mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-18 19:24:48 +00:00
1589 lines
44 KiB
C++
1589 lines
44 KiB
C++
// Hyperbolic Rogue -- Field Quotient geometry
|
|
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file fieldpattern.cpp
|
|
* \brief Field Quotient geometry
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
#if CAP_FIELD
|
|
namespace hr {
|
|
|
|
EX namespace fieldpattern {
|
|
|
|
EX bool use_rule_fp = false;
|
|
|
|
EX bool use_quotient_fp = false;
|
|
|
|
int limitsq = 10;
|
|
int limitp = 10000;
|
|
int limitv = 100000;
|
|
|
|
#if HDR
|
|
#define currfp fieldpattern::getcurrfp()
|
|
|
|
struct primeinfo {
|
|
int p;
|
|
int cells;
|
|
bool squared;
|
|
};
|
|
|
|
struct fgeomextra {
|
|
eGeometry base;
|
|
vector<primeinfo> primes;
|
|
vector<int> dualval;
|
|
int current_prime_id;
|
|
fgeomextra(eGeometry b, int i) : base(b), current_prime_id(i) {}
|
|
};
|
|
#endif
|
|
|
|
EX bool isprime(int n) {
|
|
for(int k=2; k<n; k++) if(n%k == 0) return false;
|
|
return true;
|
|
}
|
|
|
|
#if HDR
|
|
#define MWDIM (prod ? 3 : WDIM+1)
|
|
|
|
struct matrix : array<array<int, MAXMDIM>, MAXMDIM> {
|
|
bool operator == (const matrix& B) const {
|
|
for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++)
|
|
if(self[i][j] != B[i][j]) return false;
|
|
return true;
|
|
}
|
|
|
|
bool operator != (const matrix& B) const {
|
|
for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++)
|
|
if(self[i][j] != B[i][j]) return true;
|
|
return false;
|
|
}
|
|
|
|
bool operator < (const matrix& B) const {
|
|
for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++)
|
|
if(self[i][j] != B[i][j]) return self[i][j] < B[i][j];
|
|
return false;
|
|
}
|
|
|
|
};
|
|
#endif
|
|
|
|
EX int groupspin(int id, int d, int group) {
|
|
return group*(id/group) + (id + d) % group;
|
|
}
|
|
|
|
EX int btspin(int id, int d) {
|
|
return groupspin(id, d, S7);
|
|
}
|
|
|
|
#if HDR
|
|
|
|
static const int ERR = -99;
|
|
|
|
struct triplet_info {
|
|
int i, j, size;
|
|
};
|
|
|
|
struct fpattern {
|
|
|
|
unsigned force_hash;
|
|
|
|
int Prime, wsquare, Field, dual;
|
|
// we perform our computations in the field Z_Prime[w] where w^2 equals wsquare
|
|
// (or simply Z_Prime for wsquare == 0)
|
|
|
|
#define EASY
|
|
// 'easy' assumes that all elements of the field actually used
|
|
// are of form n or mw (not n+mw), and cs and ch are both of form n
|
|
// by experimentation, such cs and ch always exist
|
|
// many computations are much simpler under that assumption
|
|
|
|
#ifndef EASY
|
|
static int neasy;
|
|
|
|
int m(int x) { x %= Prime; if(x<0) x+= Prime; return x; }
|
|
#endif
|
|
|
|
int sub(int a, int b) {
|
|
#ifdef EASY
|
|
return (a + b * (Prime-1)) % Prime;
|
|
#else
|
|
return m(a%Prime-b%Prime) + Prime * m(a/Prime-b/Prime);
|
|
#endif
|
|
}
|
|
|
|
int add(int a, int b) {
|
|
#ifdef EASY
|
|
if(a == ERR || b == ERR || a*b<0) return ERR;
|
|
return (a+b)%Prime;
|
|
#else
|
|
return m(a%Prime+b%Prime) + Prime * m(a/Prime+b/Prime);
|
|
#endif
|
|
}
|
|
|
|
int mul(int tx, int ty) {
|
|
#ifdef EASY
|
|
return (tx*ty*((tx<0&&ty<0)?wsquare:1)) % Prime;
|
|
#else
|
|
if(tx >= Prime && tx % Prime) neasy++;
|
|
if(ty >= Prime && ty % Prime) neasy++;
|
|
int x[2], y[2], z[3];
|
|
for(int i=0; i<3; i++) z[i] = 0;
|
|
for(int i=0; i<2; i++)
|
|
x[i] = tx%Prime, tx /= Prime;
|
|
for(int i=0; i<2; i++)
|
|
y[i] = ty%Prime, ty /= Prime;
|
|
for(int i=0; i<2; i++)
|
|
for(int j=0; j<2; j++)
|
|
z[i+j] = (z[i+j] + x[i] * y[j]) % Prime;
|
|
z[0] += z[2] * wsquare;
|
|
|
|
return m(z[0]) + Prime * m(z[1]);
|
|
#endif
|
|
}
|
|
|
|
int sqr(int x) { return mul(x,x); }
|
|
|
|
matrix mmul(const matrix& A, const matrix& B) {
|
|
matrix res;
|
|
for(int i=0; i<MWDIM; i++) for(int k=0; k<MWDIM; k++) {
|
|
int t = 0;
|
|
#ifdef EASY
|
|
for(int j=0; j<MWDIM; j++) t += mul(A[i][j], B[j][k]);
|
|
t %= Prime;
|
|
#else
|
|
for(int j=0; j<MWDIM; j++) t = add(t, mul(A[i][j], B[j][k]));
|
|
#endif
|
|
res[i][k] = t;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
map<matrix, int> matcode;
|
|
vector<matrix> matrices;
|
|
|
|
vector<string> qpaths;
|
|
|
|
vector<matrix> qcoords;
|
|
|
|
// S7 in 2D, but e.g. 4 for a 3D cube
|
|
int rotations;
|
|
|
|
// S7 in 2D, but e.g. 24 for a 3D cube
|
|
int local_group;
|
|
|
|
// Id: Identity
|
|
// R : rotate by 1/rotations of the full circle
|
|
// P : make a step and turn backwards
|
|
// X : in 3-dim, turn by 90 degrees
|
|
|
|
matrix Id, R, P, X;
|
|
|
|
matrix strtomatrix(string s) {
|
|
matrix res = Id;
|
|
matrix m = Id;
|
|
for(int i=isize(s)-1; i>=0; i--)
|
|
if(s[i] == 'R') res = mmul(R, res);
|
|
else if (s[i] == 'P') res = mmul(P, res);
|
|
else if (s[i] == 'x') { m[0][0] = -1; res = mmul(m, res); m[0][0] = +1; }
|
|
else if (s[i] == 'y') { m[1][1] = -1; res = mmul(m, res); m[1][1] = +1; }
|
|
else if (s[i] == 'z') { m[2][2] = -1; res = mmul(m, res); m[2][2] = +1; }
|
|
return res;
|
|
}
|
|
|
|
void addas(const matrix& M, int i) {
|
|
if(!matcode.count(M)) {
|
|
matcode[M] = i;
|
|
for(int j=0; j<isize(qcoords); j++)
|
|
addas(mmul(M, qcoords[j]), i);
|
|
}
|
|
}
|
|
|
|
void add(const matrix& M) {
|
|
if(!matcode.count(M)) {
|
|
int i = isize(matrices);
|
|
matcode[M] = i, matrices.push_back(M);
|
|
for(int j=0; j<isize(qcoords); j++)
|
|
addas(mmul(M, qcoords[j]), i);
|
|
if(WDIM == 3) add(mmul(X, M));
|
|
add(mmul(R, M));
|
|
}
|
|
}
|
|
|
|
#define MXF 1000000
|
|
|
|
vector<int> connections;
|
|
|
|
vector<int> inverses; // NYI in 3D
|
|
|
|
// 2D only
|
|
vector<int> rrf; // rrf[i] equals gmul(i, rotations-1)
|
|
vector<int> rpf; // rpf[i] equals gmul(i, rotations)
|
|
|
|
matrix mpow(matrix M, int N) {
|
|
while((N&1) == 0) N >>= 1, M = mmul(M, M);
|
|
matrix res = M;
|
|
N >>= 1;
|
|
while(N) {
|
|
M = mmul(M,M); if(N&1) res = mmul(res, M);
|
|
N >>= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
int gmul(int a, int b) { return matcode[mmul(matrices[a], matrices[b])]; }
|
|
int gpow(int a, int N) { return matcode[mpow(matrices[a], N)]; }
|
|
|
|
int gorder(int a) {
|
|
int b = a;
|
|
int q = 1;
|
|
while(b) b = gmul(b, a), q++;
|
|
return q;
|
|
}
|
|
|
|
pair<int,bool> gmul(pair<int, bool> a, int b) {
|
|
return make_pair(gmul(a.first,b), a.second);
|
|
}
|
|
|
|
int order(const matrix& M);
|
|
|
|
string decodepath(int i) {
|
|
string s;
|
|
while(i) {
|
|
if(i % S7) i--, s += 'R';
|
|
else i = connections[i], s += 'P';
|
|
}
|
|
return s;
|
|
}
|
|
|
|
int orderstats();
|
|
|
|
int cs, sn, ch, sh;
|
|
|
|
int solve();
|
|
|
|
void build();
|
|
|
|
static const int MAXDIST = 120;
|
|
|
|
vector<char> disthep;
|
|
vector<char> disthex;
|
|
|
|
vector<char> distwall, distriver, distwall2, distriverleft, distriverright, distflower;
|
|
int distflower0;
|
|
|
|
vector<eItem> markers;
|
|
|
|
int getdist(pair<int,bool> a, vector<char>& dists);
|
|
int getdist(pair<int,bool> a, pair<int,bool> b);
|
|
int dijkstra(vector<char>& dists, vector<int> indist[MAXDIST]);
|
|
void analyze();
|
|
|
|
int maxdist, otherpole, circrad, wallid, wallorder, riverid;
|
|
|
|
bool easy(int i) {
|
|
return i < Prime || !(i % Prime);
|
|
}
|
|
|
|
// 11 * 25
|
|
// (1+z+z^3) * (1+z^3+z^4) ==
|
|
// 1+z+z^7 == 1+z+z^2(z^5) == 1+z+z^2(1+z^2) = 1+z+z^2+z^4
|
|
|
|
void init(int p) {
|
|
Prime = p;
|
|
if(solve()) {
|
|
printf("error: could not solve the fieldpattern\n");
|
|
exit(1);
|
|
}
|
|
build();
|
|
analyze();
|
|
}
|
|
|
|
fpattern(int p) {
|
|
force_hash = 0;
|
|
#if CAP_THREAD && MAXMDIM >= 4
|
|
dis = nullptr;
|
|
#endif
|
|
if(!p) return;
|
|
init(p);
|
|
}
|
|
|
|
void findsubpath();
|
|
|
|
vector<matrix> generate_isometries();
|
|
|
|
bool check_order(matrix M, int req);
|
|
|
|
unsigned compute_hash();
|
|
|
|
void set_field(int p, int sq);
|
|
|
|
unsigned hashv;
|
|
|
|
#if MAXMDIM >= 4
|
|
// general 4D
|
|
vector<transmatrix> fullv;
|
|
|
|
void add1(const matrix& M);
|
|
void add1(const matrix& M, const transmatrix& Full);
|
|
vector<matrix> generate_isometries3();
|
|
int solve3();
|
|
bool generate_all3();
|
|
|
|
#if CAP_THREAD
|
|
struct discovery *dis;
|
|
#endif
|
|
#endif
|
|
|
|
vector<triplet_info> find_triplets();
|
|
void generate_quotientgroup();
|
|
};
|
|
|
|
#if CAP_THREAD && MAXMDIM >= 4
|
|
struct discovery {
|
|
fpattern experiment;
|
|
std::shared_ptr<std::thread> discoverer;
|
|
std::mutex lock;
|
|
std::condition_variable cv;
|
|
bool is_suspended;
|
|
bool stop_it;
|
|
|
|
map<unsigned, tuple<int, int, matrix, matrix, matrix, int> > hashes_found;
|
|
discovery() : experiment(0) { is_suspended = false; stop_it = false; experiment.dis = this; experiment.Prime = experiment.Field = experiment.wsquare = 0; }
|
|
|
|
void activate();
|
|
void suspend();
|
|
void check_suspend();
|
|
void schedule_destruction();
|
|
void discovered();
|
|
~discovery();
|
|
};
|
|
#endif
|
|
|
|
#endif
|
|
|
|
bool fpattern::check_order(matrix M, int req) {
|
|
matrix P = M;
|
|
for(int i=1; i<req; i++) {
|
|
if(P == Id) return false;
|
|
P = mmul(P, M);
|
|
}
|
|
return P == Id;
|
|
}
|
|
|
|
vector<matrix> fpattern::generate_isometries() {
|
|
matrix T = Id;
|
|
int low = wsquare ? 1-Prime : 0;
|
|
vector<matrix> res;
|
|
|
|
auto colprod = [&] (int a, int b) {
|
|
return add(add(mul(T[0][a], T[0][b]), mul(T[1][a], T[1][b])), mul(T[2][a], T[2][b]));
|
|
};
|
|
|
|
for(T[0][0]=low; T[0][0]<Prime; T[0][0]++)
|
|
for(T[1][0]=low; T[1][0]<Prime; T[1][0]++)
|
|
for(T[2][0]=low; T[2][0]<Prime; T[2][0]++)
|
|
if(colprod(0, 0) == 1)
|
|
for(T[0][1]=low; T[0][1]<Prime; T[0][1]++)
|
|
for(T[1][1]=low; T[1][1]<Prime; T[1][1]++)
|
|
for(T[2][1]=low; T[2][1]<Prime; T[2][1]++)
|
|
if(colprod(1, 1) == 1)
|
|
if(colprod(1, 0) == 0)
|
|
for(T[0][2]=low; T[0][2]<Prime; T[0][2]++)
|
|
for(T[1][2]=low; T[1][2]<Prime; T[1][2]++)
|
|
for(T[2][2]=low; T[2][2]<Prime; T[2][2]++)
|
|
if(colprod(2, 2) == 1)
|
|
if(colprod(2, 0) == 0)
|
|
if(colprod(2, 1) == 0)
|
|
res.push_back(T);
|
|
|
|
return res;
|
|
}
|
|
|
|
#if MAXMDIM >= 4
|
|
vector<matrix> fpattern::generate_isometries3() {
|
|
|
|
matrix T = Id;
|
|
int low = wsquare ? 1-Prime : 0;
|
|
vector<matrix> res;
|
|
|
|
auto colprod = [&] (int a, int b) {
|
|
return add(add(mul(T[0][a], T[0][b]), mul(T[1][a], T[1][b])), sub(mul(T[2][a], T[2][b]), mul(T[3][a], T[3][b])));
|
|
};
|
|
|
|
auto rowcol = [&] (int a, int b) {
|
|
return add(add(mul(T[a][0], T[0][b]), mul(T[a][1], T[1][b])), add(mul(T[a][2], T[2][b]), mul(T[a][3], T[3][b])));
|
|
};
|
|
|
|
for(T[0][0]=low; T[0][0]<Prime; T[0][0]++)
|
|
for(T[1][0]=low; T[1][0]<Prime; T[1][0]++)
|
|
for(T[2][0]=low; T[2][0]<Prime; T[2][0]++)
|
|
for(T[3][0]=low; T[3][0]<Prime; T[3][0]++)
|
|
if(colprod(0, 0) == 1)
|
|
for(T[0][1]=low; T[0][1]<Prime; T[0][1]++)
|
|
for(T[1][1]=low; T[1][1]<Prime; T[1][1]++)
|
|
for(T[2][1]=low; T[2][1]<Prime; T[2][1]++)
|
|
for(T[3][1]=low; T[3][1]<Prime; T[3][1]++)
|
|
if(colprod(1, 1) == 1)
|
|
if(colprod(1, 0) == 0) {
|
|
#if CAP_THREAD && MAXMDIM >= 4
|
|
if(dis) dis->check_suspend();
|
|
if(dis && dis->stop_it) return res;
|
|
#endif
|
|
|
|
for(T[0][2]=low; T[0][2]<Prime; T[0][2]++)
|
|
for(T[0][3]=low; T[0][3]<Prime; T[0][3]++)
|
|
if(rowcol(0, 0) == 1)
|
|
if(rowcol(0, 1) == 0)
|
|
for(T[1][2]=low; T[1][2]<Prime; T[1][2]++)
|
|
for(T[1][3]=low; T[1][3]<Prime; T[1][3]++)
|
|
if(rowcol(1, 0) == 0)
|
|
if(rowcol(1, 1) == 1)
|
|
for(T[2][2]=low; T[2][2]<Prime; T[2][2]++)
|
|
for(T[3][2]=low; T[3][2]<Prime; T[3][2]++)
|
|
if(colprod(2, 2) == 1)
|
|
if(colprod(2, 0) == 0)
|
|
if(colprod(2, 1) == 0)
|
|
for(T[2][3]=low; T[2][3]<Prime; T[2][3]++)
|
|
for(T[3][3]=low; T[3][3]<Prime; T[3][3]++)
|
|
if(rowcol(2, 0) == 0)
|
|
if(rowcol(2, 1) == 0)
|
|
if(rowcol(2, 2) == 1)
|
|
// if(colprod(3, 3) == 1)
|
|
if(add(colprod(3, 3), 1) == 0)
|
|
if(colprod(3, 0) == 0)
|
|
if(colprod(3, 1) == 0)
|
|
if(colprod(3, 2) == 0)
|
|
if(rowcol(3, 3) == 1)
|
|
if(rowcol(3, 0) == 0)
|
|
if(rowcol(3, 1) == 0)
|
|
if(rowcol(3, 2) == 0)
|
|
res.push_back(T);
|
|
if(isize(res) > limitp) return res;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
void fpattern::add1(const matrix& M) {
|
|
if(!matcode.count(M)) {
|
|
int i = isize(matrices);
|
|
matcode[M] = i, matrices.push_back(M);
|
|
}
|
|
}
|
|
|
|
void fpattern::add1(const matrix& M, const transmatrix& Full) {
|
|
if(!matcode.count(M)) {
|
|
int i = isize(matrices);
|
|
matcode[M] = i, matrices.push_back(M), fullv.push_back(Full);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
map<unsigned,int> hash_found;
|
|
|
|
unsigned fpattern::compute_hash() {
|
|
unsigned hashv = 0;
|
|
int iR = matcode[R];
|
|
int iP = matcode[P];
|
|
int iX = matcode[X];
|
|
for(int i=0; i<isize(matrices); i++) {
|
|
hashv = 3 * hashv + gmul(i, iP) + 7 * gmul(i, iR);
|
|
if(MWDIM == 4) hashv += 11 * gmul(i, iX);
|
|
}
|
|
return hashv;
|
|
}
|
|
|
|
#if MAXMDIM >= 4
|
|
bool fpattern::generate_all3() {
|
|
|
|
reg3::generate_fulls();
|
|
|
|
matrices.clear();
|
|
matcode.clear();
|
|
add1(Id);
|
|
fullv = {hr::Id};
|
|
for(int i=0; i<isize(matrices); i++) {
|
|
add1(mmul(matrices[i], R), fullv[i] * cgi.full_R);
|
|
add1(mmul(matrices[i], X), fullv[i] * cgi.full_X);
|
|
}
|
|
local_group = isize(matrices);
|
|
for(int i=0; i<(int)matrices.size(); i++) {
|
|
matrix E = mmul(matrices[i], P);
|
|
if(!matcode.count(E))
|
|
for(int j=0; j<local_group; j++) add1(mmul(E, matrices[j]));
|
|
if(isize(matrices) >= limitv) { println(hlog, "limitv exceeded"); return false; }
|
|
}
|
|
hashv = compute_hash();
|
|
DEBB(DF_FIELD, ("all = ", isize(matrices), "/", local_group, " = ", isize(matrices) / local_group, " hash = ", hashv, " count = ", ++hash_found[hashv]));
|
|
|
|
if(use_quotient_fp)
|
|
generate_quotientgroup();
|
|
return true;
|
|
}
|
|
|
|
void fpattern::generate_quotientgroup() {
|
|
int MS = isize(matrices);
|
|
int best_p = 0, best_i = 0;
|
|
for(int i=0; i<MS; i++) {
|
|
int j = i, p = 1;
|
|
while(j >= local_group)
|
|
j = gmul(j, i), p++;
|
|
if(j == 0 && p > best_p) {
|
|
bool okay = true;
|
|
|
|
vector<bool> visited(MS, false);
|
|
for(int ii=0; ii<MS; ii++) if(!visited[ii]) {
|
|
int jj = ii;
|
|
for(int k=0; k<p; k++) {
|
|
if(k && jj/local_group == ii/local_group) okay = false;
|
|
visited[jj] = true;
|
|
jj = gmul(i, jj);
|
|
}
|
|
}
|
|
|
|
if(okay) {
|
|
bool chk = (MS/p) % local_group;
|
|
println(hlog, "quotient by ", i, " : ", p, " times less, ", (MS/p/local_group), " tiles, check ", chk);
|
|
best_p = p; best_i = i;
|
|
if(chk) {
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(best_p > 1) {
|
|
vector<int> new_id(MS, -1);
|
|
vector<int> orig_id(MS, -1);
|
|
vector<matrix> new_matrices;
|
|
int nv = 0;
|
|
for(int i=0; i<MS; i++) if(new_id[i] == -1) {
|
|
int prode = i;
|
|
for(int l=0; l<local_group; l++) {
|
|
new_matrices.push_back(matrices[i+l]);
|
|
}
|
|
for(int k=0; k<best_p; k++) {
|
|
for(int l=0; l<local_group; l++) {
|
|
new_id[gmul(prode, l)] = nv + l;
|
|
}
|
|
prode = gmul(best_i, prode);
|
|
}
|
|
nv += local_group;
|
|
}
|
|
println(hlog, "got nv = ", nv, " / ", local_group);
|
|
|
|
for(int i=0; i<MS; i++)
|
|
matcode[matrices[i]] = new_id[i];
|
|
matrices = std::move(new_matrices);
|
|
println(hlog, "size matrices = ", isize(matrices), " size matcode = ", isize(matcode));
|
|
println(hlog, tie(P, R, X));
|
|
|
|
/*println(hlog, "TRY AGAIN");
|
|
generate_quotientgroup();
|
|
exit(1);*/
|
|
}
|
|
|
|
}
|
|
|
|
int fpattern::solve3() {
|
|
reg3::construct_relations();
|
|
|
|
DEBB(DF_FIELD, ("generating isometries for ", Field));
|
|
|
|
auto iso3 = generate_isometries();
|
|
auto iso4 = generate_isometries3();
|
|
|
|
int cmb = 0;
|
|
|
|
int N = isize(cgi.rels);
|
|
|
|
vector<int> fails(N);
|
|
|
|
vector<matrix> possible_P, possible_X, possible_R;
|
|
|
|
for(auto& M: iso3) {
|
|
if(check_order(M, 2))
|
|
possible_X.push_back(M);
|
|
if(check_order(M, cgi.r_order))
|
|
possible_R.push_back(M);
|
|
}
|
|
for(auto& M: iso4)
|
|
if(check_order(M, 2))
|
|
possible_P.push_back(M);
|
|
|
|
DEBB(DF_FIELD, ("field = ", Field, " #P = ", isize(possible_P), " #X = ", isize(possible_X), " #R = ", isize(possible_R), " r_order = ", cgi.r_order, " xp_order = ", cgi.xp_order));
|
|
|
|
for(auto& xX: possible_X)
|
|
for(auto& xP: possible_P) if(check_order(mmul(xP, xX), cgi.xp_order))
|
|
for(auto& xR: possible_R) if(check_order(mmul(xR, xX), cgi.rx_order)) { // if(xR[0][0] == 1 && xR[0][1] == 0)
|
|
#if CAP_THREAD && MAXMDIM >+ 4
|
|
if(dis) dis->check_suspend();
|
|
if(dis && dis->stop_it) return 0;
|
|
#endif
|
|
auto by = [&] (char ch) -> matrix& { return ch == 'X' ? xX : ch == 'R' ? xR : xP; };
|
|
for(int i=0; i<N; i++) {
|
|
matrix ml = Id;
|
|
for(char c: cgi.rels[i].first) { ml = mmul(ml, by(c)); if(ml == Id) { fails[i]++; goto bad; }}
|
|
matrix mr = Id;
|
|
for(char c: cgi.rels[i].second) { mr = mmul(mr, by(c)); if(mr == Id) { fails[i]++; goto bad; }}
|
|
if(ml != mr) { fails[i]++; goto bad;}
|
|
}
|
|
P = xP; R = xR; X = xX;
|
|
if(!generate_all3()) continue;
|
|
#if CAP_THREAD && MAXMDIM >= 4
|
|
if(dis) { dis->discovered(); continue; }
|
|
#endif
|
|
if(force_hash && hashv != force_hash) continue;
|
|
cmb++;
|
|
goto ok;
|
|
bad: ;
|
|
}
|
|
|
|
ok:
|
|
|
|
DEBB(DF_FIELD, ("cmb = ", cmb, " for field = ", Field));
|
|
for(int i=0; i<N; i++) if(fails[i]) DEBB(DF_FIELD, (cgi.rels[i], " fails = ", fails[i]));
|
|
|
|
return cmb;
|
|
}
|
|
#endif
|
|
|
|
void fpattern::set_field(int p, int sq) {
|
|
Prime = p;
|
|
Field = sq ? Prime*Prime : Prime;
|
|
wsquare = sq;
|
|
for(int a=0; a<MWDIM; a++) for(int b=0; b<MWDIM; b++) Id[a][b] = a==b?1:0;
|
|
}
|
|
|
|
int fpattern::solve() {
|
|
|
|
for(int a=0; a<MWDIM; a++) for(int b=0; b<MWDIM; b++) Id[a][b] = a==b?1:0;
|
|
|
|
if(!isprime(Prime)) {
|
|
return 1;
|
|
}
|
|
|
|
rotations = WDIM == 2 ? S7 : 4;
|
|
local_group = WDIM == 2 ? S7 : 24;
|
|
|
|
for(dual=0; dual<3; dual++) {
|
|
for(int pw=1; pw<3; pw++) {
|
|
if(pw>3) break;
|
|
Field = pw==1? Prime : Prime*Prime;
|
|
|
|
if(pw == 2) {
|
|
for(wsquare=1; wsquare<Prime; wsquare++) {
|
|
int roots = 0;
|
|
for(int a=0; a<Prime; a++) if((a*a)%Prime == wsquare) roots++;
|
|
if(!roots) break;
|
|
}
|
|
} else wsquare = 0;
|
|
|
|
#if MAXMDIM >= 4
|
|
if(WDIM == 3) {
|
|
if(dual == 0 && (Prime <= limitsq || pw == 1)) {
|
|
int s = solve3();
|
|
if(s) return 0;
|
|
}
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
if(dual == 2) {
|
|
if(Field <= 10) {
|
|
vector<matrix> all_isometries = generate_isometries();
|
|
for(auto& X: all_isometries)
|
|
if(check_order(X, rotations))
|
|
for(auto& Y: all_isometries)
|
|
if(check_order(Y, 2) && check_order(mmul(X, Y), S3)) {
|
|
R = X; P = Y;
|
|
return 0;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
#ifdef EASY
|
|
std::vector<int> sqrts(Prime, 0);
|
|
for(int k=1-Prime; k<Prime; k++) sqrts[sqr(k)] = k;
|
|
int fmax = Prime;
|
|
#else
|
|
std::vector<int> sqrts(Field);
|
|
for(int k=0; k<Field; k++) sqrts[sqr(k)] = k;
|
|
int fmax = Field;
|
|
#endif
|
|
|
|
R = P = X = Id;
|
|
X[1][1] = 0; X[2][2] = 0;
|
|
X[1][2] = 1; X[2][1] = Prime-1;
|
|
|
|
for(cs=0; cs<fmax; cs++) {
|
|
int sb = sub(1, sqr(cs));
|
|
|
|
sn = sqrts[sb];
|
|
|
|
R[0][0] = cs; R[1][1] = cs;
|
|
R[0][1] = sn; R[1][0] = sub(0, sn);
|
|
|
|
if(!check_order(R, dual ? S3 : rotations)) continue;
|
|
|
|
if(R[0][0] == 1) continue;
|
|
|
|
for(ch=2; ch<fmax; ch++) {
|
|
int chx = sub(mul(ch,ch), 1);
|
|
|
|
sh = sqrts[chx];
|
|
P[0][0] = sub(0, ch);
|
|
P[0][WDIM] = sub(0, sh);
|
|
P[1][1] = Prime-1;
|
|
P[WDIM][0] = sh;
|
|
P[WDIM][WDIM] = ch;
|
|
|
|
if(!check_order(mmul(P, R), dual ? rotations : S3)) continue;
|
|
|
|
if(dual) R = mmul(P, R);
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 2;
|
|
}
|
|
|
|
int fpattern::order(const matrix& M) {
|
|
int cnt = 1;
|
|
matrix Po = M;
|
|
while(Po != Id) Po = mmul(Po, M), cnt++;
|
|
return cnt;
|
|
}
|
|
|
|
EX int triplet_id = 0;
|
|
|
|
vector<triplet_info> fpattern::find_triplets() {
|
|
int N = isize(matrices);
|
|
auto compute_transcript = [&] (int i, int j) {
|
|
|
|
vector<int> indices(N, -1);
|
|
vector<int> transcript;
|
|
vector<int> q;
|
|
|
|
int qty = 0;
|
|
|
|
auto visit = [&] (int id) {
|
|
transcript.push_back(indices[id]);
|
|
if(indices[id] == -1) {
|
|
indices[id] = isize(q);
|
|
q.push_back(id);
|
|
qty++;
|
|
}
|
|
};
|
|
|
|
visit(0);
|
|
for(int x=0; x<isize(q); x++) {
|
|
int at = q[x];
|
|
visit(gmul(at, i));
|
|
visit(gmul(at, j));
|
|
}
|
|
|
|
transcript.push_back(qty);
|
|
|
|
return transcript;
|
|
};
|
|
|
|
DEBB(DF_FIELD, ("looking for alternate solutions"));
|
|
auto orig_transcript = compute_transcript(1, S7);
|
|
|
|
set<vector<int>> transcripts_seen;
|
|
transcripts_seen.insert(orig_transcript);
|
|
|
|
set<int> conjugacy_classes;
|
|
vector<int> cc;
|
|
|
|
for(int i=0; i<N; i++) conjugacy_classes.insert(i);
|
|
for(int i=0; i<N; i++) {
|
|
if(!conjugacy_classes.count(i)) continue;
|
|
vector<int> removals;
|
|
for(int j=0; j<N; j++) {
|
|
int c = gmul(inverses[j], gmul(i, j));
|
|
if(c > i) removals.push_back(c);
|
|
}
|
|
for(auto r: removals) conjugacy_classes.erase(r);
|
|
cc.push_back(i);
|
|
}
|
|
|
|
DEBB(DF_FIELD, ("conjugacy_classes = ", cc));
|
|
|
|
vector<triplet_info> tinf;
|
|
triplet_info ti;
|
|
ti.i = 1; ti.j = S7; ti.size = orig_transcript.back();
|
|
tinf.push_back(ti);
|
|
|
|
for(int i: conjugacy_classes) if(gorder(i) == S7) {
|
|
DEBB(DF_FIELD, ("checking i=", i));
|
|
for(int j=1; j<N; j++) if(gorder(j) == 2 && gorder(gmul(i, j)) == S3) {
|
|
auto t = compute_transcript(i, j);
|
|
if(!transcripts_seen.count(t)) {
|
|
transcripts_seen.insert(t);
|
|
triplet_info ti;
|
|
ti.i = i; ti.j = j; ti.size = t.back();
|
|
tinf.push_back(ti);
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBB(DF_FIELD, ("solutions found = ", isize(transcripts_seen)));
|
|
return tinf;
|
|
}
|
|
|
|
void fpattern::build() {
|
|
|
|
if(WDIM == 3) return;
|
|
|
|
for(int i=0; i<isize(qpaths); i++) {
|
|
matrix M = strtomatrix(qpaths[i]);
|
|
qcoords.push_back(M);
|
|
printf("Solved %s as matrix of order %d\n", qpaths[i].c_str(), order(M));
|
|
}
|
|
|
|
matcode.clear(); matrices.clear();
|
|
add(Id);
|
|
if(isize(matrices) != local_group) { printf("Error: rotation crash #1 (%d)\n", isize(matrices)); exit(1); }
|
|
|
|
connections.clear();
|
|
|
|
for(int i=0; i<(int)matrices.size(); i++) {
|
|
|
|
matrix M = matrices[i];
|
|
|
|
matrix PM = mmul(P, M);
|
|
|
|
add(PM);
|
|
|
|
if(isize(matrices) % local_group) { printf("Error: rotation crash (%d)\n", isize(matrices)); exit(1); }
|
|
|
|
if(!matcode.count(PM)) { printf("Error: not marked\n"); exit(1); }
|
|
|
|
connections.push_back(matcode[PM]);
|
|
}
|
|
|
|
DEBB(DF_FIELD, ("Computing inverses...\n"));
|
|
int N = isize(matrices);
|
|
|
|
DEBB(DF_FIELD, ("Number of heptagons: %d\n", N));
|
|
|
|
if(WDIM == 3) return;
|
|
|
|
rrf.resize(N); rrf[0] = S7-1;
|
|
for(int i=0; i<N; i++)
|
|
rrf[btspin(i,1)] = btspin(rrf[i], 1),
|
|
rrf[connections[i]] = connections[rrf[i]];
|
|
|
|
rpf.resize(N); rpf[0] = S7;
|
|
for(int i=0; i<N; i++)
|
|
rpf[btspin(i,1)] = btspin(rpf[i], 1),
|
|
rpf[connections[i]] = connections[rpf[i]];
|
|
|
|
inverses.resize(N);
|
|
inverses[0] = 0;
|
|
for(int i=0; i<N; i++) // inverses[i] = gpow(i, N-1);
|
|
inverses[btspin(i,1)] = rrf[inverses[i]], // btspin(inverses[i],6),
|
|
inverses[connections[i]] = rpf[inverses[i]];
|
|
|
|
int errs = 0;
|
|
for(int i=0; i<N; i++) if(gmul(i, inverses[i])) errs++;
|
|
if(errs) printf("errs = %d\n", errs);
|
|
|
|
if(0) for(int i=0; i<isize(matrices); i++) {
|
|
printf("%5d/%4d", connections[i], inverses[i]);
|
|
if(i%S7 == S7-1) printf("\n");
|
|
}
|
|
|
|
DEBB(DF_FIELD, ("triplet_id = ", triplet_id, " N = ", N));
|
|
if(triplet_id) {
|
|
auto triplets = find_triplets();
|
|
if(triplet_id >= 0 && triplet_id < isize(triplets)) {
|
|
auto ti = triplets[triplet_id];
|
|
R = matrices[ti.i];
|
|
P = matrices[ti.j];
|
|
dynamicval<int> t(triplet_id, 0);
|
|
build();
|
|
DEBB(DF_FIELD, ("triplet built successfully"));
|
|
return;
|
|
}
|
|
}
|
|
|
|
DEBB(DF_FIELD, ("Built.\n"));
|
|
}
|
|
|
|
int fpattern::getdist(pair<int,bool> a, vector<char>& dists) {
|
|
if(!a.second) return dists[a.first];
|
|
int m = MAXDIST;
|
|
int ma = dists[a.first];
|
|
int mb = dists[connections[btspin(a.first, 3)]];
|
|
int mc = dists[connections[btspin(a.first, 4)]];
|
|
m = min(m, 1 + ma);
|
|
m = min(m, 1 + mb);
|
|
m = min(m, 1 + mc);
|
|
if(m <= 2 && ma+mb+mc <= m*3-2) return m-1; // special case
|
|
m = min(m, 2 + dists[connections[btspin(a.first, 2)]]);
|
|
m = min(m, 2 + dists[connections[btspin(a.first, 5)]]);
|
|
m = min(m, 2 + dists[connections[btspin(connections[btspin(a.first, 3)], 5)]]);
|
|
return m;
|
|
}
|
|
|
|
int fpattern::getdist(pair<int,bool> a, pair<int,bool> b) {
|
|
if(a.first == b.first) return a.second == b.second ? 0 : 1;
|
|
if(b.first) a.first = gmul(a.first, inverses[b.first]), b.first = 0;
|
|
return getdist(a, b.second ? disthex : disthep);
|
|
}
|
|
|
|
int fpattern::dijkstra(vector<char>& dists, vector<int> indist[MAXDIST]) {
|
|
int N = isize(matrices);
|
|
dists.resize(N);
|
|
for(int i=0; i<N; i++) dists[i] = MAXDIST-1;
|
|
int maxd = 0;
|
|
for(int i=0; i<MAXDIST; i++) while(!indist[i].empty()) {
|
|
int at = indist[i].back();
|
|
indist[i].pop_back();
|
|
if(dists[at] <= i) continue;
|
|
maxd = i;
|
|
dists[at] = i;
|
|
int lg = MWDIM == 4 ? local_group : S7;
|
|
for(int q=0; q<lg; q++) {
|
|
dists[at] = i;
|
|
if(WDIM == 3)
|
|
indist[i+1].push_back(gmul(at, local_group));
|
|
else if(PURE) // todo-variation: PURE here?
|
|
indist[i+1].push_back(connections[at]);
|
|
else {
|
|
indist[i+2].push_back(connections[at]);
|
|
indist[i+3].push_back(connections[btspin(connections[at], 2)]);
|
|
}
|
|
at = groupspin(at, 1, lg);
|
|
}
|
|
}
|
|
return maxd;
|
|
}
|
|
|
|
void fpattern::analyze() {
|
|
|
|
if(MWDIM == 4) {
|
|
/* we need to compute inverses */
|
|
int N = isize(matrices);
|
|
inverses.resize(N);
|
|
for(int i=0; i<N; i++) {
|
|
matrix M = matrices[i];
|
|
matrix M2 = mpow(M, N-1);
|
|
inverses[i] = matcode[M2];
|
|
}
|
|
}
|
|
|
|
DEBB(DF_FIELD, ("variation = %d\n", int(variation)));
|
|
int N = isize(connections);
|
|
|
|
markers.resize(N);
|
|
|
|
vector<int> indist[MAXDIST];
|
|
|
|
indist[0].push_back(0);
|
|
int md0 = dijkstra(disthep, indist);
|
|
|
|
if(MWDIM == 4) return;
|
|
|
|
indist[1].push_back(0);
|
|
indist[1].push_back(connections[3]);
|
|
indist[1].push_back(connections[4]);
|
|
indist[2].push_back(connections[btspin(connections[3], 5)]);
|
|
indist[2].push_back(connections[2]);
|
|
indist[2].push_back(connections[5]);
|
|
int md1 = dijkstra(disthex, indist);
|
|
|
|
maxdist = max(md0, md1);
|
|
|
|
otherpole = 0;
|
|
|
|
for(int i=0; i<N; i+=S7) {
|
|
int mp = 0;
|
|
for(int q=0; q<S7; q++) if(disthep[connections[i+q]] < disthep[i]) mp++;
|
|
if(mp == S7) {
|
|
bool eq = true;
|
|
for(int q=0; q<S7; q++) if(disthep[connections[i+q]] != disthep[connections[i]]) eq = false;
|
|
if(eq) {
|
|
// for(int q=0; q<S7; q++) printf("%3d", disthep[connections[i+q]]);
|
|
// printf(" (%2d) at %d\n", disthep[i], i);
|
|
if(disthep[i] > disthep[otherpole]) otherpole = i;
|
|
// for(int r=0; r<S7; r++) {
|
|
// printf("Matrix: "); for(int a=0; a<3; a++) for(int b=0; b<3; b++)
|
|
// printf("%4d", matrices[i+r][a][b]); printf("\n");
|
|
// }
|
|
}
|
|
}
|
|
}
|
|
|
|
circrad = 99;
|
|
|
|
for(int i=0; i<N; i++) for(int u=2; u<4; u++) if(disthep[i] < circrad)
|
|
if(disthep[connections[i]] < disthep[i] && disthep[connections[btspin(i,u)]] < disthep[i])
|
|
circrad = disthep[i];
|
|
|
|
DEBB(DF_FIELD, ("maxdist = %d otherpole = %d circrad = %d\n", maxdist, otherpole, circrad));
|
|
|
|
matrix PRRR = strtomatrix("PRRR");
|
|
matrix PRRPRRRRR = strtomatrix("PRRPRRRRR");
|
|
matrix PRRRP = strtomatrix("PRRRP");
|
|
matrix PRP = strtomatrix("PRP");
|
|
matrix PR = strtomatrix("PR");
|
|
matrix Wall = strtomatrix("RRRPRRRRRPRRRP");
|
|
|
|
wallorder = order(Wall);
|
|
wallid = matcode[Wall];
|
|
|
|
DEBB(DF_FIELD, ("wall order = %d\n", wallorder));
|
|
|
|
#define SETDIST(X, d, it) {int c = matcode[X]; indist[d].push_back(c); if(it == itNone) ; else if(markers[c] && markers[c] != it) markers[c] = itBuggy; else markers[c] = it; }
|
|
|
|
matrix W = Id;
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 0, itAmethyst)
|
|
W = mmul(W, Wall);
|
|
}
|
|
W = P;
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 0, itEmerald)
|
|
W = mmul(W, Wall);
|
|
}
|
|
|
|
int walldist = dijkstra(distwall, indist);
|
|
DEBB(DF_FIELD, ("wall dist = %d\n", walldist));
|
|
|
|
|
|
W = strtomatrix("RRRRPR");
|
|
for(int j=0; j<wallorder; j++) {
|
|
W = mmul(W, Wall);
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 0, itNone)
|
|
SETDIST(mmul(PRRR, W), 1, itNone)
|
|
W = mmul(Wall, W);
|
|
}
|
|
}
|
|
dijkstra(distwall2, indist);
|
|
|
|
int rpushid = matcode[PRRPRRRRR];
|
|
riverid = 0;
|
|
|
|
for(int i=0; i<N; i++) {
|
|
int j = i;
|
|
int ipush = gmul(rpushid, i);
|
|
for(int k=0; k<wallorder; k++) {
|
|
if(ipush == j) {
|
|
DEBB(DF_FIELD, ("River found at %d:%d\n", i, k));
|
|
riverid = i;
|
|
goto riveridfound;
|
|
}
|
|
j = gmul(j, wallid);
|
|
}
|
|
}
|
|
|
|
riveridfound: ;
|
|
|
|
W = strtomatrix("RRRRPR");
|
|
for(int j=0; j<wallorder; j++) {
|
|
W = mmul(W, Wall);
|
|
for(int i=0; i<wallorder; i++) {
|
|
if(i == 7) SETDIST(W, 0, itCoast)
|
|
if(i == 3) SETDIST(mmul(PRRRP, W), 0, itWhirlpool)
|
|
W = mmul(Wall, W);
|
|
}
|
|
}
|
|
dijkstra(PURE ? distriver : distflower, indist);
|
|
|
|
W = matrices[riverid];
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 0, itStatue)
|
|
W = mmul(W, Wall);
|
|
}
|
|
W = mmul(P, W);
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 0, itSapphire)
|
|
W = mmul(W, Wall);
|
|
}
|
|
W = mmul(PRP, matrices[riverid]);
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 1, itShard)
|
|
W = mmul(W, Wall);
|
|
}
|
|
W = mmul(PR, matrices[riverid]);
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 1, itGold)
|
|
W = mmul(W, Wall);
|
|
}
|
|
int riverdist = dijkstra(PURE ? distflower : distriver, indist);
|
|
DEBB(DF_FIELD, ("river dist = %d\n", riverdist));
|
|
|
|
for(int i=0; i<isize(matrices); i++)
|
|
if(distflower[i] == 0) {
|
|
distflower0 = inverses[i]+1;
|
|
break;
|
|
}
|
|
|
|
if(!PURE) {
|
|
W = matrices[riverid];
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 0, itStatue)
|
|
W = mmul(W, Wall);
|
|
}
|
|
W = mmul(PR, matrices[riverid]);
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 0, itGold)
|
|
W = mmul(W, Wall);
|
|
}
|
|
W = mmul(P, matrices[riverid]);
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 1, itSapphire)
|
|
W = mmul(W, Wall);
|
|
}
|
|
dijkstra(distriverleft, indist);
|
|
W = mmul(PRP, matrices[riverid]);
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 0, itShard)
|
|
W = mmul(W, Wall);
|
|
}
|
|
W = mmul(P, matrices[riverid]);
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 0, itSapphire)
|
|
W = mmul(W, Wall);
|
|
}
|
|
W = matrices[riverid];
|
|
for(int i=0; i<wallorder; i++) {
|
|
SETDIST(W, 1, itStatue)
|
|
W = mmul(W, Wall);
|
|
}
|
|
dijkstra(distriverright, indist);
|
|
}
|
|
else {
|
|
W = strtomatrix("RRRRPR");
|
|
for(int j=0; j<wallorder; j++) {
|
|
W = mmul(W, Wall);
|
|
for(int i=0; i<wallorder; i++) {
|
|
if(i == 7) SETDIST(W, 0, itCoast)
|
|
W = mmul(Wall, W);
|
|
}
|
|
}
|
|
dijkstra(distriverleft, indist);
|
|
W = strtomatrix("RRRRPR");
|
|
for(int j=0; j<wallorder; j++) {
|
|
W = mmul(W, Wall);
|
|
for(int i=0; i<wallorder; i++) {
|
|
if(i == 3) SETDIST(mmul(PRRRP, W), 0, itWhirlpool)
|
|
W = mmul(Wall, W);
|
|
}
|
|
}
|
|
dijkstra(distriverright, indist);
|
|
}
|
|
|
|
DEBB(DF_FIELD, ("wall-river distance = %d\n", distwall[riverid]));
|
|
DEBB(DF_FIELD, ("river-wall distance = %d\n", distriver[0]));
|
|
}
|
|
|
|
int fpattern::orderstats() {
|
|
int N = isize(matrices);
|
|
|
|
#define MAXORD 10000
|
|
int ordcount[MAXORD];
|
|
int ordsample[MAXORD];
|
|
|
|
for(int i=0; i<MAXORD; i++) ordcount[i] = 0;
|
|
|
|
for(int i=0; i<N; i++) {
|
|
int cnt = order(matrices[i]);
|
|
|
|
if(cnt < MAXORD) {
|
|
if(!ordcount[cnt]) ordsample[cnt] = i;
|
|
ordcount[cnt]++;
|
|
}
|
|
}
|
|
|
|
printf("Listing:\n");
|
|
for(int i=0; i<MAXORD; i++) if(ordcount[i])
|
|
printf("Found %4d matrices of order %3d: %s\n", ordcount[i], i, decodepath(ordsample[i]).c_str());
|
|
|
|
return ordsample[Prime];
|
|
}
|
|
|
|
void fpattern::findsubpath() {
|
|
int N = isize(matrices);
|
|
for(int i=1; i<N; i++)
|
|
if(gpow(i, Prime) == 0) {
|
|
subpathid = i;
|
|
subpathorder = Prime;
|
|
DEBB(DF_FIELD, ("Subpath found: %s\n", decodepath(i).c_str()));
|
|
return;
|
|
}
|
|
}
|
|
|
|
fpattern *fp43;
|
|
|
|
EX void info() {
|
|
fpattern fp(0);
|
|
int cases = 0, hard = 0;
|
|
for(int p=0; p<500; p++) {
|
|
fp.Prime = p;
|
|
if(fp.solve() == 0) {
|
|
printf("%4d: wsquare=%d cs=%d sn=%d ch=%d sh=%d dual=%d\n",
|
|
p, fp.wsquare, fp.cs, fp.sn, fp.ch, fp.sh, fp.dual);
|
|
cases++;
|
|
if(!fp.easy(fp.cs) || !fp.easy(fp.sn) || !fp.easy(fp.ch) || !fp.easy(fp.sn))
|
|
hard++;
|
|
#ifndef EASY
|
|
neasy = 0;
|
|
#endif
|
|
if(WDIM == 3) continue;
|
|
fp.build();
|
|
#ifndef EASY
|
|
printf("Not easy: %d\n", neasy);
|
|
#endif
|
|
int N = isize(fp.matrices);
|
|
int left = N / fp.Prime;
|
|
printf("Prime decomposition: %d = %d", N, fp.Prime);
|
|
for(int p=2; p<=left; p++) while(left%p == 0) printf("*%d", p), left /= p;
|
|
printf("\n");
|
|
printf("Order of RRP is: %d\n", fp.order(fp.strtomatrix("RRP")));
|
|
printf("Order of RRRP is: %d\n", fp.order(fp.strtomatrix("RRRP")));
|
|
printf("Order of RRRPRRRRRPRRRP is: %d\n", fp.order(fp.strtomatrix("RRRPRRRRRPRRRP")));
|
|
}
|
|
}
|
|
printf("cases found = %d (%d hard)\n", cases, hard);
|
|
}
|
|
|
|
EX fpattern current_quotient_field = fpattern(0);
|
|
EX fpattern fp_invalid = fpattern(0);
|
|
EX bool quotient_field_changed;
|
|
|
|
// these strings contain \x00
|
|
#define STR(x) string(x, sizeof(x))
|
|
|
|
EX struct fpattern& getcurrfp() {
|
|
if(fake::in()) return *FPIU(&getcurrfp());
|
|
if(geometry == gFieldQuotient && quotient_field_changed)
|
|
return current_quotient_field;
|
|
if(geometry == gSpace535) {
|
|
// 120 cells, hash = 9EF7A9C4
|
|
static fpattern fp(5);
|
|
return fp;
|
|
}
|
|
if(geometry == gSpace534) {
|
|
// 260 cells, hash = 72414D0C (not 0C62E214)
|
|
static fpattern fp(0);
|
|
if(fp.Prime) return fp;
|
|
// fp.Prime = 5; fp.force_hash = 0x72414D0C; fp.solve();
|
|
|
|
if(use_rule_fp) {
|
|
fp.Prime = 11; fp.force_hash = 0x5FC4CFF0; fp.solve();
|
|
}
|
|
else {
|
|
shstream ins(STR("\x05\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\xfc\xff\xff\xff\x01\x00\x00\x00\x04\x00\x00\x00\xfc\xff\xff\xff\x04\x00\x00\x00\xfe\xff\xff\xff\x00\x00\x00\x00\x01\x00\x00\x00\xfe\xff\xff\xff\x04\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\xff\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xfc\xff\xff\xff\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xfc\xff\xff\xff\x02\x00\x00\x00\x00\x00\x00\x00\xfc\xff\xff\xff\x01\x00\x00\x00\xfd\xff\xff\xff\x00\x00\x00\x00\x02\x00\x00\x00\xfd\xff\xff\xff\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"));
|
|
hread_fpattern(ins, fp);
|
|
}
|
|
return fp;
|
|
}
|
|
if(geometry == gSpace435) {
|
|
// 650 cells, hash = EB201050
|
|
static fpattern fp(0);
|
|
if(fp.Prime) return fp;
|
|
// fp.Prime = 5; fp.force_hash = 0xEB201050; fp.solve();
|
|
// what is 0x72414D0C??
|
|
|
|
if(use_rule_fp) {
|
|
fp.Prime = 11; fp.force_hash = 0x65CE0C00; fp.solve();
|
|
}
|
|
else {
|
|
shstream ins(STR("\x05\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\xfc\xff\xff\xff\xff\xff\xff\xff\xfe\xff\xff\xff\xfc\xff\xff\xff\x04\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\xff\xff\xff\xff\x02\x00\x00\x00\x03\x00\x00\x00\x03\x00\x00\x00\xfd\xff\xff\xff\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\xfc\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xff\xff\xfd\xff\xff\xff\x00\x00\x00\x00\xfd\xff\xff\xff\x02\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xff\xff\x03\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"));
|
|
hread_fpattern(ins, fp);
|
|
}
|
|
return fp;
|
|
}
|
|
if(geometry == gSpace436) {
|
|
static fpattern fp(0);
|
|
// FF82A214
|
|
shstream ins(STR("\x05\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\xfd\xff\xff\xff\x00\x00\x00\x00\xfe\xff\xff\xff\xfd\xff\xff\xff\x01\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x04\x00\x00\x00\xfd\xff\xff\xff\x02\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\xfc\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xff\xff\xfd\xff\xff\xff\x00\x00\x00\x00\xfd\xff\xff\xff\x02\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xff\xff\x03\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"));
|
|
hread_fpattern(ins, fp);
|
|
return fp;
|
|
}
|
|
if(geometry == gSpace336) {
|
|
// 672 cells in E3F6B7BC
|
|
// 672 cells in 885F1184
|
|
// 9408 cells in C4089F34
|
|
static fpattern fp(0);
|
|
if(fp.Prime) return fp;
|
|
// fp.Prime = 7; fp.force_hash = 0xE3F6B7BCu; fp.solve();
|
|
shstream ins(STR("\x07\x00\x00\x00\x03\x00\x00\x00\xfa\xff\xff\xff\x02\x00\x00\x00\x03\x00\x00\x00\x06\x00\x00\x00\x02\x00\x00\x00\xfe\xff\xff\xff\xfb\xff\xff\xff\xfc\xff\xff\xff\x03\x00\x00\x00\xfb\xff\xff\xff\xfd\xff\xff\xff\xfb\xff\xff\xff\x01\x00\x00\x00\xfd\xff\xff\xff\xfe\xff\xff\xff\xfd\xff\xff\xff\x03\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfc\xff\xff\xff\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xfa\xff\xff\xff\xfb\xff\xff\xff\x00\x00\x00\x00\xfa\xff\xff\xff\x02\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\xfb\xff\xff\xff\x06\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"));
|
|
hread_fpattern(ins, fp);
|
|
return fp;
|
|
}
|
|
if(geometry == gSpace344) {
|
|
// 600 cells in 558C8ED0
|
|
// 2400 cells in AF042EA8
|
|
// 2600 cells in D26948E0
|
|
// 2600 cells in EC29DCEC
|
|
static fpattern fp(0);
|
|
if(fp.Prime) return fp;
|
|
fp.Prime = 5; fp.force_hash = 0x558C8ED0u; fp.solve();
|
|
return fp;
|
|
// 4900 cells in CDCC7860 (7)
|
|
}
|
|
if(geometry == gSpace536) {
|
|
static fpattern fp(0);
|
|
if(fp.Prime) return fp;
|
|
// 130 cells in 3BA5C5A4
|
|
// 260 cells in 9FDE7B38
|
|
fp.Prime = 5; fp.force_hash = 0x9FDE7B38u; fp.solve();
|
|
return fp;
|
|
}
|
|
if(geometry == gSpace345) {
|
|
static fpattern fp(0);
|
|
if(fp.Prime) return fp;
|
|
// 30 cells in 02ADCAA4 (3^2)
|
|
// 650 cells in 7EFE8D98 (5^2)
|
|
// 55 cells in F447F75C (11)
|
|
fp.Prime = 11; fp.force_hash = 0xF447F75Cu; fp.solve();
|
|
return fp;
|
|
}
|
|
if(geometry == gSpace353) {
|
|
static fpattern fp(0);
|
|
if(fp.Prime) return fp;
|
|
// 130 cells in 1566EBAC (5^2)
|
|
// 11 cells in 5A2E2B88 (11)
|
|
fp.Prime = 11; fp.force_hash = 0x5A2E2B88u; fp.solve();
|
|
return fp;
|
|
}
|
|
if(geometry == gSpace354) {
|
|
static fpattern fp(0);
|
|
if(fp.Prime) return fp;
|
|
fp.Prime = 11; fp.force_hash = 0x363D8DA4u; fp.solve();
|
|
return fp;
|
|
}
|
|
if(!hyperbolic) return fp_invalid;
|
|
if(WDIM == 3 && !quotient && !hybri && !bt::in()) {
|
|
static fpattern fp(0);
|
|
if(fp.Prime) return fp;
|
|
for(int p=2; p<20; p++) { fp.Prime = p; if(!fp.solve()) break; }
|
|
DEBB(DF_FIELD, ("set prime = ", fp.Prime));
|
|
return fp;
|
|
}
|
|
if(S7 == 8 && S3 == 3 && !bt::in()) {
|
|
static fpattern fp(17);
|
|
return fp;
|
|
}
|
|
if(S7 == 5 && S3 == 4 && !bt::in()) {
|
|
static fpattern fp(11);
|
|
return fp;
|
|
}
|
|
if(S7 == 6 && S3 == 4 && !bt::in()) {
|
|
static fpattern fp(13);
|
|
return fp;
|
|
}
|
|
if(S7 == 7 && S3 == 4 && !bt::in()) {
|
|
static fpattern fp(13);
|
|
return fp;
|
|
}
|
|
if(sphere || euclid) return fp_invalid;
|
|
if(S7 == 7 && S3 == 3 && !bt::in()) {
|
|
if(!fp43) fp43 = new fpattern(43);
|
|
return *fp43;
|
|
}
|
|
return fp_invalid;
|
|
}
|
|
|
|
#undef STR
|
|
|
|
// todo undefined behavior
|
|
EX int subpathid = -1;
|
|
EX int subpathorder = -1;
|
|
|
|
// extra information for field quotient extra configuration
|
|
|
|
EX vector<fgeomextra> fgeomextras = {
|
|
fgeomextra(gNormal, 4),
|
|
fgeomextra(gOctagon, 1),
|
|
fgeomextra(g45, 1),
|
|
fgeomextra(g46, 5),
|
|
fgeomextra(g47, 1),
|
|
fgeomextra(gSchmutzM3, 0),
|
|
/* fgeomextra(gSphere, 0),
|
|
fgeomextra(gSmallSphere, 0), -> does not find the prime
|
|
fgeomextra(gEuclid, 0),
|
|
fgeomextra(gEuclidSquare, 0),
|
|
fgeomextra(gTinySphere, 0) */
|
|
};
|
|
|
|
EX int current_extra = 0;
|
|
|
|
EX void nextPrime(fgeomextra& ex) {
|
|
dynamicval<eGeometry> g(geometry, ex.base);
|
|
dynamicval<int> t(triplet_id, 0);
|
|
int nextprime;
|
|
if(isize(ex.primes))
|
|
nextprime = ex.primes.back().p + 1;
|
|
else
|
|
nextprime = 2;
|
|
while(true) {
|
|
fieldpattern::fpattern fp(0);
|
|
fp.Prime = nextprime;
|
|
if(fp.solve() == 0) {
|
|
fp.build();
|
|
int cells = isize(fp.matrices) / S7;
|
|
ex.primes.emplace_back(primeinfo{nextprime, cells, (bool) fp.wsquare});
|
|
ex.dualval.emplace_back(fp.dual);
|
|
break;
|
|
}
|
|
nextprime++;
|
|
}
|
|
}
|
|
|
|
EX void nextPrimes(fgeomextra& ex) {
|
|
while(isize(ex.primes) < 6)
|
|
nextPrime(ex);
|
|
}
|
|
|
|
EX void enableFieldChange() {
|
|
fgeomextra& gxcur = fgeomextras[current_extra];
|
|
fieldpattern::quotient_field_changed = true;
|
|
nextPrimes(gxcur);
|
|
dynamicval<eGeometry> g(geometry, gFieldQuotient);
|
|
ginf[geometry].g = ginf[gxcur.base].g;
|
|
ginf[geometry].sides = ginf[gxcur.base].sides;
|
|
ginf[geometry].vertex = ginf[gxcur.base].vertex;
|
|
ginf[geometry].distlimit = ginf[gxcur.base].distlimit;
|
|
ginf[geometry].tiling_name = ginf[gxcur.base].tiling_name;
|
|
ginf[geometry].default_variation = ginf[gxcur.base].default_variation;
|
|
ginf[geometry].flags = qFIELD | qANYQ | qCLOSED;
|
|
fieldpattern::current_quotient_field.init(gxcur.primes[gxcur.current_prime_id].p);
|
|
}
|
|
|
|
EX eGeometry underlying_geometry;
|
|
|
|
EX void field_from_current() {
|
|
auto& go = ginf[geometry];
|
|
underlying_geometry = geometry;
|
|
dynamicval<eGeometry> g(geometry, gFieldQuotient);
|
|
auto& gg = ginf[geometry];
|
|
gg.sides = go.sides;
|
|
gg.vertex = go.vertex;
|
|
gg.distlimit = go.distlimit;
|
|
gg.tiling_name = go.tiling_name;
|
|
gg.flags = go.flags | qANYQ | qFIELD | qCLOSED;
|
|
gg.g = go.g;
|
|
gg.default_variation = go.default_variation;
|
|
fieldpattern::quotient_field_changed = true;
|
|
}
|
|
|
|
#if CAP_THREAD && MAXMDIM >= 4
|
|
EX map<string, discovery> discoveries;
|
|
|
|
void discovery::activate() {
|
|
if(!discoverer) {
|
|
discoverer = std::make_shared<std::thread> ( [this] {
|
|
for(int p=2; p<100; p++) {
|
|
experiment.Prime = p;
|
|
experiment.solve();
|
|
if(stop_it) break;
|
|
}
|
|
});
|
|
}
|
|
if(is_suspended) {
|
|
if(1) {
|
|
std::unique_lock<std::mutex> lk(lock);
|
|
is_suspended = false;
|
|
}
|
|
cv.notify_one();
|
|
}
|
|
}
|
|
|
|
void discovery::discovered() {
|
|
std::unique_lock<std::mutex> lk(lock);
|
|
auto& e = experiment;
|
|
hashes_found[e.hashv] = make_tuple(e.Prime, e.wsquare, e.R, e.P, e.X, isize(e.matrices) / e.local_group);
|
|
}
|
|
|
|
void discovery::suspend() { is_suspended = true; }
|
|
|
|
void discovery::check_suspend() {
|
|
std::unique_lock<std::mutex> lk(lock);
|
|
if(is_suspended) cv.wait(lk, [this] { return !is_suspended; });
|
|
}
|
|
|
|
void discovery::schedule_destruction() { stop_it = true; }
|
|
discovery::~discovery() { schedule_destruction(); if(discoverer) discoverer->join(); }
|
|
#endif
|
|
|
|
int hk =
|
|
#if CAP_THREAD
|
|
#if MAXMDIM >= 4
|
|
+ addHook(hooks_on_geometry_change, 100, [] { for(auto& d:discoveries) if(!d.second.is_suspended) d.second.suspend(); })
|
|
+ addHook(hooks_final_cleanup, 100, [] {
|
|
for(auto& d:discoveries) { d.second.schedule_destruction(); if(d.second.is_suspended) d.second.activate(); }
|
|
discoveries.clear();
|
|
})
|
|
#endif
|
|
#endif
|
|
#if CAP_COMMANDLINE
|
|
+ addHook(hooks_args, 0, [] {
|
|
using namespace arg;
|
|
if(0) ;
|
|
else if(argis("-q3-limitsq")) { shift(); limitsq = argi(); }
|
|
else if(argis("-q3-limitp")) { shift(); limitp = argi(); }
|
|
else if(argis("-q3-limitv")) { shift(); limitv = argi(); }
|
|
else return 1;
|
|
return 0;
|
|
})
|
|
#endif
|
|
+ 0;
|
|
|
|
EX purehookset hooks_on_geometry_change;
|
|
|
|
EX int field_celldistance(cell *c1, cell *c2) {
|
|
if(geometry != gFieldQuotient) return DISTANCE_UNKNOWN;
|
|
if(GOLDBERG) return DISTANCE_UNKNOWN;
|
|
auto v1 =fieldpattern::fieldval(c1);
|
|
auto v2 =fieldpattern::fieldval(c2);
|
|
int d = currfp.getdist(v1, v2);
|
|
return d;
|
|
}
|
|
|
|
EX }
|
|
|
|
#define currfp fieldpattern::getcurrfp()
|
|
|
|
EX int currfp_gmul(int a, int b) { return currfp.gmul(a,b); }
|
|
EX int currfp_inverses(int i) { return currfp.inverses[i]; }
|
|
EX int currfp_distwall(int i) { return currfp.distwall[i]; }
|
|
EX int currfp_n() { return isize(currfp.matrices); }
|
|
EX int currfp_get_R() { return currfp.matcode[currfp.R]; }
|
|
EX int currfp_get_P() { return currfp.matcode[currfp.P]; }
|
|
EX int currfp_get_X() { return currfp.matcode[currfp.X]; }
|
|
|
|
EX void hread_fpattern(hstream& hs, fieldpattern::fpattern& fp) {
|
|
hread(hs, fp.Prime);
|
|
hread(hs, fp.wsquare);
|
|
hread(hs, fp.P);
|
|
hread(hs, fp.R);
|
|
hread(hs, fp.X);
|
|
fp.set_field(fp.Prime, fp.wsquare);
|
|
#if MAXMDIM >= 4
|
|
fp.generate_all3();
|
|
#endif
|
|
}
|
|
|
|
EX void hwrite_fpattern(hstream& hs, fieldpattern::fpattern& fp) {
|
|
hwrite(hs, fp.Prime);
|
|
hwrite(hs, fp.wsquare);
|
|
hwrite(hs, fp.P);
|
|
hwrite(hs, fp.R);
|
|
hwrite(hs, fp.X);
|
|
}
|
|
|
|
}
|
|
#endif
|