mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-17 12:43:02 +00:00
570 lines
17 KiB
C++
570 lines
17 KiB
C++
// Hyperbolic Rogue
|
|
// advanced geometry
|
|
|
|
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
namespace hr {
|
|
|
|
transmatrix &ggmatrix(cell *c);
|
|
|
|
void fixelliptic(transmatrix& at) {
|
|
if(elliptic && at[2][2] < 0) {
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
|
|
at[i][j] = -at[i][j];
|
|
}
|
|
}
|
|
|
|
void fixelliptic(hyperpoint& h) {
|
|
if(elliptic && h[2] < 0)
|
|
for(int i=0; i<3; i++) h[i] = -h[i];
|
|
}
|
|
|
|
transmatrix master_relative(cell *c, bool get_inverse) {
|
|
if(IRREGULAR) {
|
|
int id = irr::cellindex[c];
|
|
ld alpha = 2 * M_PI / S7 * irr::periodmap[c->master].base.spin;
|
|
return get_inverse ? irr::cells[id].rpusher * spin(-alpha-master_to_c7_angle()): spin(alpha + master_to_c7_angle()) * irr::cells[id].pusher;
|
|
}
|
|
else if(GOLDBERG) {
|
|
if(c == c->master->c7) {
|
|
return spin((get_inverse?-1:1) * master_to_c7_angle());
|
|
}
|
|
else {
|
|
auto li = gp::get_local_info(c);
|
|
transmatrix T = spin(master_to_c7_angle()) * gp::Tf[li.last_dir][li.relative.first&31][li.relative.second&31][gp::fixg6(li.total_dir)];
|
|
if(get_inverse) T = inverse(T);
|
|
return T;
|
|
}
|
|
}
|
|
else if(BITRUNCATED && !euclid) {
|
|
for(int d=0; d<S7; d++) if(c->master->c7->move(d) == c)
|
|
return (get_inverse?invhexmove:hexmove)[d];
|
|
return Id;
|
|
}
|
|
else
|
|
return pispin * Id;
|
|
}
|
|
|
|
transmatrix calc_relative_matrix(cell *c2, cell *c1, int direction_hint) {
|
|
return calc_relative_matrix(c2, c1, ddspin(c1, direction_hint) * xpush0(1e-2));
|
|
}
|
|
|
|
// target, source, direction from source to target
|
|
|
|
namespace gp { extern gp::local_info draw_li; }
|
|
|
|
transmatrix calc_relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) {
|
|
|
|
if(sphere_narcm) {
|
|
if(!gmatrix0.count(c2) || !gmatrix0.count(c1)) {
|
|
printf("building gmatrix0 (size=%d)\n", isize(gmatrix0));
|
|
auto bak = gp::draw_li;
|
|
swap(gmatrix, gmatrix0);
|
|
just_gmatrix = true;
|
|
drawrec(viewctr, hsOrigin, Id);
|
|
just_gmatrix = false;
|
|
swap(gmatrix, gmatrix0);
|
|
gp::draw_li = bak;
|
|
}
|
|
if(gmatrix0.count(c2) && gmatrix0.count(c1)) {
|
|
transmatrix T = inverse(gmatrix0[c1]) * gmatrix0[c2];
|
|
if(elliptic && T[2][2] < 0)
|
|
T = centralsym * T;
|
|
return T;
|
|
}
|
|
else {
|
|
printf("error: gmatrix0 not known\n");
|
|
return Id;
|
|
}
|
|
}
|
|
|
|
if(binarytiling) return binary::relative_matrix(c2->master, c1->master);
|
|
if(archimedean) return arcm::relative_matrix(c2->master, c1->master);
|
|
|
|
if(torus) {
|
|
transmatrix t = Id;
|
|
if(whateveri) printf("[%p,%d] ", c2, celldistance(c2, c1));
|
|
int mirrors = 0;
|
|
approach:
|
|
int d = celldistance(c2, c1);
|
|
forCellIdEx(c3, i, c2) {
|
|
if(celldistance(c3, c1) < d) {
|
|
if(whateveri) printf(" %d [%p,%d]", i, c3, celldistance(c3, c1));
|
|
if(c2->type < 8)
|
|
t = eumovedir(i+(euclid6?3:2)) * t;
|
|
else if(i&1)
|
|
t = eumovedir(2+i/2) * eumovedir(2+(i+1)/2) * t;
|
|
else
|
|
t = eumovedir(2+i/2) * t;
|
|
if(c2->c.mirror(i)) mirrors++;
|
|
c2 = c3;
|
|
goto approach;
|
|
}
|
|
}
|
|
if(d != 0) printf("ERROR not reached\n");
|
|
if(mirrors&1) t = Mirror * t * Mirror;
|
|
if(whateveri) printf(" => %p\n", c1);
|
|
return t;
|
|
}
|
|
|
|
if(euclid) return inverse(gmatrix0[c1]) * gmatrix0[c2];
|
|
|
|
heptagon *h1 = c1->master;
|
|
transmatrix gm = master_relative(c1, true);
|
|
heptagon *h2 = c2->master;
|
|
transmatrix where = master_relative(c2);
|
|
|
|
// always add to last!
|
|
//bool hsol = false;
|
|
//transmatrix sol;
|
|
|
|
while(h1 != h2) {
|
|
if(quotient & qSMALL) {
|
|
transmatrix T;
|
|
ld bestdist = 1e9;
|
|
for(int d=0; d<S7; d++) if(h2->move(d)) {
|
|
int sp = h2->c.spin(d);
|
|
transmatrix S = heptmove[sp] * spin(2*M_PI*d/S7);
|
|
if(h2->c.mirror(d)) S = heptmove[sp] * Mirror * spin(2*M_PI*d/S7);
|
|
if(h2->move(d) == h1) {
|
|
transmatrix T1 = gm * S * where;
|
|
auto curdist = hdist(tC0(T1), point_hint);
|
|
if(curdist < bestdist) T = T1, bestdist = curdist;
|
|
}
|
|
if(geometry != gMinimal) for(int e=0; e<S7; e++) if(h2->move(d)->move(e) == h1) {
|
|
int sp2 = h2->move(d)->c.spin(e);
|
|
transmatrix T1 = gm * heptmove[sp2] * spin(2*M_PI*e/S7) * S * where;
|
|
auto curdist = hdist(tC0(T1), point_hint);
|
|
if(curdist < bestdist) T = T1, bestdist = curdist;
|
|
}
|
|
}
|
|
if(bestdist < 1e8) return T;
|
|
}
|
|
for(int d=0; d<S7; d++) if(h2->move(d) == h1) {
|
|
int sp = h2->c.spin(d);
|
|
return gm * heptmove[sp] * spin(2*M_PI*d/S7) * where;
|
|
}
|
|
if(geometry == gFieldQuotient) {
|
|
int bestdist = 1000, bestd = 0;
|
|
for(int d=0; d<S7; d++) {
|
|
int dist = celldistance(h2->move(d)->c7, c1);
|
|
if(dist < bestdist) bestdist = dist, bestd = d;
|
|
}
|
|
int sp = h2->c.spin(bestd);
|
|
where = heptmove[sp] * spin(2*M_PI*bestd/S7) * where;
|
|
h2 = h2->move(bestd);
|
|
}
|
|
else if(h1->distance < h2->distance) {
|
|
int sp = h2->c.spin(0);
|
|
h2 = h2->move(0);
|
|
where = heptmove[sp] * where;
|
|
}
|
|
else {
|
|
int sp = h1->c.spin(0);
|
|
h1 = h1->move(0);
|
|
gm = gm * invheptmove[sp];
|
|
}
|
|
}
|
|
/*if(hsol) {
|
|
transmatrix sol2 = gm * where;
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++)
|
|
if(fabs(sol2[i][j]-sol[i][j] > 1e-3)) {
|
|
printf("ERROR\n");
|
|
display(sol);
|
|
display(sol2);
|
|
exit(1);
|
|
}
|
|
} */
|
|
return gm * where;
|
|
}
|
|
|
|
transmatrix &ggmatrix(cell *c) {
|
|
transmatrix& t = gmatrix[c];
|
|
if(t[2][2] == 0) {
|
|
if(torus && centerover.at)
|
|
t = calc_relative_matrix(c, centerover.at, C0);
|
|
else if(euclid) {
|
|
if(!centerover.at) centerover = cwt;
|
|
t = View * eumove(cell_to_vec(c) - cellwalker_to_vec(centerover));
|
|
}
|
|
else
|
|
t = actualV(viewctr, cview()) * calc_relative_matrix(c, viewctr.at->c7, C0);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
transmatrix calc_relative_matrix_help(cell *c, heptagon *h1) {
|
|
transmatrix gm = Id;
|
|
heptagon *h2 = c->master;
|
|
transmatrix where = Id;
|
|
if(GOLDBERG && c != c->master->c7) {
|
|
auto li = gp::get_local_info(c);
|
|
where = gp::Tf[li.last_dir][li.relative.first&31][li.relative.second&31][fix6(li.total_dir)];
|
|
}
|
|
else if(BITRUNCATED) for(int d=0; d<S7; d++) if(h2->c7->move(d) == c)
|
|
where = hexmove[d];
|
|
// always add to last!
|
|
while(h1 != h2) {
|
|
for(int d=0; d<S7; d++) if(h1->move(d) == h2) printf("(adj) ");
|
|
if(h1->distance < h2->distance) {
|
|
int sp = h2->c.spin(0);
|
|
printf("A%d ", sp);
|
|
h2 = h2->move(0);
|
|
where = heptmove[sp] * where;
|
|
}
|
|
else {
|
|
int sp = h1->c.spin(0);
|
|
printf("B%d ", sp);
|
|
h1 = h1->move(0);
|
|
gm = gm * invheptmove[sp];
|
|
}
|
|
}
|
|
printf("OK\n");
|
|
display(gm * where);
|
|
return gm * where;
|
|
}
|
|
|
|
template<class T, class U>
|
|
void virtualRebase(cell*& base, T& at, bool tohex, const U& check) {
|
|
if(euclid || sphere) {
|
|
again:
|
|
if(torus) for(int i=0; i<6; i++) {
|
|
auto newat = eumovedir(3+i) * at;
|
|
if(hdist0(check(newat)) < hdist0(check(at))) {
|
|
at = newat;
|
|
base = createMov(base, i);
|
|
goto again;
|
|
}
|
|
}
|
|
else forCellCM(c2, base) {
|
|
auto newat = inverse(ggmatrix(c2)) * ggmatrix(base) * at;
|
|
if(hypot(check(newat)[0], check(newat)[1])
|
|
< hypot(check(at)[0], check(at)[1])) {
|
|
at = newat;
|
|
base = c2;
|
|
goto again;
|
|
}
|
|
}
|
|
fixelliptic(at);
|
|
return;
|
|
}
|
|
|
|
at = master_relative(base) * at;
|
|
base = base->master->c7;
|
|
|
|
while(true) {
|
|
|
|
double currz = check(at)[2];
|
|
|
|
heptagon *h = base->master;
|
|
|
|
cell *newbase = NULL;
|
|
|
|
transmatrix bestV;
|
|
|
|
if(!binarytiling) for(int d=0; d<S7; d++) {
|
|
heptspin hs(h, d, false);
|
|
heptspin hs2 = hs + wstep;
|
|
transmatrix V2 = spin(-hs2.spin*2*M_PI/S7) * invheptmove[d];
|
|
double newz = check(V2 * at) [2];
|
|
if(newz < currz) {
|
|
currz = newz;
|
|
bestV = V2;
|
|
newbase = hs2.at->c7;
|
|
}
|
|
}
|
|
|
|
if(newbase) {
|
|
base = newbase;
|
|
at = bestV * at;
|
|
}
|
|
else {
|
|
if(tohex && BITRUNCATED) for(int d=0; d<S7; d++) {
|
|
cell *c = createMov(base, d);
|
|
transmatrix V2 = spin(-base->c.spin(d)*2*M_PI/S6) * invhexmove[d];
|
|
double newz = check(V2 *at) [2];
|
|
if(newz < currz) {
|
|
currz = newz;
|
|
bestV = V2;
|
|
newbase = c;
|
|
}
|
|
}
|
|
if(newbase) {
|
|
base = newbase;
|
|
at = bestV * at;
|
|
}
|
|
else at = master_relative(base, true) * at;
|
|
if(binarytiling || (tohex && (GOLDBERG || IRREGULAR))) {
|
|
while(true) {
|
|
newbase = NULL;
|
|
forCellCM(c2, base) {
|
|
transmatrix V2 = calc_relative_matrix(base, c2, C0);
|
|
double newz = check(V2 * at) [2];
|
|
if(newz < currz) {
|
|
currz = newz;
|
|
bestV = V2;
|
|
newbase = c2;
|
|
}
|
|
}
|
|
if(!newbase) break;
|
|
base = newbase;
|
|
at = bestV * at;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void virtualRebase(cell*& base, transmatrix& at, bool tohex) {
|
|
virtualRebase(base, at, tohex, tC0);
|
|
}
|
|
|
|
void virtualRebase(cell*& base, hyperpoint& h, bool tohex) {
|
|
// we perform fixing in check, so that it works with larger range
|
|
virtualRebase(base, h, tohex, [] (const hyperpoint& h) { return hyperbolic ? hpxy(h[0], h[1]) :h; });
|
|
}
|
|
|
|
// works only in geometries similar to the standard one, and only on heptagons
|
|
void virtualRebaseSimple(heptagon*& base, transmatrix& at) {
|
|
|
|
while(true) {
|
|
|
|
double currz = at[2][2];
|
|
|
|
heptagon *h = base;
|
|
|
|
heptagon *newbase = NULL;
|
|
|
|
transmatrix bestV;
|
|
|
|
for(int d=0; d<S7; d++) {
|
|
heptspin hs(h, d, false);
|
|
heptspin hs2 = hs + wstep;
|
|
transmatrix V2 = spin(-hs2.spin*2*M_PI/S7) * invheptmove[d] * at;
|
|
double newz = V2[2][2];
|
|
if(newz < currz) {
|
|
currz = newz;
|
|
bestV = V2;
|
|
newbase = hs2.at;
|
|
}
|
|
}
|
|
|
|
if(newbase) {
|
|
base = newbase;
|
|
at = bestV;
|
|
continue;
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
double cellgfxdist(cell *c, int i) {
|
|
if(NONSTDVAR || archimedean) return hdist0(tC0(calc_relative_matrix(c->move(i), c, i)));
|
|
return !BITRUNCATED ? tessf : (c->type == 6 && (i&1)) ? hexhexdist : crossf;
|
|
}
|
|
|
|
transmatrix cellrelmatrix(cell *c, int i) {
|
|
if(NONSTDVAR || archimedean) return calc_relative_matrix(c->move(i), c, i);
|
|
double d = cellgfxdist(c, i);
|
|
return ddspin(c, i) * xpush(d) * iddspin(c->move(i), c->c.spin(i), euclid ? 0 : M_PI);
|
|
}
|
|
|
|
double randd() { return (rand() + .5) / (RAND_MAX + 1.); }
|
|
|
|
hyperpoint randomPointIn(int t) {
|
|
if(NONSTDVAR || archimedean) {
|
|
// Let these geometries be less confusing.
|
|
// Also easier to implement ;)
|
|
return xspinpush0(2 * M_PI * randd(), asinh(randd() / 20));
|
|
}
|
|
while(true) {
|
|
hyperpoint h = xspinpush0(2*M_PI*(randd()-.5)/t, asinh(randd()));
|
|
double d =
|
|
PURE ? tessf : t == 6 ? hexhexdist : crossf;
|
|
if(hdist0(h) < hdist0(xpush(-d) * h))
|
|
return spin(2*M_PI/t * (rand() % t)) * h;
|
|
}
|
|
}
|
|
|
|
hyperpoint get_horopoint(ld y, ld x) {
|
|
return xpush(-y) * binary::parabolic(x) * C0;
|
|
}
|
|
|
|
hyperpoint get_corner_position(cell *c, int cid, ld cf) {
|
|
if(GOLDBERG) return gp::get_corner_position(c, cid, cf);
|
|
if(IRREGULAR) {
|
|
auto& vs = irr::cells[irr::cellindex[c]];
|
|
return mid_at_actual(vs.vertices[cid], 3/cf);
|
|
}
|
|
if(binarytiling) {
|
|
ld yx = log(2) / 2;
|
|
ld yy = yx;
|
|
ld xx = 1 / sqrt(2)/2;
|
|
hyperpoint vertices[7];
|
|
vertices[0] = get_horopoint(-yy, xx);
|
|
vertices[1] = get_horopoint(yy, 2*xx);
|
|
vertices[2] = get_horopoint(yy, xx);
|
|
vertices[3] = get_horopoint(yy, -xx);
|
|
vertices[4] = get_horopoint(yy, -2*xx);
|
|
vertices[5] = get_horopoint(-yy, -xx);
|
|
vertices[6] = get_horopoint(-yy, 0);
|
|
return mid_at_actual(vertices[cid], 3/cf);
|
|
}
|
|
if(archimedean) {
|
|
auto &ac = arcm::current;
|
|
if(PURE) {
|
|
if(arcm::id_of(c->master) >= ac.N*2) return C0;
|
|
auto& t = ac.get_triangle(c->master, cid-1);
|
|
return xspinpush0(-t.first, t.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1));
|
|
}
|
|
if(BITRUNCATED) {
|
|
auto& t0 = ac.get_triangle(c->master, cid-1);
|
|
auto& t1 = ac.get_triangle(c->master, cid);
|
|
hyperpoint h0 = xspinpush0(-t0.first, t0.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1));
|
|
hyperpoint h1 = xspinpush0(-t1.first, t1.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1));
|
|
return mid3(C0, h0, h1);
|
|
}
|
|
if(DUAL) {
|
|
auto& t0 = ac.get_triangle(c->master, 2*cid-1);
|
|
return xspinpush0(-t0.first, t0.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1));
|
|
}
|
|
}
|
|
if(PURE) {
|
|
return ddspin(c,cid,M_PI/S7) * xpush0(hcrossf * 3 / cf);
|
|
}
|
|
if(BITRUNCATED) {
|
|
if(!ishept(c))
|
|
return ddspin(c,cid,M_PI/S6) * xpush0(hexvdist * 3 / cf);
|
|
else
|
|
return ddspin(c,cid,M_PI/S7) * xpush0(rhexf * 3 / cf);
|
|
}
|
|
return C0;
|
|
}
|
|
|
|
hyperpoint nearcorner(cell *c, int i) {
|
|
if(GOLDBERG) {
|
|
cellwalker cw(c, i);
|
|
cw += wstep;
|
|
transmatrix cwm = calc_relative_matrix(cw.at, c, i);
|
|
if(elliptic && cwm[2][2] < 0) cwm = centralsym * cwm;
|
|
return cwm * C0;
|
|
}
|
|
if(IRREGULAR) {
|
|
auto& vs = irr::cells[irr::cellindex[c]];
|
|
hyperpoint nc = vs.jpoints[vs.neid[i]];
|
|
return mid_at(C0, nc, .94);
|
|
}
|
|
if(archimedean) {
|
|
if(PURE) {
|
|
auto &ac = arcm::current;
|
|
auto& t = ac.get_triangle(c->master, i-1);
|
|
int id = arcm::id_of(c->master);
|
|
int id1 = ac.get_adj(ac.get_adj(c->master, i-1), -2).first;
|
|
return xspinpush0(-t.first - M_PI / c->type, ac.inradius[id/2] + ac.inradius[id1/2] + (ac.real_faces == 0 ? 2 * M_PI / (ac.N == 2 ? 2.1 : ac.N) : 0));
|
|
}
|
|
if(BITRUNCATED) {
|
|
auto &ac = arcm::current;
|
|
auto& t = ac.get_triangle(c->master, i);
|
|
return xspinpush0(-t.first, t.second);
|
|
}
|
|
if(DUAL) {
|
|
auto &ac = arcm::current;
|
|
auto& t = ac.get_triangle(c->master, i * 2);
|
|
return xspinpush0(-t.first, t.second);
|
|
}
|
|
}
|
|
if(binarytiling) {
|
|
ld yx = log(2) / 2;
|
|
ld yy = yx;
|
|
// ld xx = 1 / sqrt(2)/2;
|
|
hyperpoint neis[7];
|
|
neis[0] = get_horopoint(0, 1);
|
|
neis[1] = get_horopoint(yy*2, 1);
|
|
neis[2] = get_horopoint(yy*2, 0);
|
|
neis[3] = get_horopoint(yy*2, -1);
|
|
neis[4] = get_horopoint(0, -1);
|
|
if(c->type == 7)
|
|
neis[5] = get_horopoint(-yy*2, -.5),
|
|
neis[6] = get_horopoint(-yy*2, +.5);
|
|
else
|
|
neis[5] = get_horopoint(-yy*2, 0);
|
|
return neis[i];
|
|
}
|
|
double d = cellgfxdist(c, i);
|
|
return ddspin(c, i) * xpush0(d);
|
|
}
|
|
|
|
hyperpoint farcorner(cell *c, int i, int which) {
|
|
if(GOLDBERG) {
|
|
cellwalker cw(c, i);
|
|
int hint = cw.spin;
|
|
cw += wstep;
|
|
transmatrix cwm = calc_relative_matrix(cw.at, c, hint);
|
|
if(elliptic && cwm[2][2] < 0) cwm = centralsym * cwm;
|
|
// hyperpoint nfar = cwm*C0;
|
|
auto li1 = gp::get_local_info(cw.at);
|
|
if(which == 0)
|
|
return cwm * get_corner_position(li1, (cw+2).spin);
|
|
if(which == 1)
|
|
return cwm * get_corner_position(li1, (cw-1).spin);
|
|
}
|
|
if(IRREGULAR) {
|
|
auto& vs = irr::cells[irr::cellindex[c]];
|
|
int neid = vs.neid[i];
|
|
int spin = vs.spin[i];
|
|
auto &vs2 = irr::cells[neid];
|
|
int cor2 = isize(vs2.vertices);
|
|
transmatrix rel = vs.rpusher * vs.relmatrices[vs2.owner] * vs2.pusher;
|
|
|
|
if(which == 0) return rel * vs2.vertices[(spin+2)%cor2];
|
|
if(which == 1) return rel * vs2.vertices[(spin+cor2-1)%cor2];
|
|
}
|
|
if(binarytiling)
|
|
return nearcorner(c, (i+which) % c->type); // lazy
|
|
if(archimedean) {
|
|
if(PURE) {
|
|
auto &ac = arcm::current;
|
|
auto& t = ac.get_triangle(c->master, i-1);
|
|
int id = arcm::id_of(c->master);
|
|
auto id1 = ac.get_adj(ac.get_adj(c->master, i-1), -2).first;
|
|
int n1 = isize(ac.adjacent[id1]);
|
|
return spin(-t.first - M_PI / c->type) * xpush(ac.inradius[id/2] + ac.inradius[id1/2]) * xspinpush0(M_PI + M_PI/n1*(which?3:-3), ac.circumradius[id1/2]);
|
|
}
|
|
if(BITRUNCATED || DUAL) {
|
|
int mul = DUALMUL;
|
|
auto &ac = arcm::current;
|
|
auto adj = ac.get_adj(c->master, i * mul);
|
|
heptagon h; cell cx; cx.master = &h;
|
|
arcm::id_of(&h) = adj.first;
|
|
arcm::parent_index_of(&h) = adj.second;
|
|
|
|
auto& t1 = arcm::current.get_triangle(c->master, i);
|
|
|
|
auto& t2 = arcm::current.get_triangle(adj);
|
|
|
|
return spin(-t1.first) * xpush(t1.second) * spin(M_PI + t2.first) * get_corner_position(&cx, which ? -mul : 2*mul);
|
|
}
|
|
}
|
|
|
|
return cellrelmatrix(c, i) * get_corner_position(c->move(i), (cellwalker(c, i) + wstep + (which?-1:2)).spin);
|
|
}
|
|
|
|
hyperpoint midcorner(cell *c, int i, ld v) {
|
|
auto hcor = farcorner(c, i, 0);
|
|
auto tcor = get_corner_position(c, i, 3);
|
|
return mid_at(tcor, hcor, v);
|
|
}
|
|
|
|
hyperpoint get_warp_corner(cell *c, int cid) {
|
|
// midcorner(c, cid, .5) but sometimes easier versions exist
|
|
if(GOLDBERG) return gp::get_corner_position(c, cid, 2);
|
|
if(IRREGULAR || archimedean) return midcorner(c, cid, .5);
|
|
return ddspin(c,cid,M_PI/S7) * xpush0(tessf/2);
|
|
}
|
|
|
|
}
|
|
|