mirror of
				https://github.com/zenorogue/hyperrogue.git
				synced 2025-10-31 05:52:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			259 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			259 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Voronoi used to measure the quality of the embedding (Villman's measure)
 | |
| // Copyright (C) 2011-2022 Tehora and Zeno Rogue, see 'hyper.cpp' for details
 | |
| 
 | |
| #include "kohonen.h"
 | |
| 
 | |
| namespace rogueviz {
 | |
| 
 | |
| namespace voronoi {
 | |
| 
 | |
| void manifold::generate_data() {
 | |
|   T = isize(triangles);
 | |
|   triangles_of_tile.resize(N);
 | |
| 
 | |
|   for(int i=0; i<T; i++) {
 | |
|     for(auto v: triangles[i])
 | |
|       triangles_of_tile[v].push_back(i);
 | |
|     for(int j=0; j<3; j++) {
 | |
|       int e0 = triangles[i][j%3];
 | |
|       int e1 = triangles[i][(j+1)%3];
 | |
|       if(e1<e0) swap(e0, e1);
 | |
|       auto p = make_pair(e0, e1);
 | |
|       triangles_of_edge[p].push_back(i);
 | |
|       }
 | |
|     }  
 | |
|   }
 | |
| 
 | |
| manifold build_manifold(const vector<cell*>& cells) {
 | |
|   map<cell*, int> neuron_id;
 | |
|   int N = isize(cells);
 | |
|   for(int i=0; i<N; i++)
 | |
|     neuron_id[cells[i]] = i;
 | |
|   
 | |
|   set<vector<int> > faces_seen;
 | |
|   
 | |
|   for(auto c: cells) {
 | |
|     for(int i=0; i<c->type; i++) {
 | |
|       cellwalker cw1(c, i);
 | |
|       cellwalker cw2 = cw1;
 | |
|       vector<int> tlist;
 | |
|       do {
 | |
|         cw2 += wstep;
 | |
|         cw2++;
 | |
|         auto p = at_or_null(neuron_id, cw2.at);
 | |
|         if(!p) goto next;
 | |
|         tlist.push_back(*p);
 | |
|         }
 | |
|       while(cw2 != cw1);
 | |
|       if(1) {
 | |
|         int minv = 0;
 | |
|         for(int i=0; i<isize(tlist); i++)
 | |
|           if(tlist[i] < tlist[minv])
 | |
|             minv = i;
 | |
|         vector<int> tlist_sorted;
 | |
|         for(int i=minv; i<isize(tlist); i++)
 | |
|           tlist_sorted.push_back(tlist[i]);
 | |
|         for(int i=0; i<minv; i++)
 | |
|           tlist_sorted.push_back(tlist[i]);
 | |
|         if(tlist_sorted[1] > tlist_sorted.back())
 | |
|           reverse(tlist_sorted.begin()+1, tlist_sorted.end());
 | |
|         faces_seen.insert(tlist_sorted);
 | |
|         }
 | |
|       next: ;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   manifold m;
 | |
|   m.N = N;
 | |
|   for(const auto& v: faces_seen)
 | |
|     for(int i=2; i<isize(v); i++)
 | |
|       m.triangles.emplace_back(make_array(v[0], v[i-1], v[i]));
 | |
| 
 | |
|   m.generate_data();
 | |
|   return m;
 | |
|   }
 | |
| 
 | |
| vector<pair<int, int> > compute_voronoi_edges(manifold& m) {
 | |
| 
 | |
|   using kohonen::net;
 | |
|   using kohonen::vnorm;
 | |
|   using kohonen::vshift;
 | |
|   using kohonen::data;
 | |
|   using kohonen::kohvec;
 | |
|   using kohonen::samples;
 | |
|   
 | |
|   vector<int> best_tile;
 | |
|   /* for every neuron, compute its best tile */
 | |
|   int N = isize(net);
 | |
|   for(int i=0; i<N; i++) {
 | |
|     ld bestval = HUGE_VAL, best_id = -1;
 | |
|     for(int j=0; j<samples; j++) {
 | |
|       ld val = vnorm(net[i].net, data[j].val);
 | |
|       if(val < bestval) bestval = val, best_id = j;
 | |
|       }
 | |
|     best_tile.push_back(best_id);
 | |
|     }
 | |
|   
 | |
|   constexpr int SUBD = 8;
 | |
|   using neuron_triangle_pair = pair<int, int>;
 | |
|   set< neuron_triangle_pair > visited;
 | |
|   queue<neuron_triangle_pair> q;
 | |
|   
 | |
|   vector<kohvec> projected(N);
 | |
|   
 | |
|   auto visit = [&] (neuron_triangle_pair p) {
 | |
|     if(visited.count(p)) return;
 | |
|     visited.insert(p);
 | |
|     q.push(p);
 | |
|     };
 | |
|   
 | |
|   kohvec at;
 | |
|   kohonen::alloc(at);
 | |
| 
 | |
|   auto project = [&] (kohvec& at, const array<int, 3>& tri, int i, int j) {
 | |
|     int k = SUBD-i-j;
 | |
|     for(auto& x: at) x = 0;
 | |
|     vshift(at, data[tri[0]].val, i * 1. / SUBD);
 | |
|     vshift(at, data[tri[1]].val, j * 1. / SUBD);      
 | |
|     vshift(at, data[tri[2]].val, k * 1. / SUBD);
 | |
|     };
 | |
|   
 | |
|   set<kohvec> already_picked;
 | |
|   
 | |
|   map<int, string> which_best;
 | |
|   
 | |
|   /* project all the net[ni].net on the manifold */
 | |
|   for(int ni=0; ni<N; ni++) {
 | |
|     kohvec best;
 | |
|     int best_tri;
 | |
|     ld best_dist = HUGE_VAL;
 | |
|     reaction_t better = [] {};
 | |
|     set<int> triangles_to_visit;
 | |
|     queue<int> triangles_queue;
 | |
|     
 | |
|     auto visit1 = [&] (int tri) {
 | |
|       if(triangles_to_visit.count(tri)) return;
 | |
|       triangles_to_visit.insert(tri);
 | |
|       triangles_queue.push(tri);
 | |
|       };
 | |
|     
 | |
|     for(int tr: m.triangles_of_tile[best_tile[ni]]) 
 | |
|       visit1(tr);
 | |
|     
 | |
|     auto& bes = which_best[ni];
 | |
|     
 | |
|     while(!triangles_queue.empty()) {
 | |
|       int tri = triangles_queue.front();
 | |
|       triangles_queue.pop();
 | |
|       
 | |
|       for(int i=0; i<=SUBD; i++)
 | |
|       for(int j=0; j<=SUBD-i; j++) {
 | |
|         project(at, m.triangles[tri], i, j);
 | |
|         ld dist = vnorm(at, net[ni].net);
 | |
|         if(dist < best_dist && !already_picked.count(at)) {
 | |
|           best_dist = dist, best = at, best_tri = tri;
 | |
|           bes = lalign(0, tie(tri, i, j));
 | |
|           better = [&tri, i, j, &m, &visit1] () {
 | |
|             auto flip_edge = [&] (int t1, int t2) {
 | |
|               if(t2 < t1) swap(t1, t2);
 | |
|               for(auto tri1: m.triangles_of_edge[{t1, t2}])
 | |
|                 visit1(tri1);
 | |
|               };
 | |
|             auto& tria = m.triangles[tri];
 | |
|             if(i == 0) flip_edge(tria[1], tria[2]);
 | |
|             if(j == 0) flip_edge(tria[0], tria[2]);
 | |
|             if(i+j == SUBD) flip_edge(tria[0], tria[1]);
 | |
|             };
 | |
|           }
 | |
|         }
 | |
|       
 | |
|       better();
 | |
|       }
 | |
|     projected[ni] = best;
 | |
|     already_picked.insert(best);
 | |
|     visit({ni, best_tri});
 | |
|     }
 | |
|   
 | |
|   struct triangle_data {
 | |
|     double dist[SUBD+1][SUBD+1];
 | |
|     int which[SUBD+1][SUBD+1];
 | |
|     triangle_data() {
 | |
|       for(int i=0; i<=SUBD; i++)
 | |
|       for(int j=0; j<=SUBD; j++)
 | |
|         dist[i][j] = HUGE_VAL, which[i][j] = -1;
 | |
|       }
 | |
|     };
 | |
|   
 | |
|   vector<triangle_data> tdatas(m.T);
 | |
| 
 | |
|   while(!q.empty()) {
 | |
|     auto ntp = q.front();
 | |
|     q.pop();
 | |
|     auto ni = ntp.first;
 | |
|     auto& tri = m.triangles[ntp.second];
 | |
|     auto& td = tdatas[ntp.second];
 | |
|     
 | |
|     for(int i=0; i<=SUBD; i++)
 | |
|     for(int j=0; j<=SUBD-i; j++) {
 | |
|       project(at, tri, i, j);
 | |
|       ld dist = vnorm(at, projected[ni]);
 | |
|       auto& odist = td.dist[i][j];
 | |
|       bool tie = abs(dist - odist) < 1e-6;
 | |
|       if(tie ? ni < td.which[i][j] : dist < odist) {
 | |
|         td.dist[i][j] = dist, 
 | |
|         td.which[i][j] = ni;
 | |
|         auto flip_edge = [&] (int t1, int t2) {
 | |
|           if(t2 < t1) swap(t1, t2);
 | |
|           for(auto tr: m.triangles_of_edge[{t1, t2}]) {
 | |
|             visit({ni, tr});
 | |
|             }
 | |
|           };
 | |
|         if(i == 0) flip_edge(tri[1], tri[2]);
 | |
|         if(j == 0) flip_edge(tri[0], tri[2]);
 | |
|         if(i+j == SUBD) flip_edge(tri[0], tri[1]);
 | |
|         }
 | |
|       }      
 | |
|     }
 | |
|   
 | |
|   set<pair<int, int> > voronoi_edges;
 | |
|   
 | |
|   auto add_edge = [&] (int i, int j) {
 | |
|     if(i>j) swap(i, j);
 | |
|     if(i==j) return;
 | |
|     voronoi_edges.insert({i, j});
 | |
|     };
 | |
| 
 | |
|   for(auto& td: tdatas) {
 | |
|     for(int i=0; i<=SUBD; i++)
 | |
|     for(int j=0; j<=SUBD-i; j++) {
 | |
|       if(i>0) add_edge(td.which[i][j], td.which[i-1][j]);
 | |
|       if(j>0) add_edge(td.which[i][j], td.which[i][j-1]);
 | |
|       if(j>0) add_edge(td.which[i][j], td.which[i+1][j-1]);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   if(1) {
 | |
|     vector<int> degs(N, 0);
 | |
|     for(auto e: voronoi_edges) degs[e.first]++, degs[e.second]++;
 | |
|     for(int v=0; v<N; v++) if(degs[v] == 0) {
 | |
|       fhstream vorerr("voronoi-error.txt", "at");
 | |
|       println(vorerr, "error: degree 0 vertex ", v, " in ", debug_str);
 | |
|       println(vorerr, "best is: ", which_best[v]);
 | |
|       int id = 0;
 | |
|       for(auto& td: tdatas) {
 | |
|         for(int i=0; i<=SUBD; i++)
 | |
|         for(int j=0; j<=SUBD-i; j++) 
 | |
|           if(td.which[i][j] == v) println(vorerr, "Found at ", tie(id, i, j));
 | |
|         id++;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   vector<pair<int, int> > result;
 | |
|   for(auto ve: voronoi_edges) result.push_back(ve);
 | |
|   return result;  
 | |
|   }
 | |
| 
 | |
| }
 | |
| }
 | 
