1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-25 01:20:37 +00:00
hyperrogue/kohonen.cpp
2017-06-18 18:51:46 +02:00

445 lines
10 KiB
C++

// Hyperbolic Rogue
// Copyright (C) 2011-2017 Zeno and Tehora Rogue, see 'hyper.cpp' for details
// Kohonen's self-organizing networks.
// This is a part of RogueViz, not a part of HyperRogue.
namespace kohonen {
int cols;
typedef vector<double> kohvec;
struct sample {
kohvec val;
string name;
};
vector<sample> data;
int whattodraw[3];
struct neuron {
kohvec net;
cell *where;
double udist;
int lpbak;
int col;
int samples, csample;
};
kohvec weights;
vector<neuron> net;
void alloc(kohvec& k) { k.resize(cols); }
bool neurons_indexed = false;
int samples;
template<class T> T sqr(T x) { return x*x; }
vector<neuron*> whowon;
void normalize() {
alloc(weights);
for(int k=0; k<cols; k++) {
double sum = 0, sqsum = 0;
for(sample& s: data)
sum += s.val[k],
sqsum += s.val[k] * s.val[k];
double variance = sqsum/samples - sqr(sum/samples);
weights[k] = 1 / sqrt(variance);
}
}
double vnorm(kohvec& a, kohvec& b) {
double diff = 0;
for(int k=0; k<cols; k++) diff += sqr((a[k]-b[k]) * weights[k]);
return diff;
}
void loadsamples(const char *fname) {
normalize();
FILE *f = fopen(fname, "rt");
if(!f) return;
if(fscanf(f, "%d", &cols) != 1) { fclose(f); return; }
while(true) {
sample s;
alloc(s.val);
for(int i=0; i<cols; i++)
if(fscanf(f, "%lf", &s.val[i]) != 1) { fclose(f); return; }
if(feof(f)) break;
fgetc(f);
while(true) {
int c = fgetc(f);
if(c == -1 || c == 10 || c == 13) break;
if(c != 32 && c != 9) s.name += c;
}
data.push_back(move(s));
}
fclose(f);
samples = size(data);
normalize();
vdata.resize(samples);
for(int i=0; i<samples; i++) {
vdata[i].name = data[i].name;
vdata[i].cp = dftcolor;
createViz(i, cwt.c, Id);
}
storeall();
}
int t;
int lpct, mul, maxdist, cells, perdist;
double maxfac;
neuron& winner(int id) {
double bdiff = 1e20;
neuron *bcell = NULL;
for(neuron& n: net) {
double diff = vnorm(n.net, data[id].val);
if(diff < bdiff) bdiff = diff, bcell = &n;
}
return *bcell;
}
void setindex(bool b) {
if(b == neurons_indexed) return;
neurons_indexed = b;
if(b) {
for(neuron& n: net) n.lpbak = n.where->landparam, n.where->landparam = (&n - &net[0]);
}
else {
for(neuron& n: net) n.where->landparam = n.lpbak;
}
}
neuron *getNeuron(cell *c) {
if(!c) return NULL;
setindex(true);
if(c->landparam < 0 || c->landparam >= cells) return NULL;
neuron& ret = net[c->landparam];
if(ret.where != c) return NULL;
return &ret;
}
neuron *getNeuronSlow(cell *c) {
if(neurons_indexed) return getNeuron(c);
for(neuron& n: net) if(n.where == c) return &n;
return NULL;
}
double maxudist;
neuron *distfrom;
void coloring() {
setindex(false);
for(int pid=0; pid<3; pid++) {
int c = whattodraw[pid];
vector<double> listing;
for(neuron& n: net) switch(c) {
case -3:
if(distfrom)
listing.push_back(vnorm(n.net, distfrom->net));
else
listing.push_back(0);
break;
case -2:
listing.push_back(n.udist);
break;
case -1:
listing.push_back(-n.udist);
break;
default:
listing.push_back(n.net[c]);
break;
}
double minl = listing[0], maxl = listing[0];
for(double& d: listing) minl = min(minl, d), maxl = max(maxl, d);
if(maxl-minl < 1e-3) maxl = minl+1e-3;
for(int i=0; i<cells; i++)
part(net[i].where->landparam, pid) = (255 * (listing[i] - minl)) / (maxl - minl);
}
}
void analyze() {
setindex(true);
maxudist = 0;
for(neuron& n: net) {
int qty = 0;
double total = 0;
forCellEx(c2, n.where) {
neuron *n2 = getNeuron(c2);
if(!n2) continue;
qty++;
total += sqrt(vnorm(n.net, n2->net));
}
n.udist = total / qty;
maxudist = max(maxudist, n.udist);
}
whowon.resize(samples);
for(neuron& n: net) n.samples = 0;
for(int id=0; id<samples; id++) {
auto& w = winner(id);
whowon[id] = &w;
w.samples++;
}
for(int id=0; id<samples; id++) {
auto& w = *whowon[id];
vdata[id].m->base = w.where;
vdata[id].m->at =
spin(2*M_PI*w.csample / w.samples) * xpush(.25 * (w.samples-1) / w.samples);
w.csample++;
}
shmup::fixStorage();
setindex(false);
coloring();
}
struct cellcrawler {
struct cellcrawlerdata {
cellwalker orig;
int from, spin, dist;
cellwalker target;
cellcrawlerdata(const cellwalker& o, int fr, int sp) : orig(o), from(fr), spin(sp) {}
};
vector<cellcrawlerdata> data;
void store(const cellwalker& o, int from, int spin) {
if(eq(o.c->aitmp, sval)) return;
o.c->aitmp = sval;
data.emplace_back(o, from, spin);
}
void build(const cellwalker& start) {
sval++;
data.clear();
store(start, 0, 0);
for(int i=0; i<size(data); i++) {
cellwalker cw0 = data[i].orig;
for(int j=0; j<cw0.c->type; j++) {
cellwalker cw = cw0;
cwspin(cw, j); cwstep(cw);
if(!getNeuron(cw.c)) continue;
store(cw, i, j);
}
}
for(cellcrawlerdata& s: data)
s.dist = celldistance(s.orig.c, start.c);
}
void sprawl(const cellwalker& start) {
data[0].target = start;
for(int i=1; i<size(data); i++) {
cellcrawlerdata& s = data[i];
s.target = data[s.from].target;
if(!s.target.c) continue;
cwspin(s.target, s.spin);
if(cwstepcreates(s.target)) s.target.c = NULL;
else cwstep(s.target);
}
}
};
cellcrawler s0, s1; // hex and non-hex
void buildcellcrawler(cell *c) {
(c->type == 6 ? s0 : s1).build(cellwalker(c,0));
}
bool finished() { return t == 0; }
void step() {
double sigma = maxdist * t / (perdist*(double) mul);
if(t == 0) return;
// double sigma = maxdist * exp(-t / t1);
int pct = (int) (100 * ((t*(double) mul) / perdist));
if(pct != lpct) {
lpct = pct;
analyze();
printf("t = %6d/%2dx%6d pct = %3d sigma=%10.7lf maxudist=%10.7lf\n", t, mul, perdist, pct, sigma, maxudist);
}
int id = hrand(samples);
neuron& n = winner(id);
/*
for(neuron& n2: net) {
int d = celldistance(n.where, n2.where);
double nu = maxfac;
// nu *= exp(-t*(double)maxdist/perdist);
// nu *= exp(-t/t2);
nu *= exp(-sqr(d/sigma));
for(int k=0; k<cols; k++)
n2.net[k] += nu * (irisdata[id][k] - n2.net[k]);
} */
cellcrawler& s = n.where->type == 6 ? s0 : s1;
s.sprawl(cellwalker(n.where, 0));
for(auto& sd: s.data) {
neuron *n2 = getNeuron(sd.target.c);
if(!n2) continue;
double nu = maxfac;
nu *= exp(-sqr(sd.dist/sigma));
for(int k=0; k<cols; k++)
n2->net[k] += nu * (data[id].val[k] - n2->net[k]);
}
t--;
if(t == 0) analyze();
}
void run(const char *fname, int _perdist, double _maxfac) {
perdist = _perdist;
maxfac = _maxfac;
init(); kind = kKohonen;
loadsamples(fname);
/* if(geometry != gQuotient1) {
targetGeometry = gQuotient1;
restartGame('g');
}
if(!purehepta) restartGame('7'); */
#define Z 1
vector<cell*>& allcells = currentmap->allcells();
cells = size(allcells);
net.resize(cells);
for(int i=0; i<cells; i++) net[i].where = allcells[i], allcells[i]->landparam = i;
for(int i=0; i<cells; i++) {
net[i].where->land = laCanvas;
alloc(net[i].net);
for(int k=0; k<cols; k++)
for(int z=0; z<Z; z++)
net[i].net[k] += data[hrand(samples)].val[k] / Z;
}
for(neuron& n: net) for(int d=BARLEV; d>=7; d--) setdist(n.where, d, NULL);
cell *c1 = net[cells/2].where;
vector<int> mapdist;
for(neuron &n2: net) mapdist.push_back(celldistance(c1,n2.where));
sort(mapdist.begin(), mapdist.end());
maxdist = mapdist[size(mapdist)*5/6];
printf("samples = %d cells = %d maxdist = %d\n", samples, cells, maxdist);
c1 = currentmap->gamestart();
cell *c2 = createMov(c1, 0);
buildcellcrawler(c1);
if(c1->type != c2->type) buildcellcrawler(c2);
lpct = -46130;
mul = 1;
t = perdist*mul;
step();
for(int i=0; i<3; i++) whattodraw[i] = -2;
analyze();
}
void describe(cell *c) {
if(cmode == emHelp) return;
neuron *n = getNeuronSlow(c);
if(!n) return;
help += "cell number: " + its(n - &net[0]) + "\n";
help += "parameters:"; for(int k=0; k<cols; k++) help += " " + fts(n->net[k]);
help += ", u-matrix = " + fts(n->udist);
help += "\n";
for(int s=0; s<samples; s++) if(whowon[s] == n) {
help += "sample "+its(s)+":";
for(int k=0; k<cols; k++) help += " " + fts(data[s].val[k]);
help += " "; help += data[s].name; help += "\n";
}
}
void ksave(const char *fname) {
FILE *f = fopen(fname, "wt");
fprintf(f, "%d %d\n", cells, t);
for(neuron& n: net) {
for(int k=0; k<cols; k++) fprintf(f, "%.4lf ", n.net[k]); fprintf(f, "\n");
}
fclose(f);
}
void kload(const char *fname) {
int xcells;
FILE *f = fopen(fname, "rt");
if(!f) return;
if(fscanf(f, "%d%d\n", &xcells, &t) != 2) return;
if(xcells != cells) {
printf("Error: bad number of cells\n");
exit(1);
}
for(neuron& n: net) {
for(int k=0; k<cols; k++) if(fscanf(f, "%lf", &n.net[k]) != 1) return;
}
fclose(f);
analyze();
}
void steps() {
if(!kohonen::finished()) {
unsigned int t = SDL_GetTicks();
while(SDL_GetTicks() < t+20) kohonen::step();
setindex(false);
}
}
void showMenu() {
string parts[3] = {"red", "green", "blue"};
for(int i=0; i<3; i++) {
string c;
if(whattodraw[i] == -1) c = "u-matrix";
else if(whattodraw[i] == -2) c = "u-matrix reversed";
else if(whattodraw[i] == -3) c = "distance from marked ('m')";
else c = "column " + its(whattodraw[i]);
dialog::addSelItem(XLAT("coloring (%1)", parts[i]), c, '1'+i);
}
}
bool handleMenu(int sym, int uni) {
if(uni >= '1' && uni <= '3') {
int i = uni - '1';
whattodraw[i]++;
if(whattodraw[i] == cols) whattodraw[i] = -3;
coloring();
return true;
}
if(uni == '0') {
for(char x: {'1','2','3'}) handleMenu(x, x);
return true;
}
return false;
}
}
void mark(cell *c) {
using namespace kohonen;
distfrom = getNeuronSlow(c);
coloring();
}