mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-22 06:57:03 +00:00
197 lines
4.9 KiB
C++
197 lines
4.9 KiB
C++
#include "rogueviz.h"
|
|
|
|
/** A physics visualization of balls in a shell.
|
|
*
|
|
* Compile with HyperRogue, enable a 3D geometry (e.g. Nil), and watch.
|
|
* This is not configurable yet... you may need to manually change the gravity direction, or the number of balls
|
|
* (it is not optimized, and it does not work in real time with the default number of balls).
|
|
*/
|
|
|
|
namespace rogueviz {
|
|
|
|
namespace balls {
|
|
|
|
bool on = true;
|
|
|
|
struct ball {
|
|
hyperpoint at;
|
|
hyperpoint vel;
|
|
};
|
|
|
|
vector<ball> balls;
|
|
|
|
ld r_small_ball = .1;
|
|
ld r_big_ball = 1;
|
|
|
|
hpcshape shSmallBall, shBigBall, shShell;
|
|
|
|
void initialize(int max_ball) {
|
|
on = true;
|
|
|
|
cgi.make_ball(shSmallBall, r_small_ball, 2);
|
|
cgi.make_ball(shBigBall, r_big_ball, 4);
|
|
|
|
cgi.bshape(shShell, PPR::WALL);
|
|
shShell.flags |= POLY_TRIANGLES;
|
|
|
|
auto pt = [] (int i, int j) {
|
|
cgi.hpcpush(direct_exp(/* cspin(0, 2, -30._deg) **/ cspin90(2, 1) * cspin(0, 1, j * degree) * cspin(0, 2, i * 90._deg / 16) * ztangent(r_big_ball)));
|
|
};
|
|
|
|
for(int i=0; i<16; i++)
|
|
for(int j=0; j<360; j++) {
|
|
pt(i, j);
|
|
pt(i, j+1);
|
|
pt(i+1, j);
|
|
pt(i, j+1);
|
|
pt(i+1, j);
|
|
pt(i+1, j+1);
|
|
}
|
|
cgi.finishshape();
|
|
cgi.extra_vertices();
|
|
|
|
for(int a=-max_ball; a<=max_ball; a++)
|
|
for(int b=-max_ball; b<=max_ball; b++)
|
|
for(int c=-max_ball; c<=max_ball; c++)
|
|
{
|
|
hyperpoint h = point3(0.21*a + 1e-2, 0.21*b, 0.21*c);
|
|
|
|
if(hypot_d(3, h) > r_big_ball - r_small_ball) continue;
|
|
|
|
transmatrix T = rgpushxto0(direct_exp(h));
|
|
|
|
balls.emplace_back(ball{T*C0, T*ztangent(1e-3)});
|
|
}
|
|
|
|
}
|
|
|
|
bool draw_balls(cell *c, const shiftmatrix& V) {
|
|
if(!on) return false;
|
|
|
|
if(c == currentmap->gamestart()) {
|
|
for(auto& b: balls)
|
|
queuepoly(V * rgpushxto0(b.at), shSmallBall, 0xFFFFFFFF);
|
|
queuepoly(V, shShell, 0x0000F0FF);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ld inner(hyperpoint a, hyperpoint b) {
|
|
ld s = a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
|
|
if(hyperbolic) return s - a[3] * b[3];
|
|
if(sphere) return s + a[3] * b[3];
|
|
return s;
|
|
}
|
|
|
|
void geodesic_steps(hyperpoint& at, hyperpoint& vel, int qty) {
|
|
if(nonisotropic) {
|
|
vel /= qty;
|
|
for(int i=0; i<qty; i++)
|
|
nisot::geodesic_step(at, vel);
|
|
vel *= qty;
|
|
}
|
|
else {
|
|
ld d = sqrt(inner(vel, vel));
|
|
tie(at, vel) = make_pair(
|
|
at * cos_auto(d) + vel * sin_auto(d)/d,
|
|
vel * cos_auto(d) - at * sin_auto(d) * sig(3) * d
|
|
);
|
|
}
|
|
}
|
|
|
|
ld elastic_in = .2;
|
|
ld elastic_out = .2;
|
|
|
|
ld gravity = 1;
|
|
|
|
bool turn(int delta) {
|
|
if(!on) return false;
|
|
for(int i=0; i<delta; i++) {
|
|
for(auto& b: balls) {
|
|
/* gravity direction: z */
|
|
b.vel += ctangent(2, 1e-6) * gravity;
|
|
|
|
geodesic_steps(b.at, b.vel, 1);
|
|
|
|
if(!nonisotropic && !euclid) {
|
|
ld e = sqrt(abs(inner(b.at, b.at)));
|
|
b.at /= e;
|
|
ld e2 = inner(b.at, b.vel) * sig(3);
|
|
b.vel -= b.at * e2;
|
|
}
|
|
|
|
hyperpoint v = inverse_exp(shiftless(b.at));
|
|
ld d = hypot_d(3, v);
|
|
ld rbs = r_big_ball - r_small_ball;
|
|
if(d > rbs) {
|
|
hyperpoint c = C0, ve = v * rbs / d;
|
|
geodesic_steps(c, ve, 20);
|
|
hyperpoint ort = ve / d;
|
|
transmatrix T = gpushxto0(b.at);
|
|
b.vel -= inner(T*b.vel, T*ort) * ort * (1 + elastic_out);
|
|
|
|
b.at = c;
|
|
if(!nonisotropic && !euclid) {
|
|
ld e2 = inner(b.at, b.vel) * sig(3);
|
|
b.vel -= b.at * e2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This is not optimized. It should use a partition of the space,
|
|
* to tell which balls have a chance to touch each other. */
|
|
|
|
for(auto& b1: balls)
|
|
for(auto& b2: balls) {
|
|
if(&b2 == &b1) break;
|
|
hyperpoint dif = inverse_exp(shiftless(gpushxto0(b1.at) * b2.at));
|
|
ld d = hypot_d(3, dif);
|
|
if(d < r_small_ball * 2) {
|
|
hyperpoint ort1 = (dif / d);
|
|
ld vel1 = +inner(gpushxto0(b1.at) * b1.vel, ort1);
|
|
hyperpoint ort2 = inverse_exp(shiftless(gpushxto0(b2.at) * b1.at)) / d;
|
|
ld vel2 = +inner(gpushxto0(b2.at) * b2.vel, ort2);
|
|
ld vels = vel1 + vel2;
|
|
if(vels < 0) continue;
|
|
|
|
vels *= (1 + elastic_in) / 2;
|
|
|
|
b1.vel -= rgpushxto0(b1.at) * (vels * ort1);
|
|
b2.vel -= rgpushxto0(b2.at) * (vels * ort2);
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int args() {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
|
|
else if(argis("-ball-physics")) {
|
|
start_game();
|
|
check_cgi();
|
|
cgi.require_shapes();
|
|
shift();
|
|
initialize(argi());
|
|
View = cspin90(1, 2);
|
|
}
|
|
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
auto celldemo = addHook(hooks_drawcell, 100, draw_balls) +
|
|
addHook(shmup::hooks_turn, 100, turn) +
|
|
addHook(hooks_args, 100, args) +
|
|
addHook(hooks_clearmemory, 40, [] () {
|
|
balls.clear();
|
|
on = false;
|
|
});
|
|
|
|
}
|
|
}
|