1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-24 21:37:18 +00:00
hyperrogue/models.cpp
2020-04-17 15:37:02 +02:00

805 lines
30 KiB
C++

// Hyperbolic Rogue -- models of hyperbolic geometry
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file models.cpp
* \brief models of hyperbolic geometry: their properties, projection menu
*
* The actual models are implemented in hypgraph.cpp. Also shaders.cpp,
* drawing.cpp, and basegraph.cpp are important.
*/
#include "hyper.h"
namespace hr {
EX namespace polygonal {
#if ISMOBWEB
typedef double precise;
#else
typedef long double precise;
#endif
#if HDR
static const int MSI = 120;
#endif
typedef long double xld;
typedef complex<xld> cxld;
EX int SI = 4;
EX ld STAR = 0;
EX int deg = ISMOBWEB ? 2 : 20;
precise matrix[MSI][MSI];
precise ans[MSI];
cxld coef[MSI];
EX ld coefr[MSI], coefi[MSI];
EX int maxcoef, coefid;
EX void solve() {
if(pmodel == mdPolynomial) {
for(int i=0; i<MSI; i++) coef[i] = cxld(coefr[i], coefi[i]);
return;
}
if(pmodel != mdPolygonal) return;
if(SI < 3) SI = 3;
for(int i=0; i<MSI; i++) ans[i] = cos(M_PI / SI);
for(int i=0; i<MSI; i++)
for(int j=0; j<MSI; j++) {
precise i0 = (i+0.) / (MSI-1);
// i0 *= i0;
// i0 = 1 - i0;
i0 *= M_PI;
matrix[i][j] =
cos(i0 * (j + 1./SI)) * (STAR > 0 ? (1+STAR) : 1)
- sin(i0 * (j + 1./SI)) * (STAR > 0 ? STAR : STAR/(1+STAR));
}
for(int i=0; i<MSI; i++) {
precise dby = matrix[i][i];
for(int k=0; k<MSI; k++) matrix[i][k] /= dby;
ans[i] /= dby;
for(int j=i+1; j<MSI; j++) {
precise sub = matrix[j][i];
ans[j] -= ans[i] * sub;
for(int k=0; k<MSI; k++)
matrix[j][k] -= sub * matrix[i][k];
}
}
for(int i=MSI-1; i>=0; i--) {
for(int j=0; j<i; j++) {
precise sub = matrix[j][i];
ans[j] -= ans[i] * sub;
for(int k=0; k<MSI; k++)
matrix[j][k] -= sub * matrix[i][k];
}
}
}
EX pair<ld, ld> compute(ld x, ld y, int prec) {
if(x*x+y*y > 1) {
xld r = hypot(x,y);
x /= r;
y /= r;
}
if(pmodel == mdPolynomial) {
cxld z(x,y);
cxld res (0,0);
for(int i=maxcoef; i>=0; i--) { res += coef[i]; if(i) res *= z; }
return make_pair(real(res), imag(res));
}
cxld z(x, y);
cxld res (0,0);
cxld zp = 1; for(int i=0; i<SI; i++) zp *= z;
for(int i=prec; i>0; i--) {
res += ans[i];
res *= zp;
}
res += ans[0]; res *= z;
return make_pair(real(res), imag(res));
}
EX pair<ld, ld> compute(ld x, ld y) { return compute(x,y,deg); }
EX }
#if HDR
inline bool mdAzimuthalEqui() { return among(pmodel, mdEquidistant, mdEquiarea, mdEquivolume); }
inline bool mdBandAny() { return mdinf[pmodel].flags & mf::pseudoband; }
inline bool mdPseudocylindrical() { return mdBandAny() && !(mdinf[pmodel].flags & mf::cylindrical); }
#endif
EX namespace models {
EX ld rotation = 0;
EX ld rotation_xz = 90;
EX ld rotation_xy2 = 90;
EX int do_rotate = 1;
EX ld ocos, osin, ocos_yz, osin_yz;
EX ld cos_ball, sin_ball;
EX bool model_straight, model_straight_yz;
#if HDR
// screen coordinates to logical coordinates: apply_orientation(x,y)
// logical coordinates back to screen coordinates: apply_orientation(y,x)
template<class A>
void apply_orientation(A& x, A& y) { if(!model_straight) tie(x,y) = make_pair(x*ocos + y*osin, y*ocos - x*osin); }
template<class A>
void apply_orientation_yz(A& x, A& y) { if(!model_straight_yz) tie(x,y) = make_pair(x*ocos_yz + y*osin_yz, y*ocos_yz - x*osin_yz); }
template<class A>
void apply_ball(A& x, A& y) { tie(x,y) = make_pair(x*cos_ball + y*sin_ball, y*cos_ball - x*sin_ball); }
#endif
EX transmatrix rotmatrix() {
if(GDIM == 2 || prod) return spin(rotation * degree);
return spin(rotation_xy2 * degree) * cspin(0, 2, -rotation_xz * degree) * spin(rotation * degree);
}
int spiral_id = 7;
EX cld spiral_multiplier;
EX ld spiral_cone_rad;
EX bool ring_not_spiral;
/** the matrix to rotate the Euclidean view from the standard coordinates to the screen coordinates */
EX transmatrix euclidean_spin;
EX void configure() {
ld ball = -pconf.ballangle * degree;
cos_ball = cos(ball), sin_ball = sin(ball);
ocos = cos(pconf.model_orientation * degree);
osin = sin(pconf.model_orientation * degree);
ocos_yz = cos(pconf.model_orientation_yz * degree);
osin_yz = sin(pconf.model_orientation_yz * degree);
model_straight = (ocos > 1 - 1e-9);
model_straight_yz = GDIM == 2 || (ocos_yz > 1-1e-9);
if(history::on) history::apply();
if(!euclid) {
ld b = pconf.spiral_angle * degree;
ld cos_spiral = cos(b);
ld sin_spiral = sin(b);
spiral_cone_rad = pconf.spiral_cone * degree;
ring_not_spiral = abs(cos_spiral) < 1e-3;
ld mul = 1;
if(sphere) mul = .5 * pconf.sphere_spiral_multiplier;
else if(ring_not_spiral) mul = pconf.right_spiral_multiplier;
else mul = pconf.any_spiral_multiplier * cos_spiral;
spiral_multiplier = cld(cos_spiral, sin_spiral) * cld(spiral_cone_rad * mul / 2., 0);
}
if(euclid) {
euclidean_spin = pispin * inverse(cview() * master_relative(centerover, true));
euclidean_spin = gpushxto0(euclidean_spin * C0) * euclidean_spin;
hyperpoint h = inverse(euclidean_spin) * (C0 + (euc::eumove(gp::loc{1,0})*C0 - C0) * vpconf.spiral_x + (euc::eumove(gp::loc{0,1})*C0 - C0) * vpconf.spiral_y);
spiral_multiplier = cld(0, 2 * M_PI) / cld(h[0], h[1]);
}
if(centerover && !history::on)
if(isize(history::path_for_lineanimation) == 0 || ((quotient || arb::in()) && history::path_for_lineanimation.back() != centerover)) {
history::path_for_lineanimation.push_back(centerover);
}
band_shift = 0;
}
EX bool model_available(eModel pm) {
if(prod) {
if(pm == mdPerspective) return true;
if(among(pm, mdBall, mdHemisphere)) return false;
return PIU(model_available(pm));
}
if(sl2) return pm == mdGeodesic;
if(nonisotropic) return among(pm, mdDisk, mdPerspective, mdHorocyclic, mdGeodesic, mdEquidistant, mdFisheye);
if(pm == mdGeodesic && !sol) return false;
if(sphere && (pm == mdHalfplane || pm == mdBall))
return false;
if(GDIM == 2 && pm == mdPerspective) return false;
if(GDIM == 2 && pm == mdEquivolume) return false;
if(GDIM == 3 && among(pm, mdBall, mdHyperboloid, mdFormula, mdPolygonal, mdRotatedHyperboles, mdSpiral, mdHemisphere)) return false;
if(pm == mdCentralInversion && !euclid) return false;
return true;
}
EX bool has_orientation(eModel m) {
return
among(m, mdHalfplane, mdPolynomial, mdPolygonal, mdTwoPoint, mdJoukowsky, mdJoukowskyInverted, mdSpiral, mdSimulatedPerspective, mdTwoHybrid, mdHorocyclic) || mdBandAny();
}
EX bool is_perspective(eModel m) {
return among(m, mdPerspective, mdGeodesic);
}
EX bool is_3d(const projection_configuration& p) {
if(GDIM == 3) return true;
return among(p.model, mdBall, mdHyperboloid, mdHemisphere) || (p.model == mdSpiral && p.spiral_cone != 360);
}
EX bool has_transition(eModel m) {
return among(m, mdJoukowsky, mdJoukowskyInverted, mdBand) && GDIM == 2;
}
EX bool product_model(eModel m) {
if(!prod) return false;
if(among(m, mdPerspective, mdHyperboloid, mdEquidistant)) return false;
return true;
}
int editpos = 0;
EX string get_model_name(eModel m) {
if(m == mdDisk && GDIM == 3 && (hyperbolic || nonisotropic)) return XLAT("ball model/Gans");
if(m == mdPerspective && prod) return XLAT("native perspective");
if(prod) return PIU(get_model_name(m));
if(nonisotropic) {
if(m == mdHorocyclic && !sol) return XLAT("simple model: projection");
if(m == mdPerspective) return XLAT("simple model: perspective");
if(m == mdGeodesic) return XLAT("native perspective");
if(among(m, mdEquidistant, mdFisheye, mdHorocyclic)) return XLAT(mdinf[m].name_hyperbolic);
}
if(m == mdDisk && GDIM == 3) return XLAT("perspective in 4D");
if(m == mdHalfplane && GDIM == 3 && hyperbolic) return XLAT("half-space");
if(sphere)
return XLAT(mdinf[m].name_spherical);
if(euclid)
return XLAT(mdinf[m].name_euclidean);
if(hyperbolic)
return XLAT(mdinf[m].name_hyperbolic);
return "?";
}
vector<gp::loc> torus_zeros;
void match_torus_period() {
torus_zeros.clear();
for(int y=0; y<=200; y++)
for(int x=-200; x<=200; x++) {
if(y == 0 && x <= 0) continue;
transmatrix dummy = Id;
euc::coord v(x, y, 0);
bool mirr = false;
auto t = euc::eutester;
euc::eu.canonicalize(v, t, dummy, mirr);
if(v == euc::euzero && t == euc::eutester)
torus_zeros.emplace_back(x, y);
}
sort(torus_zeros.begin(), torus_zeros.end(), [] (const gp::loc p1, const gp::loc p2) {
ld d1 = hdist0(tC0(euc::eumove(p1)));
ld d2 = hdist0(tC0(euc::eumove(p2)));
if(d1 < d2 - 1e-6) return true;
if(d1 > d2 + 1e-6) return false;
return p1 < p2;
});
if(spiral_id > isize(torus_zeros)) spiral_id = 0;
dialog::editNumber(spiral_id, 0, isize(torus_zeros)-1, 1, 10, XLAT("match the period of the torus"), "");
dialog::reaction = [] () {
auto& co = torus_zeros[spiral_id];
vpconf.spiral_x = co.first;
vpconf.spiral_y = co.second;
};
dialog::bound_low(0);
dialog::bound_up(isize(torus_zeros)-1);
}
EX void edit_formula() {
if(vpconf.model != mdFormula) vpconf.basic_model = vpconf.model;
dialog::edit_string(vpconf.formula, "formula",
XLAT(
"This lets you specify the projection as a formula f. "
"The formula has access to the value 'z', which is a complex number corresponding to the (x,y) coordinates in the currently selected model; "
"the point z is mapped to f(z). You can also use the underlying coordinates ux, uy, uz."
) + "\n\n" + parser_help()
);
#if CAP_QUEUE && CAP_CURVE
dialog::extra_options = [] () {
initquickqueue();
queuereset(mdPixel, PPR::LINE);
for(int a=-1; a<=1; a++) {
curvepoint(point2(-M_PI/2 * current_display->radius, a*current_display->radius));
curvepoint(point2(+M_PI/2 * current_display->radius, a*current_display->radius));
queuecurve(forecolor, 0, PPR::LINE);
curvepoint(point2(a*current_display->radius, -M_PI/2*current_display->radius));
curvepoint(point2(a*current_display->radius, +M_PI/2*current_display->radius));
queuecurve(forecolor, 0, PPR::LINE);
}
queuereset(vpconf.model, PPR::LINE);
quickqueue();
};
#endif
dialog::reaction_final = [] () {
vpconf.model = mdFormula;
};
}
EX void edit_rotation(ld& which) {
dialog::editNumber(which, 0, 360, 90, 0, XLAT("rotation"),
"This controls the automatic rotation of the world. "
"It affects the line animation in the history mode, and "
"lands which have a special direction. Note that if finding this special direction is a part of the puzzle, "
"it works only in the cheat mode.");
dialog::dialogflags |= sm::CENTER;
dialog::extra_options = [] () {
dialog::addBreak(100);
dialog::addBoolItem_choice("line animation only", models::do_rotate, 0, 'N');
dialog::addBoolItem_choice("gravity lands", models::do_rotate, 1, 'G');
dialog::addBoolItem_choice("all directional lands", models::do_rotate, 2, 'D');
if(GDIM == 3) {
dialog::addBreak(100);
dialog::addSelItem(XLAT("XY plane"), fts(models::rotation) + "°", 'A');
dialog::add_action([] { popScreen(); edit_rotation(models::rotation); });
dialog::addSelItem(XLAT("XZ plane"), fts(models::rotation_xz) + "°", 'B');
dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xz); });
dialog::addSelItem(XLAT("XY plane #2"), fts(models::rotation_xy2) + "°", 'C');
dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xy2); });
}
};
}
EX void model_list() {
cmode = sm::SIDE | sm::MAYDARK | sm::CENTER;
gamescreen(0);
dialog::init(XLAT("models & projections"));
USING_NATIVE_GEOMETRY_IN_RUG;
for(int i=0; i<mdGUARD; i++) {
eModel m = eModel(i);
if(m == mdFormula && ISMOBILE) continue;
if(model_available(m)) {
dialog::addBoolItem(get_model_name(m), vpconf.model == m, (i < 26 ? 'a'+i : 'A'+i-26));
dialog::add_action([m] () {
if(m == mdFormula) {
edit_formula();
return;
}
vpconf.model = m;
polygonal::solve();
vpconf.alpha = 1; vpconf.scale = 1;
if(pmodel == mdBand && sphere)
vpconf.scale = .3;
if(pmodel == mdDisk && sphere)
vpconf.scale = .4;
popScreen();
});
}
}
dialog::display();
}
void edit_stretch() {
dialog::editNumber(vpconf.stretch, 0, 10, .1, 1, XLAT("vertical stretch"),
"Vertical stretch factor."
);
dialog::extra_options = [] () {
dialog::addBreak(100);
if(sphere && pmodel == mdBandEquiarea) {
dialog::addBoolItem("Gall-Peters", vpconf.stretch == 2, 'O');
dialog::add_action([] { vpconf.stretch = 2; dialog::ne.s = "2"; });
}
if(pmodel == mdBandEquiarea) {
// y = K * sin(phi)
// cos(phi) * cos(phi) = 1/K
if(sphere && vpconf.stretch >= 1) {
ld phi = acos(sqrt(1/vpconf.stretch));
dialog::addInfo(XLAT("The current value makes the map conformal at the latitude of %1 (%2°).", fts(phi), fts(phi / degree)));
}
else if(hyperbolic && abs(vpconf.stretch) <= 1 && abs(vpconf.stretch) >= 1e-9) {
ld phi = acosh(abs(sqrt(1/vpconf.stretch)));
dialog::addInfo(XLAT("The current value makes the map conformal %1 units from the main line.", fts(phi)));
}
else dialog::addInfo("");
}
};
}
EX void model_menu() {
cmode = sm::SIDE | sm::MAYDARK | sm::CENTER;
gamescreen(0);
USING_NATIVE_GEOMETRY_IN_RUG;
dialog::init(XLAT("models & projections"));
auto vpmodel = vpconf.model;
dialog::addSelItem(XLAT("projection type"), get_model_name(vpmodel), 'm');
dialog::add_action_push(model_list);
if(nonisotropic && !sl2)
dialog::addBoolItem_action(XLAT("geodesic movement in Sol/Nil"), nisot::geodesic_movement, 'G');
dialog::addBoolItem(XLAT("rotation"), do_rotate == 2, 'r');
if(do_rotate == 0) dialog::lastItem().value = XLAT("NEVER");
if(GDIM == 2)
dialog::lastItem().value += " " + its(rotation) + "°";
else
dialog::lastItem().value += " " + its(rotation) + "°" + its(rotation_xz) + "°" + its(rotation_xy2) + "°";
dialog::add_action([] { edit_rotation(rotation); });
// if(vpmodel == mdBand && sphere)
if(!in_perspective()) {
dialog::addSelItem(XLAT("scale factor"), fts(vpconf.scale), 'z');
dialog::add_action(editScale);
}
if(abs(pconf.alpha-1) > 1e-3 && vpmodel != mdBall && vpmodel != mdHyperboloid && vpmodel != mdHemisphere && vpmodel != mdDisk) {
dialog::addBreak(50);
dialog::addInfo("NOTE: this works 'correctly' only if the Poincaré model/stereographic projection is used.");
dialog::addBreak(50);
}
if(among(vpmodel, mdDisk, mdBall, mdHyperboloid, mdRotatedHyperboles)) {
dialog::addSelItem(XLAT("projection distance"), fts(vpconf.alpha) + " (" + current_proj_name() + ")", 'p');
dialog::add_action(projectionDialog);
}
if(has_orientation(vpmodel)) {
dialog::addSelItem(XLAT("model orientation"), fts(vpconf.model_orientation) + "°", 'l');
dialog::add_action([] () {
dialog::editNumber(vpconf.model_orientation, 0, 360, 90, 0, XLAT("model orientation"), "");
});
if(GDIM == 3) {
dialog::addSelItem(XLAT("model orientation (y/z plane)"), fts(vpconf.model_orientation_yz) + "°", 'L');
dialog::add_action([] () {
dialog::editNumber(vpconf.model_orientation_yz, 0, 360, 90, 0, XLAT("model orientation (y/z plane)"), "");
});
}
}
if(GDIM == 3 && vpmodel != mdPerspective) {
const string cliphelp = XLAT(
"Your view of the 3D model is naturally bounded from four directions by your window. "
"Here, you can also set up similar bounds in the Z direction. Radius of the ball/band "
"models, and the distance from the center to the plane in the halfspace model, are 1.\n\n");
dialog::addSelItem(XLAT("near clipping plane"), fts(vpconf.clip_max), 'c');
dialog::add_action([cliphelp] () {
dialog::editNumber(vpconf.clip_max, -10, 10, 0.2, 1, XLAT("near clipping plane"),
cliphelp + XLAT("Objects with Z coordinate "
"bigger than this parameter are not shown. This is useful with the models which "
"extend infinitely in the Z direction, or if you want things close to your character "
"to be not obscured by things closer to the camera."));
});
dialog::addSelItem(XLAT("far clipping plane"), fts(vpconf.clip_min), 'C');
dialog::add_action([cliphelp] () {
dialog::editNumber(vpconf.clip_min, -10, 10, 0.2, -1, XLAT("far clipping plane"),
cliphelp + XLAT("Objects with Z coordinate "
"smaller than this parameter are not shown; it also affects the fog effect"
" (near clipping plane = 0% fog, far clipping plane = 100% fog)."));
});
}
if(vpmodel == mdPolynomial) {
dialog::addSelItem(XLAT("coefficient"),
fts(polygonal::coefr[polygonal::coefid]), 'x');
dialog::add_action([] () {
polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid);
int ci = polygonal::coefid + 1;
dialog::editNumber(polygonal::coefr[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient"), "");
});
dialog::addSelItem(XLAT("coefficient (imaginary)"),
fts(polygonal::coefi[polygonal::coefid]), 'y');
dialog::add_action([] () {
polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid);
int ci = polygonal::coefid + 1;
dialog::editNumber(polygonal::coefi[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient (imaginary)"), "");
});
dialog::addSelItem(XLAT("which coefficient"), its(polygonal::coefid), 'n');
dialog::add_action([] () {
dialog::editNumber(polygonal::coefid, 0, polygonal::MSI-1, 1, 0, XLAT("which coefficient"), "");
dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1);
});
}
if(vpmodel == mdHalfplane) {
dialog::addSelItem(XLAT("half-plane scale"), fts(vpconf.halfplane_scale), 'b');
dialog::add_action([] () {
dialog::editNumber(vpconf.halfplane_scale, 0, 2, 0.25, 1, XLAT("half-plane scale"), "");
});
}
if(vpmodel == mdRotatedHyperboles) {
dialog::addBoolItem_action(XLAT("use atan to make it finite"), vpconf.use_atan, 'x');
}
if(vpmodel == mdBall) {
dialog::addSelItem(XLAT("projection in ball model"), fts(vpconf.ballproj), 'x');
dialog::add_action([] () {
dialog::editNumber(vpconf.ballproj, 0, 100, .1, 0, XLAT("projection in ball model"),
"This parameter affects the ball model the same way as the projection parameter affects the disk model.");
});
}
if(vpmodel == mdPolygonal) {
dialog::addSelItem(XLAT("polygon sides"), its(polygonal::SI), 'x');
dialog::add_action([] () {
dialog::editNumber(polygonal::SI, 3, 10, 1, 4, XLAT("polygon sides"), "");
dialog::reaction = polygonal::solve;
});
dialog::addSelItem(XLAT("star factor"), fts(polygonal::STAR), 'y');
dialog::add_action([]() {
dialog::editNumber(polygonal::STAR, -1, 1, .1, 0, XLAT("star factor"), "");
dialog::reaction = polygonal::solve;
});
dialog::addSelItem(XLAT("degree of the approximation"), its(polygonal::deg), 'n');
dialog::add_action([](){
dialog::editNumber(polygonal::deg, 2, polygonal::MSI-1, 1, 2, XLAT("degree of the approximation"), "");
dialog::reaction = polygonal::solve;
dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1);
});
}
if(is_3d(vpconf) && GDIM == 2) {
dialog::addSelItem(XLAT("camera rotation in 3D models"), fts(vpconf.ballangle) + "°", 'b');
dialog::add_action(config_camera_rotation);
}
if(vpmodel == mdHyperboloid) {
dialog::addSelItem(XLAT("maximum z coordinate to show"), fts(vpconf.top_z), 'l');
dialog::add_action([](){
dialog::editNumber(vpconf.top_z, 1, 20, 0.25, 4, XLAT("maximum z coordinate to show"), "");
});
}
if(has_transition(vpmodel)) {
dialog::addSelItem(XLAT("model transition"), fts(vpconf.model_transition), 't');
dialog::add_action([]() {
dialog::editNumber(vpconf.model_transition, 0, 1, 0.1, 1, XLAT("model transition"),
"You can change this parameter for a transition from another model to this one."
);
});
}
if(among(vpmodel, mdJoukowsky, mdJoukowskyInverted, mdSpiral) && GDIM == 2) {
dialog::addSelItem(XLAT("Möbius transformations"), fts(vpconf.skiprope) + "°", 'S');
dialog::add_action([](){
dialog::editNumber(vpconf.skiprope, 0, 360, 15, 0, XLAT("Möbius transformations"), "");
});
}
if(vpmodel == mdHemisphere && euclid) {
dialog::addSelItem(XLAT("parameter"), fts(vpconf.euclid_to_sphere), 'l');
dialog::add_action([] () {
dialog::editNumber(vpconf.euclid_to_sphere, 0, 10, .1, 1, XLAT("parameter"),
"Stereographic projection to a sphere. Choose the radius of the sphere."
);
dialog::scaleLog();
});
}
if(among(vpmodel, mdTwoPoint, mdSimulatedPerspective, mdTwoHybrid)) {
dialog::addSelItem(XLAT("parameter"), fts(vpconf.twopoint_param), 'b');
dialog::add_action([vpmodel](){
dialog::editNumber(vpconf.twopoint_param, 1e-3, 10, .1, 1, XLAT("parameter"),
s0 + (vpmodel == mdTwoPoint ?
"This model maps the world so that the distances from two points "
"are kept. " : "") + "This parameter gives the distance from the two points to "
"the center."
);
dialog::scaleLog();
});
}
if(vpmodel == mdFisheye) {
dialog::addSelItem(XLAT("parameter"), fts(vpconf.fisheye_param), 'b');
dialog::add_action([](){
dialog::editNumber(vpconf.fisheye_param, 1e-3, 10, .1, 1, XLAT("parameter"),
"Size of the fish eye."
);
dialog::scaleLog();
});
}
if(vpmodel == mdCollignon) {
dialog::addSelItem(XLAT("parameter"), fts(vpconf.collignon_parameter) + (vpconf.collignon_reflected ? " (r)" : ""), 'b');
dialog::add_action([](){
dialog::editNumber(vpconf.collignon_parameter, -1, 1, .1, 1, XLAT("parameter"),
""
);
dialog::extra_options = [] {
dialog::addBoolItem_action(XLAT("reflect"), vpconf.collignon_reflected, 'R');
};
});
}
if(vpmodel == mdSpiral && !euclid) {
dialog::addSelItem(XLAT("spiral angle"), fts(vpconf.spiral_angle) + "°", 'x');
dialog::add_action([](){
dialog::editNumber(vpconf.spiral_angle, 0, 360, 15, 0, XLAT("spiral angle"),
XLAT("set to 90° for the ring projection")
);
});
ld& which =
sphere ? vpconf.sphere_spiral_multiplier :
ring_not_spiral ? vpconf.right_spiral_multiplier :
vpconf.any_spiral_multiplier;
dialog::addSelItem(XLAT("spiral multiplier"), fts(which) + "°", 'M');
dialog::add_action([&which](){
dialog::editNumber(which, 0, 10, -.1, 1, XLAT("spiral multiplier"),
XLAT(
"This parameter has a bit different scale depending on the settings:\n"
"(1) in spherical geometry (with spiral angle=90°, 1 produces a stereographic projection)\n"
"(2) in hyperbolic geometry, with spiral angle being +90° or -90°\n"
"(3) in hyperbolic geometry, with other spiral angles (1 makes the bands fit exactly)"
)
);
});
dialog::addSelItem(XLAT("spiral cone"), fts(vpconf.spiral_cone) + "°", 'C');
dialog::add_action([](){
dialog::editNumber(vpconf.spiral_cone, 0, 360, -45, 360, XLAT("spiral cone"), "");
});
}
if(vpmodel == mdSpiral && euclid) {
dialog::addSelItem(XLAT("spiral period: x"), fts(vpconf.spiral_x), 'x');
dialog::add_action([](){
dialog::editNumber(vpconf.spiral_x, -20, 20, 1, 10, XLAT("spiral period: x"), "");
});
dialog::addSelItem(XLAT("spiral period: y"), fts(vpconf.spiral_y), 'y');
dialog::add_action([](){
dialog::editNumber(vpconf.spiral_y, -20, 20, 1, 10, XLAT("spiral period: y"), "");
});
if(euclid && quotient) {
dialog::addSelItem(XLAT("match the period"), its(spiral_id), 'n');
dialog::add_action(match_torus_period);
}
}
dialog::addSelItem(XLAT("vertical stretch"), fts(vpconf.stretch), 's');
dialog::add_action(edit_stretch);
if(product_model(vpmodel)) {
dialog::addSelItem(XLAT("product Z stretch"), fts(vpconf.product_z_scale), 'Z');
dialog::add_action([] {
dialog::editNumber(vpconf.product_z_scale, 0.1, 10, 0.1, 1, XLAT("product Z stretch"), "");
dialog::scaleLog();
});
}
dialog::addBoolItem(XLAT("use GPU to compute projections"), vid.consider_shader_projection, 'G');
bool shaderside_projection = get_shader_flags() & SF_DIRECT;
if(vid.consider_shader_projection && !shaderside_projection)
dialog::lastItem().value = XLAT("N/A");
if(vid.consider_shader_projection && shaderside_projection && vpmodel)
dialog::lastItem().value += XLAT(" (2D only)");
dialog::add_action([] { vid.consider_shader_projection = !vid.consider_shader_projection; });
menuitem_sightrange('R');
dialog::addBreak(100);
dialog::addItem(XLAT("history mode"), 'a');
dialog::add_action_push(history::history_menu);
#if CAP_RUG
if(GDIM == 2 || rug::rugged) {
dialog::addItem(XLAT("hypersian rug mode"), 'u');
dialog::add_action_push(rug::show);
}
#endif
dialog::addBack();
dialog::display();
mouseovers = XLAT("see http://www.roguetemple.com/z/hyper/models.php");
}
#if CAP_COMMANDLINE
eModel read_model(const string& ss) {
for(int i=0; i<isize(mdinf); i++) {
if(appears(mdinf[i].name_hyperbolic, ss)) return eModel(i);
if(appears(mdinf[i].name_euclidean, ss)) return eModel(i);
if(appears(mdinf[i].name_spherical, ss)) return eModel(i);
}
return eModel(atoi(ss.c_str()));
}
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-els")) {
shift_arg_formula(history::extra_line_steps);
}
else if(argis("-stretch")) {
PHASEFROM(2); shift_arg_formula(vpconf.stretch);
}
else if(argis("-PM")) {
PHASEFROM(2); shift(); vpconf.model = read_model(args());
if(vpconf.model == mdFormula) {
shift(); vpconf.basic_model = eModel(argi());
shift(); vpconf.formula = args();
}
}
else if(argis("-ballangle")) {
PHASEFROM(2);
shift_arg_formula(vpconf.ballangle);
}
else if(argis("-topz")) {
PHASEFROM(2);
shift_arg_formula(vpconf.top_z);
}
else if(argis("-twopoint")) {
PHASEFROM(2);
shift_arg_formula(vpconf.twopoint_param);
}
else if(argis("-hp")) {
PHASEFROM(2);
shift_arg_formula(vpconf.halfplane_scale);
}
else if(argis("-mori")) {
PHASEFROM(2);
shift_arg_formula(vpconf.model_orientation);
}
else if(argis("-mori2")) {
PHASEFROM(2);
shift_arg_formula(vpconf.model_orientation);
shift_arg_formula(vpconf.model_orientation_yz);
}
else if(argis("-crot")) {
PHASEFROM(2);
shift_arg_formula(models::rotation);
if(GDIM == 3) shift_arg_formula(models::rotation_xz);
if(GDIM == 3) shift_arg_formula(models::rotation_xy2);
}
else if(argis("-clip")) {
PHASEFROM(2);
shift_arg_formula(vpconf.clip_min);
shift_arg_formula(vpconf.clip_max);
}
else if(argis("-mtrans")) {
PHASEFROM(2);
shift_arg_formula(vpconf.model_transition);
}
else if(argis("-sang")) {
PHASEFROM(2);
shift_arg_formula(vpconf.spiral_angle);
if(sphere)
shift_arg_formula(vpconf.sphere_spiral_multiplier);
else if(vpconf.spiral_angle == 90)
shift_arg_formula(vpconf.right_spiral_multiplier);
}
else if(argis("-ssm")) {
PHASEFROM(2);
shift_arg_formula(vpconf.any_spiral_multiplier);
}
else if(argis("-scone")) {
PHASEFROM(2);
shift_arg_formula(vpconf.spiral_cone);
}
else if(argis("-sxy")) {
PHASEFROM(2);
shift_arg_formula(vpconf.spiral_x);
shift_arg_formula(vpconf.spiral_y);
}
else if(argis("-mob")) {
PHASEFROM(2);
shift_arg_formula(vpconf.skiprope);
}
else if(argis("-zoom")) {
PHASEFROM(2); shift_arg_formula(vpconf.scale);
}
else if(argis("-alpha")) {
PHASEFROM(2); shift_arg_formula(vpconf.alpha);
}
else if(argis("-d:model"))
launch_dialog(model_menu);
else if(argis("-d:formula")) {
launch_dialog();
edit_formula();
}
else if(argis("-d:match")) {
launch_dialog(match_torus_period);
edit_formula();
}
else return 1;
return 0;
}
auto hookArg = addHook(hooks_args, 100, readArgs);
#endif
}
}