mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-25 00:16:59 +00:00
496 lines
14 KiB
C++
496 lines
14 KiB
C++
/**
|
|
|
|
Honeycomb data generator.
|
|
|
|
Usage:
|
|
|
|
./hyper -geo 534h -gen-rule honeycomb-rules-534.dat -quit
|
|
./hyper -geo 535h -gen-rule honeycomb-rules-535.dat -quit
|
|
./hyper -geo 435h -gen-rule honeycomb-rules-435.dat -quit
|
|
./hyper -geo 353h -gen-rule honeycomb-rules-353.dat -quit
|
|
|
|
You need to change the value of XS7 to 6 (for 435) or 12 (for others)
|
|
|
|
You also need to select 'fp used for rules'
|
|
|
|
This algorithm works as follows:
|
|
|
|
- We use a DFS-like algorithm to identify all the required states. To tell whether two cells
|
|
c1 and c2 are in the same state, we compute its generate_ext_nei -- the same generate_ext_nei
|
|
is the same state. To compute generate_ext_nei(c), we list all cells vertex-adjacent to c,
|
|
and for each c' in this list, we compute FV(c')-FV(c), where FV is the distance from
|
|
some central tile. It is crucial to identify the directions in unique way (in 2D we can simply
|
|
use clockwise order, in 3D it is more difficult) -- we do this by using a regular pattern
|
|
(see get_id).
|
|
|
|
After all states are identified, we construct the tree of states -- every non-root state is
|
|
attached to the first neighbor (according to the direction order) which has smaller FV.
|
|
For non-tree directions, we construct a path going through nodes with smaller values of FV --
|
|
this guarantees termination of the algorithm in amortized time O(1).
|
|
|
|
*/
|
|
|
|
#include "zlib.h"
|
|
#include "../hyper.h"
|
|
|
|
namespace hr {
|
|
|
|
map<string, map<string,int> > rules;
|
|
|
|
/** \brief S7 -- for efficiency this is a fixed constant */
|
|
#define XS7 20
|
|
|
|
/** \brief distance from the center */
|
|
#define FV master->fiftyval
|
|
|
|
/** \brief change i into a string containing a displayable character */
|
|
auto dis = [] (int i, char init='a') { return s0 + char(init + i); };
|
|
|
|
/** \brief we use a regular pattern to make sure that the directions are identified consistently.
|
|
In {5,3,5} we can just use the Seifert-Weber space for this identification; otherwise,
|
|
we use the field pattern. */
|
|
|
|
int get_id(cell *c) {
|
|
if(geometry == gSpace535) return 0;
|
|
return c->master->fieldval;
|
|
}
|
|
|
|
/** \brief aux function for find_path which limits path length
|
|
* the rule is that we make some moves which decrease FV, then we make some moves which increase FV
|
|
*/
|
|
|
|
string find_path(cell *x, cell *y, int steps) {
|
|
if(x->FV != y->FV) {
|
|
println(hlog, x, y, " steps=", steps, " d=", x->FV, " vs ", y->FV);
|
|
exit(3);
|
|
}
|
|
if(x == y) return "";
|
|
if(steps == 0) return "?";
|
|
for(int i=0; i<S7; i++)
|
|
if(x->move(i) && x->move(i)->FV < x->FV)
|
|
for(int j=0; j<S7; j++)
|
|
if(y->move(j) && y->move(j)->FV < y->FV) {
|
|
string ch = find_path(x->move(i), y->move(j), steps-1);
|
|
if(ch == "?") continue;
|
|
return dis(i) + ch + dis(y->c.spin(j));
|
|
}
|
|
return "?";
|
|
}
|
|
|
|
/** \brief aux function for find_path which limits path length
|
|
* the rule is that we keep to a fixed FV-level (this works better in {x,x,3})
|
|
*/
|
|
|
|
string find_path_side(cell *x, cell *y, int steps) {
|
|
if(x->FV != y->FV) {
|
|
println(hlog, x, y, " steps=", steps, " d=", x->FV, " vs ", y->FV);
|
|
exit(3);
|
|
}
|
|
if(x == y) return "";
|
|
if(steps == 0) return "?";
|
|
for(int i=0; i<S7; i++)
|
|
if(x->move(i) && x->move(i)->FV == x->FV) {
|
|
string ch = find_path_side(x->move(i), y, steps-1);
|
|
if(ch == "?") continue;
|
|
return dis(i) + ch;
|
|
}
|
|
return "?";
|
|
}
|
|
|
|
/** \brief find the sequence of moves we need to take to get from y to x (x and y must be the same fv-level)
|
|
* return '?' if nothing found
|
|
*/
|
|
|
|
string find_path(cell *x, cell *y) {
|
|
if(x == y) return "";
|
|
|
|
if(geometry == gSpace353) {
|
|
static int max_steps = -1;
|
|
|
|
for(int steps=0; steps<5; steps++) {
|
|
string f = find_path_side(x, y, steps);
|
|
if(f != "?") {
|
|
if(steps > max_steps) {
|
|
println(hlog, "found a sidepath with ", max_steps = steps, " steps");
|
|
}
|
|
return f;
|
|
}
|
|
}
|
|
|
|
if(max_steps < 10) {
|
|
max_steps = 10;
|
|
println(hlog, "failed to find_path_side");
|
|
}
|
|
}
|
|
|
|
for(int steps=0;; steps++) {
|
|
string f = find_path(x, y, steps);
|
|
if(f != "?") return f;
|
|
}
|
|
}
|
|
|
|
vector<array<string, XS7>> rule_list;
|
|
|
|
/** a map of all the cells vertex-adjacent to c */
|
|
struct ext_nei_rules_t {
|
|
vector<int> from, dir, original;
|
|
};
|
|
|
|
/** ext_nei_rules_t need to be created only once for each get_id */
|
|
map<int, ext_nei_rules_t> ext_nei_rules;
|
|
|
|
/** aux recursive function of construct_rules */
|
|
void listnear(cell *c, ext_nei_rules_t& e, const transmatrix& T, int id, set<cell*>& visi) {
|
|
visi.insert(c);
|
|
int a = 0, b = 0;
|
|
for(int i=0; i<S7; i++) {
|
|
bool ok = false;
|
|
transmatrix U = T * currentmap->adj(c, i);
|
|
for(auto v: cgi.vertices_only) for(auto w: cgi.vertices_only)
|
|
if(hdist(v, U*w) < 1e-3) ok = true;
|
|
if(!ok) continue;
|
|
cell *c1 = c->cmove(i);
|
|
int id1 = isize(e.from);
|
|
e.from.push_back(id);
|
|
e.dir.push_back(i);
|
|
a++;
|
|
e.original.push_back(!visi.count(c1));
|
|
if(e.original.back()) {
|
|
b++;
|
|
listnear(c1, e, U, id1, visi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \brief create ext_nei_rules_t for the given c */
|
|
void construct_rules(cell *c, ext_nei_rules_t& e) {
|
|
e.from = {-1};
|
|
e.dir = {-1};
|
|
e.original = {1};
|
|
set<cell*> visi;
|
|
listnear(c, e, Id, 0, visi);
|
|
int orgc = 0;
|
|
for(auto i: e.original) orgc += i;
|
|
println(hlog, "id ", get_id(c), " list length = ", isize(e.original), " original = ", orgc);
|
|
}
|
|
|
|
/** \brief we learn that a and b are connected -- make sure that their FV's match */
|
|
void fix_dist(cell *a, cell *b) {
|
|
if(a->FV > b->FV+1) {
|
|
a->FV = b->FV+1;
|
|
forCellEx(c, a) fix_dist(a, c);
|
|
}
|
|
if(b->FV > a->FV+1) {
|
|
b->FV = a->FV+1;
|
|
forCellEx(c, b) fix_dist(b, c);
|
|
}
|
|
}
|
|
|
|
/** \brief compute ext_nei_rules_t for the given cell, and make it into a string form; also do fix_dist */
|
|
|
|
string generate_ext_nei(cell *c) {
|
|
int fv = get_id(c);
|
|
auto& e = ext_nei_rules[fv];
|
|
if(e.from.empty()) construct_rules(c, e);
|
|
vector<cell*> ext_nei = {c};
|
|
for(int i=1; i<isize(e.from); i++) {
|
|
cell *last = ext_nei[e.from[i]];
|
|
cell *next = last->cmove(e.dir[i]);
|
|
fix_dist(last, next);
|
|
ext_nei.push_back(next);
|
|
}
|
|
string res;
|
|
for(int i=0; i<isize(e.from); i++) if(e.original[i]) res += char('L' + ext_nei[i]->FV - c->FV);
|
|
return its(fv) + ":" + res;
|
|
}
|
|
|
|
/** cells become 'candidates' before their generate_ext_nei is checked in order to let them become states */
|
|
set<cell*> candidates;
|
|
vector<cell*> candidates_list;
|
|
|
|
/** the state ID for a given string returned by generate_ext_nei */
|
|
map<string, int> id_of;
|
|
|
|
/** cell representing the given state ID */
|
|
vector<cell*> rep_of;
|
|
|
|
/** current number of states */
|
|
int number_states = 0;
|
|
|
|
/** \brief for state s, child_rules[s][i] is -1 if i-th neighbor not a child; otherwise, the state index of that neighbor */
|
|
vector<array<int, XS7> > child_rules;
|
|
|
|
/** \brief if child_rules[s][i] is -1, the rules to get to that neighbor */
|
|
vector<array<string, XS7> > side_rules;
|
|
|
|
void add_candidate(cell *c) {
|
|
if(candidates.count(c)) return;
|
|
candidates.insert(c);
|
|
candidates_list.push_back(c);
|
|
}
|
|
|
|
/** the main function */
|
|
void test_canonical(string fname) {
|
|
if(S7 != XS7) { println(hlog, "fix XS7=", S7); exit(4); }
|
|
stop_game();
|
|
reg3::reg3_rule_available = false;
|
|
start_game();
|
|
|
|
int qc = reg3::quotient_count();
|
|
|
|
vector<cell*> c0;
|
|
|
|
/* we start from a 'center' in every get_id-type */
|
|
if(geometry == gSpace535) {
|
|
c0.resize(qc, cwt.at);
|
|
}
|
|
else {
|
|
for(int fv=0; fv<qc; fv++) {
|
|
cell *c = cwt.at;
|
|
/* 100 to ensure that the FV-spheres around candidates do not interact */
|
|
for(int i=0; i<100 || get_id(c) != fv; i++) c = c->cmove(hrand(S7));
|
|
c->FV = 0;
|
|
c0.push_back(c);
|
|
}
|
|
}
|
|
|
|
for(cell* c: c0) add_candidate(c);
|
|
|
|
array<int, XS7> empty;
|
|
for(auto& e: empty) e = -1;
|
|
println(hlog, "empty = ", empty);
|
|
|
|
/** generate candidate_list using a BFS-like algorithm, starting from c0 */
|
|
|
|
for(int i=0; i<isize(candidates_list); i++) {
|
|
cell *c = candidates_list[i];
|
|
string s = generate_ext_nei(c);
|
|
if(!id_of.count(s)) {
|
|
// println(hlog, "found candidate for: ", s);
|
|
id_of[s] = number_states++;
|
|
rep_of.push_back(c);
|
|
for(int i=0; i<S7; i++) add_candidate(c->cmove(i));
|
|
}
|
|
}
|
|
|
|
child_rules.resize(number_states, empty);
|
|
|
|
println(hlog, "found ", its(number_states), " states");
|
|
|
|
/** generate child_rules */
|
|
|
|
for(int i=0; i<number_states; i++) {
|
|
cell *c = rep_of[i];
|
|
|
|
string st = generate_ext_nei(c);
|
|
if(!id_of.count(st) || id_of[st] != i) {
|
|
println(hlog, "error: ext_nei changed");
|
|
}
|
|
|
|
for(int a=0; a<S7; a++) {
|
|
cell *c1 = c->move(a);
|
|
if(c1->FV <= c->FV) continue;
|
|
for(int b=0; b<S7; b++) {
|
|
cell *c2 = c1->move(b);
|
|
if(c2->FV != c->FV) continue;
|
|
if(c2 == c) {
|
|
string st = generate_ext_nei(c1);
|
|
if(!id_of.count(st)) {
|
|
println(hlog, "error: new state generated while generating child_rules");
|
|
}
|
|
child_rules[i][a] = id_of[st];
|
|
}
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if(true) {
|
|
|
|
/* minimize the automaton */
|
|
|
|
// println(hlog, "original rules: ", child_rules);
|
|
fflush(stdout);
|
|
|
|
vector<int> ih(number_states, 0);
|
|
|
|
int lqids = 0;
|
|
|
|
for(int a=0; a<100; a++) {
|
|
set<array<int, XS7>> found;
|
|
vector<array<int, XS7>> v(number_states);
|
|
map<array<int, XS7>, int> ids;
|
|
for(int i=0; i<number_states; i++) {
|
|
array<int, XS7> res;
|
|
for(int d=0; d<XS7; d++) res[d] = (child_rules[i][d] != -1) ? ih[child_rules[i][d]] : -1;
|
|
v[i] = res;
|
|
found.insert(res);
|
|
}
|
|
int qids = 0;
|
|
for(auto hash: found) ids[hash] = qids++;
|
|
println(hlog, "minimization step: ", qids, " states");
|
|
if(qids == lqids) break;
|
|
lqids = qids;
|
|
for(int i=0; i<number_states; i++)
|
|
ih[i] = ids[v[i]];
|
|
}
|
|
|
|
println(hlog, "reduced states to = ", lqids);
|
|
vector<array<int, XS7> > new_child_rules;
|
|
new_child_rules.resize(lqids, empty);
|
|
for(int i=0; i<number_states; i++) {
|
|
int j = ih[i];
|
|
for(int d=0; d<XS7; d++) {
|
|
int cid = child_rules[i][d];
|
|
new_child_rules[j][d] = cid == -1 ? -1 : ih[cid];
|
|
}
|
|
}
|
|
child_rules = new_child_rules;
|
|
number_states = lqids;
|
|
for(auto& p: id_of) p.second = ih[p.second];
|
|
println(hlog, "rehashed");
|
|
fflush(stdout);
|
|
}
|
|
|
|
// for(auto& a: child_rules) for(auto i:a) print(hlog, i, ",");
|
|
println(hlog);
|
|
|
|
/* generate side rules */
|
|
side_rules.resize(number_states);
|
|
|
|
for(int i=0; i<isize(candidates_list); i++) {
|
|
cell *c = candidates_list[i];
|
|
string s = generate_ext_nei(c);
|
|
if(!id_of.count(s)) println(hlog, "error: MISSING");
|
|
int id = id_of[s];
|
|
|
|
cell *cpar = nullptr;
|
|
int a0;
|
|
|
|
for(int a=0; a<S7; a++) {
|
|
cell *c1 = c->move(a);
|
|
if(!c1) continue;
|
|
if(c1->FV < c->FV && !cpar) cpar = c1, a0 = a;
|
|
}
|
|
|
|
for(int a=0; a<S7; a++) {
|
|
cell *c1 = c->move(a);
|
|
if(!c1) continue;
|
|
bool is_child = false;
|
|
cell* c2 = nullptr;
|
|
int dir = 0;
|
|
|
|
if(c1->FV >= c->FV) {
|
|
for(int b=0; b<S7; b++) {
|
|
c2 = c1->move(b);
|
|
if(!c2) continue;
|
|
if(c2->FV >= c1->FV) continue;
|
|
dir = c1->c.spin(b);
|
|
break;
|
|
}
|
|
}
|
|
|
|
is_child = (c2 == c);
|
|
bool was_child = child_rules[id][a] >= 0;
|
|
|
|
if(is_child ^ was_child) {
|
|
println(hlog, "id=", id, " a=", a);
|
|
println(hlog, "is_child = ", is_child);
|
|
println(hlog, "was_child = ", was_child);
|
|
println(hlog, "c fv = ", c->FV);
|
|
println(hlog, "c1 fv = ", c1->FV, " [", a, "]");
|
|
if(c2 == nullptr) { println(hlog, "c2 missing"); }
|
|
else
|
|
println(hlog, "c2 fv = ", c2->FV, " [", c2->c.spin(dir), "]");
|
|
println(hlog, c, "->", c1, "->", c2);
|
|
fflush(stdout);
|
|
|
|
cell *r = rep_of[id];
|
|
println(hlog, r, " at ", r->FV);
|
|
cell *r1 = r->move(a);
|
|
if(!r1) { println(hlog, "error: r1 missing"); continue; }
|
|
println(hlog, r1, " at ", r1->FV);
|
|
for(int a=0; a<S7; a++) if(r1->move(a)) println(hlog, a, ":", r1->move(a), " at ", r1->move(a)->FV);
|
|
fflush(stdout);
|
|
exit(3);
|
|
}
|
|
|
|
if(is_child) continue;
|
|
|
|
string solu;
|
|
|
|
if(c1->FV < c->FV)
|
|
solu = dis(a0, 'A') + find_path(cpar, c1);
|
|
else if(c1->FV == c->FV)
|
|
solu = dis(a0, 'A') + find_path(cpar, c2) + dis(dir);
|
|
else
|
|
solu = find_path(c, c2) + dis(dir);
|
|
|
|
auto& sr = side_rules[id][a];
|
|
|
|
if(sr != "" && sr != solu) {
|
|
println(hlog, "conflict: ", solu, " vs ", sr, " FV = ", c->FV, " vs ", c1->FV);
|
|
if(isize(sr) < isize(solu)) continue;
|
|
}
|
|
|
|
sr = solu;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// println(hlog, side_rules);
|
|
|
|
string side_data;
|
|
for(auto& a: side_rules) for(auto&b :a) if(b != "") side_data += b + ",";
|
|
println(hlog, side_data);
|
|
|
|
vector<short> data;
|
|
for(auto& a: child_rules) for(auto i:a) data.push_back(i);
|
|
|
|
shstream ss;
|
|
|
|
auto& fp = currfp;
|
|
hwrite_fpattern(ss, fp);
|
|
|
|
vector<int> root(qc, 0);
|
|
for(int i=0; i<qc; i++) root[i] = id_of[generate_ext_nei(c0[i])];
|
|
println(hlog, "root = ", root);
|
|
|
|
hwrite(ss, root);
|
|
|
|
println(hlog, "copy data");
|
|
hwrite(ss, data);
|
|
println(hlog, "copy side_data");
|
|
hwrite(ss, side_data);
|
|
|
|
println(hlog, "compress_string");
|
|
string s = compress_string(ss.s);
|
|
|
|
fhstream of(fname, "wb");
|
|
print(of, s);
|
|
}
|
|
|
|
auto fqhook =
|
|
addHook(hooks_args, 100, [] {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-extra-verification")) {
|
|
reg3::extra_verification++;
|
|
}
|
|
else if(argis("-no-rule")) {
|
|
reg3::reg3_rule_available = false;
|
|
}
|
|
else if(argis("-gen-rule")) {
|
|
shift(); test_canonical(args());
|
|
}
|
|
else return 1;
|
|
return 0;
|
|
});
|
|
|
|
}
|
|
|
|
// 1 + 12 + 30 + 20 = 55
|