mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-06 23:40:34 +00:00
318 lines
9.0 KiB
C++
318 lines
9.0 KiB
C++
// non-Euclidean sunflower spirals (aka golden spirals or Fibonacci spirals)
|
|
// Copyright (C) 2018 Zeno and Tehora Rogue, see 'hyper.cpp' for details
|
|
|
|
// use: commandline parameter -sunflower <quantity> <density>
|
|
// e.g.: hyper -sunflower-qd 10000 1
|
|
// e.g.: hyper -sunflower-dr 1 4.5
|
|
|
|
// Commandlines for https://twitter.com/ZenoRogue/status/1247900522905886723 :
|
|
|
|
// Part 1:
|
|
// -geo 1 -sunflower-node 1 -sunflower-qd "1..10..20..60..100..140..180..220..|1000..1040..|2000..2040..|5000..5040..|10000..10040" 1 -zoom "sqrt(1000/(100+sunq))" -animperiod 20000 -shott 0 -back A0E0A0 -lw 16 -shotxy 1000 1000 -shotaa 2
|
|
|
|
// Part 2:
|
|
// -rugtsize 8192 -rugon -run -rugv 4000000 -run -sunflower-dr "0.001..0.002..0.005..0.01..0.02..0.04..0.06..0.07..0.08..0.09" 3..4.1..4.5..4.5..4.5..4.5..4.5..4.5..4.5 -lw 4 -sunflower-out 1 -shott 0 -back A0E0A0 -shotxy 1000 1000 -shotaa 2 -sunflower-adj 16 -animrec 600 curv%04d.png
|
|
// rotate the rug; press F10; wait until rug has millions of vertices; press F10; animation will be recorded
|
|
|
|
// Part 3:
|
|
// -rugtsize 8192 -rugon -rugv 1000000 -sunflower-dr .5 4.5 -lw 16 -shott 0 -back A0E0A0 -shotxy 1000 1000 -shotaa 2 -sunflower-adj 6
|
|
// (rotation animation set manually)
|
|
|
|
// Part 4:
|
|
// -geo 2 -sunflower-dr .1 pi -shott 0 -back A0E0A0 -shotxy 1000 1000 -shotaa 2 -animmove "2*pi" 0 0
|
|
|
|
#include "rogueviz.h"
|
|
|
|
namespace rogueviz {
|
|
|
|
namespace sunflower {
|
|
|
|
bool on;
|
|
|
|
bool nodes;
|
|
|
|
ld qty = 100;
|
|
ld density = 1, zdensity;
|
|
ld range;
|
|
|
|
ld distance_per_rug;
|
|
|
|
bool adjust_rug;
|
|
|
|
/* which property to infer from the other two: 'd'ensity, 'q'ty or 'r'ange */
|
|
char infer;
|
|
|
|
vector<hyperpoint> ps;
|
|
|
|
int iqty;
|
|
|
|
ld qfrac;
|
|
|
|
bool outward = false;
|
|
|
|
hyperpoint p(int i) {
|
|
ld step = M_PI * (3 - sqrt(5));
|
|
return spin((outward ? i : i-iqty) * step) * xpush(sphere ? (acos(1 - (i+.5+qfrac) * density)) : euclid ? sqrt((i+.5+qfrac) * density) : acosh(1 + (i+.5+qfrac) * density)) * C0;
|
|
}
|
|
|
|
vector<int> inext, inext2;
|
|
|
|
vector<int> fibs = {1, 2};
|
|
|
|
bool sunflower_cell(cell *c, transmatrix V) {
|
|
if(!on) return false;
|
|
density = zdensity / 100;
|
|
|
|
ld qd;
|
|
|
|
if(sphere) {
|
|
if(infer == 'r')
|
|
range = qty * density * M_PI/2;
|
|
else qd = range * 2/M_PI;
|
|
}
|
|
else if(euclid) {
|
|
if(infer == 'r')
|
|
range = sqrt(qty * density);
|
|
else qd = range * range;
|
|
}
|
|
else {
|
|
if(infer == 'r')
|
|
range = acosh(1 + qty * density);
|
|
else
|
|
qd = (cosh(range) - 1);
|
|
}
|
|
|
|
if(infer == 'q') qty = qd / density;
|
|
if(infer == 'd') density = qd / qty;
|
|
|
|
if(adjust_rug) {
|
|
using namespace rug;
|
|
|
|
model_distance = sqrt(zdensity) * distance_per_rug;
|
|
|
|
}
|
|
|
|
iqty = qty;
|
|
qfrac = qty - iqty;
|
|
if(outward) qfrac = 0;
|
|
if(iqty < 0 || iqty > 2000000) return false;
|
|
|
|
ps.resize(iqty);
|
|
inext.resize(iqty);
|
|
inext2.resize(iqty);
|
|
while(fibs.back() < iqty) {
|
|
auto add = fibs.back() + *(fibs.end()-2);
|
|
fibs.push_back(add);
|
|
}
|
|
|
|
if(c == cwt.at) {
|
|
for(int i=0; i<iqty; i++) ps[i] = V * p(i);
|
|
|
|
for(int i=0; i<iqty; i++) {
|
|
ld ba = 99;
|
|
ld bb = 99;
|
|
int bi = 0, bj = 0;
|
|
for(int a: fibs) {
|
|
if(a>i) break;
|
|
if(hdist(ps[i], ps[i-a]) < ba)
|
|
bb = ba, bj = bi, ba = hdist(ps[i], ps[i-a]), bi = i-a;
|
|
else if(hdist(ps[i], ps[i-a]) < bb)
|
|
bb = hdist(ps[i], ps[i-a]), bj = i-a;
|
|
}
|
|
inext[i] = bi;
|
|
inext2[i] = bj;
|
|
}
|
|
|
|
for(int i=0; i<iqty; i++) {
|
|
if(inext[inext[i]] == inext2[i] || inext2[inext[i]] == inext2[i] || inext[inext2[i]] == inext[i] || inext2[inext2[i]] == inext[i]) {
|
|
curvepoint(ps[i]);
|
|
curvepoint(ps[inext[i]]);
|
|
curvepoint(ps[inext2[i]]);
|
|
// queuecurve(0xFFFFFFFF, 0x00C000FF, PPR::LINE);
|
|
queuecurve(0x000000FF, 0xC04000FF, PPR::LINE);
|
|
}
|
|
else {
|
|
curvepoint(ps[i]);
|
|
curvepoint(ps[inext[i]]);
|
|
curvepoint(ps[inext[i] + inext2[i] - i]);
|
|
curvepoint(ps[inext2[i]]);
|
|
queuecurve(0x000000FF, 0xFFD500FF, PPR::LINE);
|
|
}
|
|
if(nodes) queuepolyat(rgpushxto0(ps[i]), cgi.shSnowball, 0xFF, PPR::SUPERLINE);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void insert_param() {
|
|
params.insert({"sund", zdensity});
|
|
params.insert({"sunq", qty});
|
|
params.insert({"sunr", range});
|
|
params.insert({"sunf", distance_per_rug});
|
|
}
|
|
|
|
int readArgs() {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-sunflower-qd")) {
|
|
on = true;
|
|
infer = 'r';
|
|
shift_arg_formula(qty);
|
|
shift_arg_formula(zdensity);
|
|
patterns::whichShape = '9';
|
|
insert_param();
|
|
nohud = true;
|
|
}
|
|
else if(argis("-sunflower-qr")) {
|
|
on = true;
|
|
infer = 'd';
|
|
shift_arg_formula(qty);
|
|
shift_arg_formula(range);
|
|
patterns::whichShape = '9';
|
|
insert_param();
|
|
nohud = true;
|
|
}
|
|
else if(argis("-sunflower-dr")) {
|
|
on = true;
|
|
infer = 'q';
|
|
shift_arg_formula(zdensity);
|
|
shift_arg_formula(range);
|
|
patterns::whichShape = '9';
|
|
insert_param();
|
|
nohud = true;
|
|
}
|
|
else if(argis("-sunflower-node")) {
|
|
shift(); nodes = argi();
|
|
}
|
|
else if(argis("-sunflower-out")) {
|
|
shift(); outward = argi();
|
|
}
|
|
else if(argis("-sunflower-adj")) {
|
|
adjust_rug = true;
|
|
shift_arg_formula(distance_per_rug);
|
|
}
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
void show() {
|
|
cmode = sm::SIDE | sm::MAYDARK;
|
|
gamescreen(0);
|
|
dialog::init(XLAT("sunflower spirals"), 0xFFFFFFFF, 150, 0);
|
|
|
|
dialog::addSelItem("density", fts(zdensity), 'd');
|
|
dialog::add_action([] {
|
|
if(infer == 'd') infer = 'q';
|
|
dialog::editNumber(zdensity, 0, 2, .1, 1, "density", "density");
|
|
});
|
|
|
|
dialog::addSelItem("quantity", fts(qty), 'q');
|
|
dialog::add_action([] {
|
|
if(infer == 'q') infer = 'r';
|
|
dialog::editNumber(qty, 1, 100000, .1, 1000, "quantity", "quantity");
|
|
dialog::scaleLog();
|
|
});
|
|
|
|
dialog::addSelItem("radius", fts(range), 'q');
|
|
dialog::add_action([] {
|
|
if(infer == 'r') infer = 'd';
|
|
dialog::editNumber(range, 0, 10, .1, 2*M_PI, "range", "range");
|
|
dialog::scaleLog();
|
|
});
|
|
|
|
dialog::addSelItem("infer", infer == 'd' ? "density" : infer == 'q' ? "quantity" : "range", 'i');
|
|
dialog::add_action([] {
|
|
if(infer == 'r') infer = 'd';
|
|
else if(infer == 'd') infer = 'q';
|
|
else infer = 'r';
|
|
});
|
|
|
|
if(rug::rugged) {
|
|
dialog::addBoolItem("adjust Rug curvature", adjust_rug, 'a');
|
|
dialog::add_action([] {
|
|
adjust_rug = !adjust_rug;
|
|
distance_per_rug = rug::model_distance / sqrt(zdensity);
|
|
});
|
|
if(adjust_rug) {
|
|
dialog::addSelItem("factor", fts(distance_per_rug), 'f');
|
|
dialog::add_action([] {
|
|
dialog::editNumber(distance_per_rug, 0, 10, .1, 4,
|
|
"factor", "factor");
|
|
});
|
|
}
|
|
else {
|
|
dialog::addItem("disable the Hypersian Rug", 'f');
|
|
dialog::add_action(rug::close);
|
|
}
|
|
}
|
|
else {
|
|
dialog::addItem("enable the Hypersian Rug", 'a');
|
|
dialog::add_action(rug::init);
|
|
}
|
|
|
|
dialog::addBoolItem("draw the seeds", nodes, 's');
|
|
|
|
dialog::addBoolItem("grow at the edge", outward, 'o');
|
|
|
|
dialog::addBack();
|
|
dialog::display();
|
|
}
|
|
|
|
void o_key(o_funcs& v) {
|
|
if(on) v.push_back(named_dialog("sunflowers", show));
|
|
}
|
|
|
|
auto hook = 0
|
|
#if CAP_COMMANDLINE
|
|
+ addHook(hooks_args, 100, readArgs)
|
|
#endif
|
|
+ addHook(hooks_o_key, 80, o_key)
|
|
+ addHook(hooks_drawcell, 100, sunflower_cell)
|
|
+ addHook(rvtour::hooks_build_rvtour, 144, [] (vector<tour::slide>& v) {
|
|
using namespace tour;
|
|
v.push_back(
|
|
tour::slide{"unsorted/sunflower spirals", 18, LEGAL::ANY | QUICKGEO,
|
|
"A sunflower sends out its n-th seed at angle 180° (3-sqrt(5)). "
|
|
"As new seeds are created, older seeds are pushed out. Therefore. "
|
|
"the distance d(n) of the n-th seed from the center will be such that "
|
|
"the area of a circle of radius d(n) changes linearly with n.\n\n"
|
|
"In the Euclidean plane, this process creates an interesting "
|
|
"phenomenon: if we try to compute the number of spirals at a given "
|
|
"distance from the center, we usually obtain a Fibonacci number. "
|
|
"The further from the start we are, the larger Fibonacci number we "
|
|
"get.\n\n"
|
|
"Because of the exponential growth in the hyperbolic plane, we "
|
|
"get to larger Fibonacci numbers faster.\n\n"
|
|
|
|
"Press 123 to change the geometry, 5 to see this in the Hypersian Rug model. "
|
|
"Press o to change the density.",
|
|
|
|
[] (presmode mode) {
|
|
setCanvas(mode, '0');
|
|
|
|
if((mode == pmStop || mode == pmGeometry) && rug::rugged) rug::close();
|
|
|
|
if(mode == pmKey) {
|
|
if(rug::rugged) rug::close();
|
|
else rug::init();
|
|
}
|
|
|
|
if(mode == pmStart) {
|
|
stop_game();
|
|
|
|
tour::slide_backup(on, true);
|
|
tour::slide_backup(range, sphere ? 2 : euclid ? 10 : 4.3);
|
|
tour::slide_backup<ld>(zdensity, 1);
|
|
tour::slide_backup(infer, 'q');
|
|
|
|
insert_param();
|
|
start_game();
|
|
}
|
|
}}
|
|
);
|
|
});
|
|
|
|
}
|
|
|
|
} |