts(phi), fts(phi / degree)));
|
|
}
|
|
else if(hyperbolic && abs(vpconf.stretch) <= 1 && abs(vpconf.stretch) >= 1e-9) {
|
|
ld phi = acosh(abs(sqrt(1/vpconf.stretch)));
|
|
dialog::addInfo(XLAT("The current value makes the map conformal %1 units from the main line.", fts(phi)));
|
|
}
|
|
else dialog::addInfo("");
|
|
}
|
|
}
|
|
|
|
bool set_vr_settings = true;
|
|
|
|
EX void model_menu() {
|
|
cmode = sm::SIDE | sm::MAYDARK | sm::CENTER;
|
|
gamescreen();
|
|
#if CAP_RUG
|
|
USING_NATIVE_GEOMETRY_IN_RUG;
|
|
#endif
|
|
dialog::init(XLAT("models & projections"));
|
|
|
|
auto vpmodel = vpconf.model;
|
|
|
|
dialog::addSelItem(XLAT("projection type"), get_model_name(vpmodel), 'm');
|
|
dialog::add_action_push(model_list);
|
|
|
|
if(nonisotropic && !sl2)
|
|
dialog::addBoolItem_action(XLAT("geodesic movement in Sol/Nil"), nisot::geodesic_movement, 'G');
|
|
|
|
dialog::addBoolItem(XLAT("rotation"), do_rotate == 2, 'r');
|
|
if(do_rotate == 0) dialog::lastItem().value = XLAT("NEVER");
|
|
if(GDIM == 2)
|
|
dialog::lastItem().value += " " + its(rotation) + "°";
|
|
else
|
|
dialog::lastItem().value += " " + its(rotation) + "°" + its(rotation_xz) + "°" + its(rotation_xy2) + "°";
|
|
dialog::add_action([] { edit_rotation(rotation); });
|
|
|
|
bool vr_settings = vrhr::active() && set_vr_settings;
|
|
|
|
if(vrhr::active()) {
|
|
dialog::addBoolItem_action(XLAT("edit VR or non-VR settings"), set_vr_settings, 'V');
|
|
if(set_vr_settings) dialog::items.back().value = "VR";
|
|
else dialog::items.back().value = "non-VR";
|
|
}
|
|
|
|
// if(vpmodel == mdBand && sphere)
|
|
if(!in_perspective_v() && !vr_settings) {
|
|
dialog::addSelItem(XLAT("scale factor"), fts(vpconf.scale), 'z');
|
|
dialog::add_action(editScale);
|
|
}
|
|
|
|
if(abs(vpconf.alpha-1) > 1e-3 && vpmodel != mdBall && vpmodel != mdHyperboloid && vpmodel != mdHemisphere && vpmodel != mdDisk) {
|
|
dialog::addBreak(50);
|
|
dialog::addInfo("NOTE: this works 'correctly' only if the Poincaré model/stereographic projection is used.");
|
|
dialog::addBreak(50);
|
|
}
|
|
|
|
if(among(vpmodel, mdDisk, mdBall, mdHyperboloid, mdRotatedHyperboles, mdPanini)) {
|
|
dynamicval<eModel> v(vpconf.model, vpconf.model);
|
|
if(vpmodel == mdHyperboloid) vpconf.model = mdDisk;
|
|
add_edit(vpconf.alpha);
|
|
}
|
|
|
|
if(has_orientation(vpmodel)) {
|
|
dialog::addMatrixItem(XLAT("model orientation"), vpconf.mori().get(), 'l');
|
|
dialog::add_action([] () {
|
|
dialog::editMatrix(vpconf.mori().get(), XLAT("model orientation"), "", GDIM);
|
|
});
|
|
}
|
|
|
|
if(among(vpmodel, mdPerspective, mdHorocyclic) && nil) {
|
|
dialog::addMatrixItem(XLAT("model orientation"), vpconf.mori().get(), 'l');
|
|
dialog::add_action([] () {
|
|
dialog::editMatrix(vpconf.mori().get(), XLAT("model orientation"), "", GDIM);
|
|
});
|
|
dialog::addSelItem(XLAT("rotational or Heisenberg"), fts(vpconf.rotational_nil), 'L');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(vpconf.rotational_nil, 0, 1, 1, 1, XLAT("1 = Heisenberg, 0 = rotational"), "");
|
|
});
|
|
}
|
|
|
|
if(GDIM == 3 && vpmodel != mdPerspective && !vr_settings) {
|
|
const string cliphelp = XLAT(
|
|
"Your view of the 3D model is naturally bounded from four directions by your window. "
|
|
"Here, you can also set up similar bounds in the Z direction. Radius of the ball/band "
|
|
"models, and the distance from the center to the plane in the halfspace model, are 1.\n\n");
|
|
dialog::addSelItem(XLAT("near clipping plane"), fts(vpconf.clip_max), 'c');
|
|
dialog::add_action([cliphelp] () {
|
|
dialog::editNumber(vpconf.clip_max, -10, 10, 0.2, 1, XLAT("near clipping plane"),
|
|
cliphelp + XLAT("Objects with Z coordinate "
|
|
"bigger than this parameter are not shown. This is useful with the models which "
|
|
"extend infinitely in the Z direction, or if you want things close to your character "
|
|
"to be not obscured by things closer to the camera."));
|
|
});
|
|
dialog::addSelItem(XLAT("far clipping plane"), fts(vpconf.clip_min), 'C');
|
|
dialog::add_action([cliphelp] () {
|
|
dialog::editNumber(vpconf.clip_min, -10, 10, 0.2, -1, XLAT("far clipping plane"),
|
|
cliphelp + XLAT("Objects with Z coordinate "
|
|
"smaller than this parameter are not shown; it also affects the fog effect"
|
|
" (near clipping plane = 0% fog, far clipping plane = 100% fog)."));
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdPolynomial) {
|
|
dialog::addSelItem(XLAT("coefficient"),
|
|
fts(polygonal::coefr[polygonal::coefid]), 'x');
|
|
dialog::add_action([] () {
|
|
polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid);
|
|
int ci = polygonal::coefid + 1;
|
|
dialog::editNumber(polygonal::coefr[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient"), "");
|
|
});
|
|
dialog::addSelItem(XLAT("coefficient (imaginary)"),
|
|
fts(polygonal::coefi[polygonal::coefid]), 'y');
|
|
dialog::add_action([] () {
|
|
polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid);
|
|
int ci = polygonal::coefid + 1;
|
|
dialog::editNumber(polygonal::coefi[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient (imaginary)"), "");
|
|
});
|
|
dialog::addSelItem(XLAT("which coefficient"), its(polygonal::coefid), 'n');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(polygonal::coefid, 0, polygonal::MSI-1, 1, 0, XLAT("which coefficient"), "");
|
|
dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1);
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdHalfplane) {
|
|
dialog::addSelItem(XLAT("half-plane scale"), fts(vpconf.halfplane_scale), 'b');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(vpconf.halfplane_scale, 0, 2, 0.25, 1, XLAT("half-plane scale"), "");
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdRotatedHyperboles) {
|
|
dialog::addBoolItem_action(XLAT("use atan to make it finite"), vpconf.use_atan, 'x');
|
|
}
|
|
|
|
if(among(vpmodel, mdLieOrthogonal, mdLiePerspective)) {
|
|
if(in_s2xe() || (sphere && GDIM == 2)) dialog::addInfo(XLAT("this is not a Lie group"), 0xC00000);
|
|
else if(!hyperbolic && !sol && !nih && !nil && !euclid && !in_h2xe() && !in_e2xe())
|
|
dialog::addInfo(XLAT("not implemented"));
|
|
}
|
|
|
|
if(vpmodel == mdBall && !vr_settings) {
|
|
dialog::addSelItem(XLAT("projection in ball model"), fts(vpconf.ballproj), 'x');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(vpconf.ballproj, 0, 100, .1, 0, XLAT("projection in ball model"),
|
|
"This parameter affects the ball model the same way as the projection parameter affects the disk model.");
|
|
});
|
|
}
|
|
|
|
if(vpmodel == mdPolygonal) {
|
|
dialog::addSelItem(XLAT("polygon sides"), its(polygonal::SI), 'x');
|
|
dialog::add_action([] () {
|
|
dialog::editNumber(polygonal::SI, 3, 10, 1, 4, XLAT("polygon sides"), "");
|
|
dialog::get_di().reaction = polygonal::solve;
|
|
});
|
|
dialog::addSelItem(XLAT("star factor"), fts(polygonal::STAR), 'y');
|
|
dialog::add_action([]() {
|
|
dialog::editNumber(polygonal::STAR, -1, 1, .1, 0, XLAT("star factor"), "");
|
|
dialog::get_di().reaction = polygonal::solve;
|
|
});
|
|
dialog::addSelItem(XLAT("degree of the approximation"), its(polygonal::deg), 'n');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(polygonal::deg, 2, polygonal::MSI-1, 1, 2, XLAT("degree of the approximation"), "");
|
|
dialog::get_di().reaction = polygonal::solve;
|
|
dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1);
|
|
});
|
|
}
|
|
|
|
if(is_3d(vpconf) && GDIM == 2 && !vr_settings)
|
|
add_edit(vpconf.ballangle);
|
|
|
|
if(vr_settings) {
|
|
dialog::addSelItem(XLAT("VR: rotate the 3D model"), fts(vpconf.vr_angle) + "°", 'B');
|
|
dialog::add_action([] {
|
|
dialog::editNumber(vpconf.vr_angle, 0, 90, 5, 0, XLAT("VR: rotate the 3D model"),
|
|
"How the VR model should be rotated."
|
|
);
|
|
});
|
|
dialog::addSelItem(XLAT("VR: shift the 3D model"), fts(vpconf.vr_zshift), 'Z');
|
|
dialog::add_action([] {
|
|
dialog::editNumber(vpconf.vr_zshift, 0, 5, 0.1, 1, XLAT("VR: shift the 3D model"),
|
|
"How the VR model should be shifted forward, in units. "
|
|
"The Poincaré disk has the size of 1 unit. You probably do not want this in perspective projections, but "
|
|
"it is useful to see e.g. the Poincaré ball not from the center."
|
|
);
|
|
});
|
|
dialog::addSelItem(XLAT("VR: scale the 3D model"), fts(vpconf.vr_scale_factor) + "m", 'S');
|
|
dialog::add_action([] {
|
|
dialog::editNumber(vpconf.vr_scale_factor, 0, 5, 0.1, 1, XLAT("VR: scale the 3D model"),
|
|
"How the VR model should be scaled. At scale 1, 1 unit = 1 meter. Does not affect perspective projections, "
|
|
"where the 'absolute unit' setting is used instead."
|
|
);
|
|
});
|
|
}
|
|
|
|
if(is_hyperboloid(vpmodel))
|
|
add_edit(vpconf.top_z);
|
|
|
|
if(has_transition(vpmodel))
|
|
add_edit(vpconf.model_transition);
|
|
|
|
if(among(vpmodel, mdJoukowsky, mdJoukowskyInverted, mdSpiral) && GDIM == 2)
|
|
add_edit(vpconf.skiprope);
|
|
|
|
if(vpmodel == mdJoukowskyInverted)
|
|
add_edit(vpconf.dualfocus_autoscale);
|
|
|
|
if(vpmodel == mdHemisphere && euclid)
|
|
add_edit(vpconf.euclid_to_sphere);
|
|
|
|
if(mdinf[vpmodel].flags & mf::twopoint)
|
|
add_edit(vpconf.twopoint_param);
|
|
|
|
if(mdinf[vpmodel].flags & mf::axial)
|
|
add_edit(vpconf.axial_angle);
|
|
|
|
if(vpmodel == mdFisheye)
|
|
add_edit(vpconf.fisheye_param);
|
|
|
|
if(is_hyperboloid(vpmodel))
|
|
add_edit(pconf.show_hyperboloid_flat);
|
|
|
|
if(vpmodel == mdCollignon)
|
|
add_edit(vpconf.collignon_parameter);
|
|
|
|
if(vpmodel == mdMiller) {
|
|
dialog::addSelItem(XLAT("parameter"), fts(vpconf.miller_parameter), 'b');
|
|
dialog::add_action([](){
|
|
dialog::editNumber(vpconf.miller_parameter, -1, 1, .1, 4/5., XLAT("parameter"),
|
|
"The Miller projection is obtained by multiplying the latitude by 4/5, using Mercator projection, and then multiplying Y by 5/4. "
|
|
"Here you can change this parameter."
|
|
);
|
|
});
|
|
}
|
|
|
|
if(among(vpmodel, mdLoximuthal, mdRetroHammer, mdRetroCraig))
|
|
add_edit(vpconf.loximuthal_parameter);
|
|
|
|
if(among(vpmodel, mdAitoff, mdHammer, mdWinkelTripel))
|
|
add_edit(vpconf.aitoff_parameter);
|
|
|
|
if(vpmodel == mdWinkelTripel)
|
|
add_edit(vpconf.winkel_parameter);
|
|
|
|
if(vpmodel == mdSpiral && !euclid) {
|
|
add_edit(vpconf.spiral_angle);
|
|
|
|
add_edit(
|
|
sphere ? vpconf.sphere_spiral_multiplier :
|
|
ring_not_spiral ? vpconf.right_spiral_multiplier :
|
|
vpconf.any_spiral_multiplier
|
|
);
|
|
|
|
add_edit(vpconf.spiral_cone);
|
|
}
|
|
|
|
if(vpmodel == mdSpiral && euclid) {
|
|
add_edit(vpconf.spiral_x);
|
|
add_edit(vpconf.spiral_y);
|
|
if(euclid && quotient) {
|
|
dialog::addSelItem(XLAT("match the period"), its(spiral_id), 'n');
|
|
dialog::add_action(match_torus_period);
|
|
}
|
|
}
|
|
|
|
add_edit(vpconf.stretch);
|
|
|
|
if(product_model(vpmodel))
|
|
add_edit(vpconf.product_z_scale);
|
|
|
|
#if CAP_GL
|
|
dialog::addBoolItem(XLAT("use GPU to compute projections"), vid.consider_shader_projection, 'G');
|
|
bool shaderside_projection = get_shader_flags() & SF_DIRECT;
|
|
if(vid.consider_shader_projection && !shaderside_projection)
|
|
dialog::lastItem().value = XLAT("N/A");
|
|
if(vid.consider_shader_projection && shaderside_projection && vpmodel)
|
|
dialog::lastItem().value += XLAT(" (2D only)");
|
|
dialog::add_action([] { vid.consider_shader_projection = !vid.consider_shader_projection; });
|
|
#endif
|
|
|
|
menuitem_sightrange('R');
|
|
|
|
dialog::addBreak(100);
|
|
dialog::addItem(XLAT("history mode"), 'a');
|
|
dialog::add_action_push(history::history_menu);
|
|
#if CAP_RUG
|
|
if(GDIM == 2 || rug::rugged) {
|
|
dialog::addItem(XLAT("hypersian rug mode"), 'u');
|
|
dialog::add_action_push(rug::show);
|
|
}
|
|
#endif
|
|
dialog::addBack();
|
|
|
|
dialog::display();
|
|
mouseovers = XLAT("see http://www.roguetemple.com/z/hyper/models.php");
|
|
}
|
|
|
|
EX void quick_model() {
|
|
cmode = sm::CENTER | sm::SIDE | sm::MAYDARK;
|
|
gamescreen();
|
|
dialog::init("models & projections");
|
|
|
|
if(GDIM == 2 && !euclid) {
|
|
dialog::addItem(hyperbolic ? XLAT("Gans model") : XLAT("orthographic projection"), '1');
|
|
dialog::add_action([] { if(rug::rugged) rug::close(); pconf.alpha = 999; pconf.scale = 998; pconf.xposition = pconf.yposition = 0; popScreen(); });
|
|
dialog::addItem(hyperbolic ? XLAT("Poincaré model") : XLAT("stereographic projection"), '2');
|
|
dialog::add_action([] { if(rug::rugged) rug::close(); pconf.alpha = 1; pconf.scale = 1; pconf.xposition = pconf.yposition = 0; popScreen(); });
|
|
dialog::addItem(hyperbolic ? XLAT("Beltrami-Klein model") : XLAT("gnomonic projection"), '3');
|
|
dialog::add_action([] { if(rug::rugged) rug::close(); pconf.alpha = 0; pconf.scale = 1; pconf.xposition = pconf.yposition = 0; popScreen(); });
|
|
if(sphere) {
|
|
dialog::addItem(XLAT("stereographic projection") + " " + XLAT("(zoomed out)"), '4');
|
|
dialog::add_action([] { if(rug::rugged) rug::close(); pconf.alpha = 1; pconf.scale = 0.4; pconf.xposition = pconf.yposition = 0; popScreen(); });
|
|
}
|
|
if(hyperbolic) {
|
|
dialog::addItem(XLAT("Gans model") + " " + XLAT("(zoomed out)"), '4');
|
|
dialog::add_action([] { if(rug::rugged) rug::close(); pconf.alpha = 999; pconf.scale = 499; pconf.xposition = pconf.yposition = 0; popScreen(); });
|
|
#if CAP_RUG
|
|
dialog::addItem(XLAT("Hypersian Rug"), 'u');
|
|
dialog::add_action([] {
|
|
if(rug::rugged) pushScreen(rug::show);
|
|
else {
|
|
pconf.alpha = 1, pconf.scale = 1; if(!rug::rugged) rug::init(); popScreen();
|
|
}
|
|
});
|
|
#endif
|
|
}
|
|
}
|
|
else if(GDIM == 2 && euclid) {
|
|
auto zoom_to = [] (ld s) {
|
|
pconf.xposition = pconf.yposition = 0;
|
|
ld maxs = 0;
|
|
auto& cd = current_display;
|
|
for(auto& p: gmatrix) for(int i=0; i<p.first->type; i++) {
|
|
shiftpoint h = tC0(p.second * currentmap->adj(p.first, i));
|
|
hyperpoint onscreen;
|
|
applymodel(h, onscreen);
|
|
maxs = max(maxs, onscreen[0] / cd->xsize);
|
|
maxs = max(maxs, onscreen[1] / cd->ysize);
|
|
}
|
|
pconf.alpha = 1;
|
|
pconf.scale = s * pconf.scale / 2 / maxs / cd->radius;
|
|
popScreen();
|
|
};
|
|
dialog::addItem(XLAT("zoom 2x"), '1');
|
|
dialog::add_action([zoom_to] { zoom_to(2); });
|
|
dialog::addItem(XLAT("zoom 1x"), '2');
|
|
dialog::add_action([zoom_to] { zoom_to(1); });
|
|
dialog::addItem(XLAT("zoom 0.5x"), '3');
|
|
dialog::add_action([zoom_to] { zoom_to(.5); });
|
|
#if CAP_RUG
|
|
if(quotient) {
|
|
dialog::addItem(XLAT("cylinder/donut view"), 'u');
|
|
dialog::add_action([] {
|
|
if(rug::rugged) pushScreen(rug::show);
|
|
else {
|
|
pconf.alpha = 1, pconf.scale = 1; if(!rug::rugged) rug::init(); popScreen();
|
|
}
|
|
});
|
|
}
|
|
#endif
|
|
}
|
|
else if(GDIM == 3) {
|
|
auto& ysh = (WDIM == 2 ? vid.camera : vid.yshift);
|
|
dialog::addItem(XLAT("first-person perspective"), '1');
|
|
dialog::add_action([&ysh] { ysh = 0; vid.sspeed = 0; popScreen(); } );
|
|
dialog::addItem(XLAT("fixed point of view"), '2');
|
|
dialog::add_action([&ysh] { ysh = 0; vid.sspeed = -10; popScreen(); } );
|
|
dialog::addItem(XLAT("third-person perspective"), '3');
|
|
dialog::add_action([&ysh] { ysh = 1; vid.sspeed = 0; popScreen(); } );
|
|
}
|
|
if(WDIM == 2) {
|
|
dialog::addItem(XLAT("toggle full 3D graphics"), 'f');
|
|
dialog::add_action([] { geom3::switch_fpp(); popScreen(); });
|
|
}
|
|
dialog::addItem(XLAT("advanced projections"), 'a');
|
|
dialog::add_action_push(model_menu);
|
|
menuitem_sightrange('r');
|
|
dialog::addBack();
|
|
dialog::display();
|
|
}
|
|
|
|
#if CAP_COMMANDLINE
|
|
|
|
EX eModel read_model(const string& ss) {
|
|
for(int i=0; i<isize(mdinf); i++) {
|
|
if(hyperbolic && appears(mdinf[i].name_hyperbolic, ss)) return eModel(i);
|
|
if(euclid && appears(mdinf[i].name_euclidean, ss)) return eModel(i);
|
|
if(sphere && appears(mdinf[i].name_spherical, ss)) return eModel(i);
|
|
}
|
|
for(int i=0; i<isize(mdinf); i++) {
|
|
if(appears(mdinf[i].name_hyperbolic, ss)) return eModel(i);
|
|
if(appears(mdinf[i].name_euclidean, ss)) return eModel(i);
|
|
if(appears(mdinf[i].name_spherical, ss)) return eModel(i);
|
|
}
|
|
return eModel(atoi(ss.c_str()));
|
|
}
|
|
|
|
int readArgs() {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-els")) {
|
|
shift_arg_formula(history::extra_line_steps);
|
|
}
|
|
else if(argis("-stretch")) {
|
|
PHASEFROM(2); shift_arg_formula(vpconf.stretch);
|
|
}
|
|
else if(argis("-PM")) {
|
|
PHASEFROM(2); shift(); vpconf.model = read_model(args());
|
|
if(vpconf.model == mdFormula) {
|
|
shift(); vpconf.basic_model = eModel(argi());
|
|
shift(); vpconf.formula = args();
|
|
}
|
|
}
|
|
else if(argis("-ballangle")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.ballangle);
|
|
}
|
|
else if(argis("-topz")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.top_z);
|
|
}
|
|
else if(argis("-twopoint")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.twopoint_param);
|
|
}
|
|
else if(argis("-hp")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.halfplane_scale);
|
|
}
|
|
else if(argis("-mets")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.euclid_to_sphere);
|
|
}
|
|
else if(argis("-mhyp")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.hyperboloid_scaling);
|
|
}
|
|
else if(argis("-mdepth")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.depth_scaling);
|
|
}
|
|
else if(argis("-mnil")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.rotational_nil);
|
|
}
|
|
else if(argis("-crot")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(models::rotation);
|
|
if(GDIM == 3) shift_arg_formula(models::rotation_xz);
|
|
if(GDIM == 3) shift_arg_formula(models::rotation_xy2);
|
|
}
|
|
else if(argis("-clip")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.clip_min);
|
|
shift_arg_formula(vpconf.clip_max);
|
|
}
|
|
else if(argis("-mtrans")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.model_transition);
|
|
}
|
|
else if(argis("-mparam")) {
|
|
PHASEFROM(2);
|
|
if(pmodel == mdCollignon) shift_arg_formula(vpconf.collignon_parameter);
|
|
else if(pmodel == mdMiller) shift_arg_formula(vpconf.miller_parameter);
|
|
else if(among(pmodel, mdLoximuthal, mdRetroCraig, mdRetroHammer)) shift_arg_formula(vpconf.loximuthal_parameter);
|
|
else if(among(pmodel, mdAitoff, mdHammer, mdWinkelTripel)) shift_arg_formula(vpconf.aitoff_parameter);
|
|
if(pmodel == mdWinkelTripel) shift_arg_formula(vpconf.winkel_parameter);
|
|
}
|
|
else if(argis("-sang")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.spiral_angle);
|
|
if(sphere)
|
|
shift_arg_formula(vpconf.sphere_spiral_multiplier);
|
|
else if(vpconf.spiral_angle == 90)
|
|
shift_arg_formula(vpconf.right_spiral_multiplier);
|
|
}
|
|
else if(argis("-ssm")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.any_spiral_multiplier);
|
|
}
|
|
else if(argis("-scone")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.spiral_cone);
|
|
}
|
|
else if(argis("-sxy")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.spiral_x);
|
|
shift_arg_formula(vpconf.spiral_y);
|
|
}
|
|
else if(argis("-mob")) {
|
|
PHASEFROM(2);
|
|
shift_arg_formula(vpconf.skiprope);
|
|
}
|
|
else if(argis("-palpha")) {
|
|
PHASEFROM(2);
|
|
#if CAP_GL
|
|
shift_arg_formula(panini_alpha, reset_all_shaders);
|
|
#else
|
|
shift_arg_formula(panini_alpha);
|
|
#endif
|
|
}
|
|
else if(argis("-salpha")) {
|
|
PHASEFROM(2);
|
|
#if CAP_GL
|
|
shift_arg_formula(stereo_alpha, reset_all_shaders);
|
|
#else
|
|
shift_arg_formula(stereo_alpha);
|
|
#endif
|
|
}
|
|
else if(argis("-zoom")) {
|
|
PHASEFROM(2); shift_arg_formula(vpconf.scale);
|
|
}
|
|
else if(argis("-alpha")) {
|
|
PHASEFROM(2); shift_arg_formula(vpconf.alpha);
|
|
}
|
|
else if(argis("-d:model"))
|
|
launch_dialog(model_menu);
|
|
else if(argis("-d:formula")) {
|
|
launch_dialog();
|
|
edit_formula();
|
|
}
|
|
else if(argis("-d:match")) {
|
|
launch_dialog(match_torus_period);
|
|
edit_formula();
|
|
}
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
auto hookArg = addHook(hooks_args, 100, readArgs);
|
|
#endif
|
|
|
|
void add_model_config() {
|
|
addsaver(polygonal::SI, "polygon sides");
|
|
param_f(polygonal::STAR, "star", "polygon star factor");
|
|
addsaver(polygonal::deg, "polygonal degree");
|
|
|
|
addsaver(polygonal::maxcoef, "polynomial degree");
|
|
for(int i=0; i<polygonal::MSI; i++) {
|
|
addsaver(polygonal::coefr[i], "polynomial "+its(i)+".real");
|
|
addsaver(polygonal::coefi[i], "polynomial "+its(i)+".imag");
|
|
}
|
|
|
|
param_f(models::rotation, "rotation", "conformal rotation");
|
|
addsaver(models::rotation_xz, "conformal rotation_xz");
|
|
addsaver(models::rotation_xy2, "conformal rotation_2");
|
|
addsaver(models::do_rotate, "conformal rotation mode", 1);
|
|
|
|
param_f(pconf.halfplane_scale, "hp", "halfplane scale", 1);
|
|
|
|
auto add_all = [&] (projection_configuration& p, string pp, string sp) {
|
|
|
|
bool rug = pp != "";
|
|
dynamicval<function<bool()>> ds(auto_restrict);
|
|
auto_restrict = [&p] { return &vpconf == &p; };
|
|
|
|
addsaverenum(p.model, pp+"used model", mdDisk);
|
|
if(&p.model == &pmodel) param_custom(pmodel, "projection|Poincare|Klein|half-plane|perspective", menuitem_projection, '1');
|
|
|
|
param_matrix(p.mori().v2, pp+"mori", 2)
|
|
-> editable("model orientation", "", 'o');
|
|
param_matrix(p.mori().v3, pp+"mori3", 3)
|
|
-> editable("model orientation 3D", "", 'o');
|
|
|
|
param_f(p.top_z, sp+"topz", 5)
|
|
-> editable(1, 20, .25, "maximum z coordinate to show", "maximum z coordinate to show", 'l');
|
|
|
|
param_f(p.model_transition, pp+"mtrans", sp+"model transition", 1)
|
|
-> editable(0, 1, .1, "model transition",
|
|
"You can change this parameter for a transition from another model to this one.", 't');
|
|
|
|
param_f(p.rotational_nil, sp+"rotnil", 1);
|
|
|
|
param_f(p.clip_min, pp+"clipmin", sp+"clip-min", rug ? -100 : -1);
|
|
param_f(p.clip_max, pp+"clipmax", sp+"clip-max", rug ? +10 : +1);
|
|
|
|
param_f(p.euclid_to_sphere, pp+"ets", sp+"euclid to sphere projection", 1.5)
|
|
-> editable(1e-1, 10, .1, "ETS parameter", "Stereographic projection to a sphere. Choose the radius of the sphere.", 'l')
|
|
-> set_sets(dialog::scaleLog);
|
|
|
|
param_f(p.twopoint_param, pp+"twopoint", sp+"twopoint parameter", 1)
|
|
-> editable(1e-3, 10, .1, "two-point parameter", "In two-point-based models, this parameter gives the distance from each of the two points to the center.", 'b')
|
|
-> set_sets(dialog::scaleLog);
|
|
|
|
param_f(p.axial_angle, pp+"axial", sp+"axial angle", 90)
|
|
-> editable(1e-3, 10, .1, "angle between the axes", "In two-axe-based models, this parameter gives the angle between the two axes.", 'x')
|
|
-> set_sets(dialog::scaleLog);
|
|
|
|
param_f(p.fisheye_param, pp+"fisheye", sp+"fisheye parameter", 1)
|
|
-> editable(1e-3, 10, .1, "fisheye parameter", "Size of the fish eye.", 'b')
|
|
-> set_sets(dialog::scaleLog);
|
|
|
|
param_f(p.stretch, pp+"stretch", 1)
|
|
-> editable(0, 10, .1, "vertical stretch", "Vertical stretch factor.", 's')
|
|
-> set_extra(stretch_extra);
|
|
|
|
param_f(p.product_z_scale, pp+"zstretch")
|
|
-> editable(0.1, 10, 0.1, "product Z stretch", "", 'Z');
|
|
|
|
param_f(p.collignon_parameter, pp+"collignon", sp+"collignon-parameter", 1)
|
|
-> editable(-1, 1, .1, "Collignon parameter", "", 'b')
|
|
-> modif([] (float_setting* f) {
|
|
f->unit = vpconf.collignon_reflected ? " (r)" : "";
|
|
})
|
|
-> set_extra([&p] {
|
|
add_edit(p.collignon_reflected);
|
|
});
|
|
param_b(p.collignon_reflected, sp+"collignon-reflect", false)
|
|
-> editable("Collignon reflect", 'R');
|
|
|
|
param_f(p.aitoff_parameter, sp+"aitoff")
|
|
-> editable(-1, 1, .1, "Aitoff parameter",
|
|
"The Aitoff projection is obtained by multiplying the longitude by 1/2, using azimuthal equidistant projection, and then dividing X by 1/2. "
|
|
"Hammer projection is similar but equi-area projection is used instead. "
|
|
"Here you can change this parameter.", 'b');
|
|
param_f(p.miller_parameter, sp+"miller");
|
|
param_f(p.loximuthal_parameter, sp+"loximuthal")
|
|
-> editable(-90._deg, 90._deg, .1, "loximuthal parameter",
|
|
"Loximuthal is similar to azimuthal equidistant, but based on loxodromes (lines of constant geographic direction) rather than geodesics. "
|
|
"The loximuthal projection maps (the shortest) loxodromes to straight lines of the same length, going through the starting point. "
|
|
"This setting changes the latitude of the starting point.\n\n"
|
|
"In retroazimuthal projections, a point is drawn at such a point that the azimuth *from* that point to the chosen central point is correct. "
|
|
"For example, if you should move east, the point is drawn to the right. This parameter is the latitude of the central point."
|
|
"\n\n(In hyperbolic geometry directions are assigned according to the Lobachevsky coordinates.)", 'b'
|
|
);
|
|
param_f(p.winkel_parameter, sp+"winkel")
|
|
-> editable(-1, 1, .1, "Winkel Tripel mixing",
|
|
"The Winkel Tripel projection is the average of Aitoff projection and equirectangular projection. Here you can change the proportion.", 'B');
|
|
|
|
param_b(p.show_hyperboloid_flat, sp+"hyperboloid-flat", true)
|
|
-> editable("show flat", 'b');
|
|
|
|
param_f(p.skiprope, sp+"mobius", 0)
|
|
-> editable(0, 360, 15, "Möbius transformations", "", 'S')->unit = "°";
|
|
|
|
param_b(p.dualfocus_autoscale, sp+"dualfocus_autoscale", 0)
|
|
-> editable("autoscale dual focus", 'A');
|
|
|
|
addsaver(p.formula, sp+"formula");
|
|
addsaverenum(p.basic_model, sp+"basic model");
|
|
addsaver(p.use_atan, sp+"use_atan");
|
|
|
|
param_f(p.spiral_angle, sp+"sang")
|
|
-> editable(0, 360, 15, "spiral angle", "set to 90° for the ring projection", 'x')
|
|
-> unit = "°";
|
|
param_f(p.spiral_x, sp+"spiralx")
|
|
-> editable(-20, 20, 1, "spiral period: x", "", 'x');
|
|
param_f(p.spiral_y, sp+"spiraly")
|
|
-> editable(-20, 20, 1, "spiral period: y", "", 'y');
|
|
|
|
param_f(p.scale, sp+"scale", 1);
|
|
param_f(p.xposition, sp+"xposition", 0);
|
|
param_f(p.yposition, sp+"yposition", 0);
|
|
|
|
param_i(p.back_and_front, sp+"backandfront", 0);
|
|
|
|
addsaver(p.alpha, sp+"projection", 1);
|
|
if(&p.model == &pmodel)
|
|
param_custom(p.alpha, sp+"projection", menuitem_projection_distance, 'p')
|
|
->help_text = "projection distance|Gans Klein Poincare orthographic stereographic";
|
|
|
|
param_f(p.camera_angle, pp+"cameraangle", sp+"camera angle", 0);
|
|
addsaver(p.ballproj, sp+"ballproj", 1);
|
|
|
|
param_f(p.ballangle, pp+"ballangle", sp+"ball angle", 20)
|
|
-> editable(0, 90, 5, "camera rotation in 3D models",
|
|
"Rotate the camera in 3D models (ball model, hyperboloid, and hemisphere). "
|
|
"Note that hyperboloid and hemisphere models are also available in the "
|
|
"Hypersian Rug surfaces menu, but they are rendered differently there -- "
|
|
"by making a flat picture first, then mapping it to a surface. "
|
|
"This makes the output better in some ways, but 3D effects are lost. "
|
|
"Hypersian Rug model also allows more camera freedom.",
|
|
'b')
|
|
-> unit = "°";
|
|
|
|
string help =
|
|
"This parameter has a bit different scale depending on the settings:\n"
|
|
"(1) in spherical geometry (with spiral angle=90°, 1 produces a stereographic projection)\n"
|
|
"(2) in hyperbolic geometry, with spiral angle being +90° or -90°\n"
|
|
"(3) in hyperbolic geometry, with other spiral angles (1 makes the bands fit exactly)";
|
|
|
|
param_f(p.sphere_spiral_multiplier, "sphere_spiral_multiplier")
|
|
-> editable(0, 10, .1, "sphere spiral multiplier", help, 'M')->unit = "°";
|
|
|
|
param_f(p.right_spiral_multiplier, "right_spiral_multiplier")
|
|
-> editable(0, 10, .1, "right spiral multiplier", help, 'M')->unit = "°";
|
|
|
|
param_f(p.any_spiral_multiplier, "any_spiral_multiplier")
|
|
-> editable(0, 10, .1, "any spiral multiplier", help, 'M')->unit = "°";
|
|
|
|
param_f(p.spiral_cone, "spiral_cone")
|
|
-> editable(0, 360, -45, "spiral cone", "", 'C')->unit = "°";
|
|
};
|
|
|
|
add_all(pconf, "", "");
|
|
add_all(vid.rug_config, "rug_", "rug-");
|
|
}
|
|
|
|
auto hookSet = addHook(hooks_configfile, 100, add_model_config);
|
|
}
|
|
|
|
} |