1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-25 09:30:35 +00:00
hyperrogue/rogueviz/ads/math.cpp

177 lines
4.8 KiB
C++

#include "../rogueviz.h"
namespace hr {
namespace ads_game {
static constexpr auto TAU = 2*M_PI;
/** hyperpoint represents a point in the SL(2,R)-like AdS, while ads_point represents a point in the universal cover */
struct ads_point : shiftpoint {
ads_point(hyperpoint _h = C0, ld _s = 0) { h = _h; shift = _s; }
ads_point(shiftpoint _s) : shiftpoint(_s) {}
};
/** similarly, ads_matrix represents a transformation of the universal cover space */
struct ads_matrix : shiftmatrix {
ads_matrix(transmatrix _h = Id, ld _s = 0) { T = _h; shift = _s; }
ads_point operator* (ads_point) const;
ads_matrix operator* (ads_matrix) const;
ads_point operator* (const hyperpoint& h) const { return ads_point(T*h, shift); }
ads_matrix operator* (const transmatrix& h) const { return ads_matrix(T*h, shift); }
ads_matrix(shiftmatrix _s) : shiftmatrix(_s) {}
};
ads_point kz(ads_point x) { x.h = hr::kz(x.h); x.shift = hr::kz(x.shift); return x; }
ads_matrix kz(ads_matrix x) { x.T = hr::kz(x.T); x.shift = hr::kz(x.shift); return x; }
/** Lorentz boost. */
transmatrix lorentz(int a, int b, ld v) {
transmatrix T = Id;
T[a][a] = T[b][b] = cosh(v);
T[a][b] = T[b][a] = sinh(v);
return T;
}
void fixmatrix_ads(transmatrix& T) {
for(int x=0; x<4; x++) for(int y=x; y>=0; y--) {
ld dp = 0;
for(int z=0; z<4; z++) dp += T[z][x] * T[z][y] * sig(z);
if(y == x) dp = 1 - sqrt(sig(x)/dp);
else dp *= sig(y);
for(int z=0; z<4; z++) T[z][x] -= dp * T[z][y];
}
}
/* get_at(g) is at V; adjust g.second==0 and V accordingly */
void adjust_to_zero(ads_matrix& V, pair<cell*, int>& g, ld plev) {
V.shift -= plev * g.second;
g.second = 0;
}
/** by how many cycles should we shift */
ld get_shift_cycles(ld shift) {
return floor(shift / TAU + .5) * TAU;
}
/** this is uzpush(-x) */
transmatrix chg_shift(ld x) {
return cspin(2, 3, x) * cspin(0, 1, x);
}
ads_point ads_matrix::operator*(ads_point h) const {
auto& T = *this;
optimize_shift(h);
ld sh = get_shift_cycles(h.shift);
h.shift -= sh;
auto res0 = T;
optimize_shift(res0);
auto res1 = res0 * chg_shift(h.shift);
optimize_shift(res1);
res1.shift += get_shift_cycles(res0.shift - res1.shift);
auto res2 = res1 * h.h;
optimize_shift(res2);
res2.shift += get_shift_cycles(res1.shift - res2.shift);
res2.shift += sh;
return res2;
}
ads_matrix ads_matrix::operator*(ads_matrix h) const {
auto& T = *this;
optimize_shift(h);
ld sh = get_shift_cycles(h.shift);
h.shift -= sh;
auto res0 = T;
optimize_shift(res0);
auto res1 = res0 * chg_shift(h.shift);
optimize_shift(res1);
res1.shift += get_shift_cycles(res0.shift - res1.shift);
auto res2 = res1 * h.T;
optimize_shift(res2);
res2.shift += get_shift_cycles(res1.shift - res2.shift);
res2.shift += sh;
return res2;
}
ads_matrix ads_inverse(const ads_matrix& T) {
ads_matrix res(inverse(unshift(T)), 0);
ads_matrix m = res * T;
optimize_shift(m);
res.shift -= m.shift;
return res;
}
struct cross_result {
hyperpoint h;
ld shift;
};
extern ads_matrix current;
/** T represents a worldline of some object; find when does this worldline cross the time=0 slice.
* shift is T's proper time at the point of crossing, and h=(x,y,z) is the Minkowski hyperboloid point where it crosses.
**/
cross_result cross0(ads_matrix hz) {
transmatrix deg90 = chg_shift(90*degree);
hyperpoint uhz = unshift(hz * C0);
hyperpoint uhz1 = unshift(hz * deg90 * C0);
ld cost, sint, tant;
ld t;
if(uhz1[2]) {
tant = - uhz[2] / uhz1[2];
cost = 1 / sqrt(1 + tant * tant);
sint = tant * cost;
t = atan2(sint, cost);
}
else {
cost = 0;
sint = 1;
t = 90*degree;
}
hyperpoint uhzt = unshift(hz * chg_shift(t) * C0);
if(uhzt[3] < 0) { t += 180*degree; uhzt = -uhzt; }
tie(uhzt[2], uhzt[3]) = make_pair(uhzt[3], -uhzt[2]);
t += get_shift_cycles(-hz.shift-t);
return cross_result{uhzt, t};
}
/** Similar as cross0_light but for light-like wordlines.
* The point returned by cross0_light(T) is the same as the limit of cross0(T * lorentz(0, 2, v)).
**/
cross_result cross0_light(ads_matrix hz) {
transmatrix uhz = unshift(hz);
ld t = uhz[2][3] / -(uhz[2][2] + uhz[2][0]);
hyperpoint uhzt = uhz * hyperpoint(t, 0, t, 1);
tie(uhzt[2], uhzt[3]) = make_pair(uhzt[3], -uhzt[2]);
if(uhzt[2] < 0) uhzt = -uhzt;
return cross_result{uhzt, t};
}
/** sample from Poisson distribution */
int rpoisson(ld lambda) {
ld prob = randd();
ld poisson = exp(-lambda);
int cnt = 0;
while(cnt < 2*lambda+100) {
if(prob < poisson) break;
prob -= poisson;
cnt++;
poisson *= lambda / cnt;
}
return cnt;
}
}
}