mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-17 18:54:48 +00:00
156 lines
3.5 KiB
C++
156 lines
3.5 KiB
C++
#include "../hyper.h"
|
|
|
|
/** \brief Snowball visualization
|
|
*
|
|
* This visualization puts small objects ('snowballs') randomly throughout the space.
|
|
* It provides a way to visualize the geometry without any tessellation.
|
|
*
|
|
* Should work for tessellations where every tile is congruent.
|
|
*
|
|
* The snow_lambda parameter gives the expected number of snowballs per cell.
|
|
* (The number in every region has Poisson distribution with mean proportional to its area.)
|
|
*
|
|
* Not implemented for: product
|
|
*
|
|
**/
|
|
|
|
namespace hr {
|
|
|
|
ld snow_lambda = 1;
|
|
|
|
bool snow_test = false;
|
|
|
|
/* a funny glitch */
|
|
bool snow_glitch = false;
|
|
|
|
/* disable textures */
|
|
bool snow_texture = true;
|
|
|
|
int snow_shape = 0;
|
|
|
|
map<cell*, vector<transmatrix> > matrices_at;
|
|
|
|
hpcshape& shapeid(int i) {
|
|
switch(i) {
|
|
case 0:
|
|
return cgi.shSnowball;
|
|
case 1:
|
|
return cgi.shHeptaMarker;
|
|
case 2:
|
|
return cgi.shDisk;
|
|
default:
|
|
return cgi.shDisk;
|
|
}
|
|
}
|
|
|
|
transmatrix random_snow_matrix(cell *c) {
|
|
if(snow_glitch) {
|
|
// in the standard tiling, this is incorrect but fun
|
|
hyperpoint h = C0;
|
|
h[0] = randd() - .5;
|
|
h[1] = randd() - .5;
|
|
h[2] = randd() - .5;
|
|
h[2] = -h[2];
|
|
return rgpushxto0(h);
|
|
}
|
|
else if(nonisotropic || bt::in()) {
|
|
|
|
int co = bt::expansion_coordinate();
|
|
ld aer = bt::area_expansion_rate();
|
|
|
|
hyperpoint h;
|
|
// randd() - .5;
|
|
|
|
for(int a=0; a<3; a++) {
|
|
if(a != co || aer == 1)
|
|
h[a] = randd() * 2 - 1;
|
|
else {
|
|
ld r = randd();
|
|
h[co] = log(lerp(1, aer, r)) / log(aer) * 2 - 1;
|
|
}
|
|
}
|
|
return bt::normalized_at(h);
|
|
}
|
|
else {
|
|
while(true) {
|
|
ld maxr = WDIM == 2 ? cgi.rhexf : cgi.corner_bonus;
|
|
ld vol = randd() * wvolarea_auto(maxr);
|
|
ld r = binsearch(0, maxr, [vol] (ld r) { return wvolarea_auto(r) > vol; });
|
|
transmatrix T = random_spin();
|
|
hyperpoint h = T * xpush0(r);
|
|
cell* c1 = c;
|
|
virtualRebase(c1, h);
|
|
if(c1 == c)
|
|
return T * xpush(r);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool draw_snow(cell *c, const transmatrix& V) {
|
|
|
|
if(!matrices_at.count(c)) {
|
|
auto& v = matrices_at[c];
|
|
int cnt = 0;
|
|
ld prob = randd();
|
|
ld poisson = exp(-snow_lambda);
|
|
while(cnt < 2*snow_lambda+100) {
|
|
if(prob < poisson) break;
|
|
prob -= poisson;
|
|
cnt++;
|
|
poisson *= snow_lambda / cnt;
|
|
}
|
|
if(snow_test) {
|
|
if(c != cwt.at)
|
|
cnt = 0;
|
|
else {
|
|
c->wall = waFloorA;
|
|
cnt = snow_lambda;
|
|
}
|
|
}
|
|
|
|
for(int t=0; t<cnt; t++)
|
|
v.push_back(random_snow_matrix(c));
|
|
}
|
|
|
|
poly_outline = 0xFF;
|
|
for(auto& T: matrices_at[c]) {
|
|
auto& p = queuepoly(V * T, shapeid(snow_shape), 0xFFFFFFFF);
|
|
if(!snow_texture) p.tinf = nullptr;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool cylanim = false;
|
|
|
|
auto hchook = addHook(hooks_drawcell, 100, draw_snow)
|
|
|
|
+ addHook(clearmemory, 40, [] () {
|
|
matrices_at.clear();
|
|
})
|
|
|
|
+ addHook(hooks_args, 100, [] {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-snow-lambda")) {
|
|
shift_arg_formula(snow_lambda);
|
|
}
|
|
else if(argis("-snow-shape")) {
|
|
shift(); snow_shape = argi();
|
|
}
|
|
else if(argis("-snow-test")) {
|
|
snow_test = true;
|
|
}
|
|
else if(argis("-snow-no-texture")) {
|
|
snow_texture = false;
|
|
}
|
|
else if(argis("-snow-glitch")) {
|
|
snow_test = true;
|
|
}
|
|
else return 1;
|
|
return 0;
|
|
});
|
|
|
|
}
|