1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-27 14:37:16 +00:00
hyperrogue/raycaster.cpp

1184 lines
40 KiB
C++

// Hyperbolic Rogue -- raycaster
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file raycaster.cpp
* \brief A raycaster to draw walls.
*/
#include "hyper.h"
namespace hr {
EX namespace ray {
#if MAXMDIM >= 4
/** texture IDs */
GLuint txConnections = 0, txWallcolor = 0, txTextureMap = 0;
EX bool in_use;
EX bool comparison_mode;
/** 0 - never use, 2 - always use, 1 = smart selection */
EX int want_use = 1;
EX ld exp_start = 1, exp_decay_exp = 4, exp_decay_poly = 10;
EX ld maxstep_sol = .02;
EX ld maxstep_nil = .1;
EX ld minstep = .001;
EX ld reflect_val = 0;
static const int NO_LIMIT = 999999;
EX ld hard_limit = NO_LIMIT;
EX int max_iter_sol = 600, max_iter_iso = 60;
EX int max_cells = 2048;
EX bool rays_generate = true;
EX ld& exp_decay_current() {
return (solnih || hyperbolic) ? exp_decay_exp : exp_decay_poly;
}
EX int& max_iter_current() {
if(nonisotropic) return max_iter_sol;
else return max_iter_iso;
}
ld& maxstep_current() {
if(solnih) return maxstep_sol;
else return maxstep_nil;
}
#define IN_ODS 0
eGeometry last_geometry;
/** is the raycaster available? */
EX bool available() {
if(noGUI) return false;
if(!vid.usingGL) return false;
if(WDIM == 2) return false;
if(hyperbolic && pmodel == mdPerspective && !penrose)
return true;
if(nil && S7 == 8)
return false;
if((solnih || nil) && pmodel == mdGeodesic)
return true;
if(euclid && pmodel == mdPerspective && !binarytiling)
return true;
if(prod && PURE)
return true;
return false;
}
/** do we want to use the raycaster? */
EX bool requested() {
if(!want_use) return false;
#if CAP_TEXTURE
if(texture::config.tstate == texture::tsActive) return false;
#endif
if(!available()) return false;
if(want_use == 2) return true;
return racing::on || quotient;
}
struct raycaster : glhr::GLprogram {
GLint uStart, uStartid, uM, uLength, uFovX, uFovY, uIPD, uShift;
GLint uWallstart, uWallX, uWallY;
GLint tConnections, tWallcolor, tTextureMap;
GLint uBinaryWidth, uPLevel, uLP, uStraighten, uReflectX, uReflectY;
GLint uLinearSightRange, uExpStart, uExpDecay;
GLint uBLevel;
raycaster(string vsh, string fsh) : GLprogram(vsh, fsh) {
println(hlog, "assigning");
uStart = glGetUniformLocation(_program, "uStart");
uStartid = glGetUniformLocation(_program, "uStartid");
uM = glGetUniformLocation(_program, "uM");
uLength = glGetUniformLocation(_program, "uLength");
uFovX = glGetUniformLocation(_program, "uFovX");
uFovY = glGetUniformLocation(_program, "uFovY");
uShift = glGetUniformLocation(_program, "uShift");
uIPD = glGetUniformLocation(_program, "uIPD");
uWallstart = glGetUniformLocation(_program, "uWallstart");
uWallX = glGetUniformLocation(_program, "uWallX");
uWallY = glGetUniformLocation(_program, "uWallY");
uBinaryWidth = glGetUniformLocation(_program, "uBinaryWidth");
uStraighten = glGetUniformLocation(_program, "uStraighten");
uPLevel = glGetUniformLocation(_program, "uPLevel");
uLP = glGetUniformLocation(_program, "uLP");
uReflectX = glGetUniformLocation(_program, "uReflectX");
uReflectY = glGetUniformLocation(_program, "uReflectY");
uLinearSightRange = glGetUniformLocation(_program, "uLinearSightRange");
uExpDecay = glGetUniformLocation(_program, "uExpDecay");
uExpStart = glGetUniformLocation(_program, "uExpStart");
uShift = glGetUniformLocation(_program, "uShift");
uBLevel = glGetUniformLocation(_program, "uBLevel");
tConnections = glGetUniformLocation(_program, "tConnections");
tWallcolor = glGetUniformLocation(_program, "tWallcolor");
tTextureMap = glGetUniformLocation(_program, "tTextureMap");
}
};
shared_ptr<raycaster> our_raycaster;
EX void reset_raycaster() { our_raycaster = nullptr; };
int deg;
void enable_raycaster() {
if(geometry != last_geometry) reset_raycaster();
last_geometry = geometry;
deg = S7; if(prod) deg += 2;
if(!our_raycaster) {
bool asonov = hr::asonov::in();
bool use_reflect = reflect_val && !nil && !levellines;
string vsh =
"attribute mediump vec4 aPosition;\n"
"uniform mediump float uFovX, uFovY, uShift;\n"
"varying mediump vec4 at;\n"
"void main() { \n"
" gl_Position = aPosition; at = aPosition; at.x += uShift;\n"
#if IN_ODS
" at[0] *= PI; at[1] *= PI; \n"
#else
" at[0] *= uFovX; at[1] *= uFovY; \n"
#endif
" }\n";
string rays = its(isize(cgi.raywall));
string fsh =
"varying mediump vec4 at;\n"
"uniform mediump int uLength;\n"
"uniform mediump float uIPD;\n"
"uniform mediump mat4 uStart;\n"
"uniform mediump mat4 uM[84];\n"
"uniform mediump mat4 uTest;\n"
"uniform mediump vec2 uStartid;\n"
"uniform mediump sampler2D tConnections;\n"
"uniform mediump sampler2D tWallcolor;\n"
"uniform mediump sampler2D tTexture;\n"
"uniform mediump sampler2D tTextureMap;\n"
"uniform mediump vec4 uWallX["+rays+"];\n"
"uniform mediump vec4 uWallY["+rays+"];\n"
"uniform mediump vec4 uFogColor;\n"
"uniform mediump int uWallstart["+its(deg+1)+"];\n"
"uniform mediump float uLinearSightRange, uExpStart, uExpDecay;\n";
if(prod) fsh +=
"uniform mediump float uPLevel;\n"
"uniform mediump mat4 uLP;\n";
int flat1 = 0, flat2 = S7;
if(hyperbolic && binarytiling) {
fsh += "uniform mediump float uBLevel;\n";
flat1 = binary::dirs_outer();
flat2 -= binary::dirs_inner();
}
if(IN_ODS || hyperbolic) fsh +=
"mat4 xpush(float x) { return mat4("
"cosh(x), 0., 0., sinh(x),\n"
"0., 1., 0., 0.,\n"
"0., 0., 1., 0.,\n"
"sinh(x), 0., 0., cosh(x)"
");}\n";
if(IN_ODS) fsh +=
"mat4 xzspin(float x) { return mat4("
"cos(x), 0., sin(x), 0.,\n"
"0., 1., 0., 0.,\n"
"-sin(x), 0., cos(x), 0.,\n"
"0., 0., 0., 1."
");}\n"
"mat4 yzspin(float x) { return mat4("
"1., 0., 0., 0.,\n"
"0., cos(x), sin(x), 0.,\n"
"0., -sin(x), cos(x), 0.,\n"
"0., 0., 0., 1."
");}\n";
fsh +=
"vec2 map_texture(vec4 pos, int which) {\n";
if(nil) fsh += "if(which == 2 || which == 5) pos.z = 0.;\n";
else if(hyperbolic && binarytiling) fsh +=
"pos = vec4(-log(pos.w-pos.x), pos.y, pos.z, 1);\n"
"pos.yz *= exp(pos.x);\n";
else if(hyperbolic) fsh +=
"pos /= pos.w;\n";
else if(prod) fsh +=
"pos = vec4(pos.x/pos.z, pos.y/pos.z, pos.w, 0);\n";
fsh +=
"int s = uWallstart[which];\n"
"int e = uWallstart[which+1];\n"
"for(int ix=0; ix<16; ix++) {\n"
"int i = s+ix; if(i >= e) break;\n"
"vec2 v = vec2(dot(uWallX[i], pos), dot(uWallY[i], pos));\n"
"if(v.x >= 0. && v.y >= 0. && v.x + v.y <= 1.) return vec2(v.x+v.y, v.x-v.y);\n"
"}\n"
"return vec2(1, 1);\n"
"}\n";
string fmain = "void main() {\n";
if(use_reflect) fmain += " bool depthtoset = true;\n";
if(IN_ODS) fmain +=
" float lambda = at[0];\n" // -PI to PI
" float phi;\n"
" float eye;\n"
" if(at.y < 0.) { phi = at.y + PI/2.; eye = uIPD / 2.; }\n" // right
" else { phi = at.y - PI/2.; eye = -uIPD / 2.; }\n"
" mat4 vw = uStart * xzspin(-lambda) * xpush(eye) * yzspin(phi);\n"
" vec4 at0 = vec4(0., 0., 1., 0.);\n";
else fmain +=
" mat4 vw = uStart;\n"
" vec4 at0 = at;\n"
" gl_FragColor = vec4(0,0,0,1);\n"
" float left = 1.;\n"
" at0.y = -at.y;\n"
" at0.w = 0.;\n"
" at0.xyz = at0.xyz / length(at0.xyz);\n";
if(hyperbolic) fsh += " float len(vec4 x) { return x[3]; }\n";
else fsh += " float len(vec4 x) { return length(x.xyz); }\n";
if(nonisotropic) fmain +=
" const float maxstep = " + fts(maxstep_current()) + ";\n"
" const float minstep = " + fts(minstep) + ";\n"
" float next = maxstep;\n";
if(prod) {
string sgn=in_h2xe() ? "-" : "+";
fmain +=
" vec4 position = vw * vec4(0., 0., 1., 0.);\n"
" vec4 at1 = uLP * at0;\n"
" float zpos = log(position.z*position.z"+sgn+"position.x*position.x"+sgn+"position.y*position.y)/2.;\n"
" position *= exp(-zpos);\n"
" float zspeed = at1.z;\n"
" float xspeed = length(at1.xy);\n"
" vec4 tangent = vw * exp(-zpos) * vec4(at1.xy, 0, 0) / xspeed;\n";
}
else fmain +=
" vec4 position = vw * vec4(0., 0., 0., 1.);\n"
" vec4 tangent = vw * at0;\n";
fmain +=
" float go = 0.;\n"
" vec2 cid = uStartid;\n"
" for(int iter=0; iter<" + its(max_iter_current()) + "; iter++) {\n";
fmain +=
" float dist = 100.;\n";
fmain +=
" int which = -1;\n";
if(IN_ODS) fmain +=
" if(go == 0.) {\n"
" float best = len(position);\n"
" for(int i=0; i<"+its(S7)+"; i++) {\n"
" float cand = len(uM[i] * position);\n"
" if(cand < best - .001) { dist = 0.; best = cand; which = i; }\n"
" }\n"
" }\n";
if(!nonisotropic) {
fmain +=
" if(which == -1) {\n";
fmain += "for(int i="+its(flat1)+"; i<"+its(flat2)+"; i++) {\n";
if(in_h2xe()) fmain +=
" float v = ((position - uM[i] * position)[2] / (uM[i] * tangent - tangent)[2]);\n"
" if(v > 1. || v < -1.) continue;\n"
" float d = atanh(v);\n"
" vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n"
" if(next_tangent[2] < (uM[i] * next_tangent)[2]) continue;\n"
" d /= xspeed;\n";
else if(in_s2xe()) fmain +=
" float v = ((position - uM[i] * position)[2] / (uM[i] * tangent - tangent)[2]);\n"
" float d = atan(v);\n"
" vec4 next_tangent = tangent * cos(d) - position * sin(d);\n"
" if(next_tangent[2] > (uM[i] * next_tangent)[2]) continue;\n"
" d /= xspeed;\n";
else if(hyperbolic) fmain +=
" float v = ((position - uM[i] * position)[3] / (uM[i] * tangent - tangent)[3]);\n"
" if(v > 1. || v < -1.) continue;\n"
" float d = atanh(v);\n"
" vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n"
" if(next_tangent[3] < (uM[i] * next_tangent)[3]) continue;\n";
else fmain +=
" float deno = dot(position, tangent) - dot(uM[i]*position, uM[i]*tangent);\n"
" if(deno < 1e-6 && deno > -1e-6) continue;\n"
" float d = (dot(uM[i]*position, uM[i]*position) - dot(position, position)) / 2. / deno;\n"
" if(d < 0.) continue;\n"
" vec4 next_position = position + d * tangent;\n"
" if(dot(next_position, tangent) < dot(uM[i]*next_position, uM[i]*tangent)) continue;\n";
fmain +=
" if(d < dist) { dist = d; which = i; }\n"
"}\n";
// 20: get to horosphere +uBLevel (take smaller root)
// 21: get to horosphere -uBLevel (take larger root)
if(hyperbolic && binarytiling) {
fmain +=
"for(int i=20; i<22; i++) {\n"
"float sgn = i == 20 ? -1. : 1.;\n"
"vec4 zpos = xpush(uBLevel*sgn) * position;\n"
"vec4 ztan = xpush(uBLevel*sgn) * tangent;\n"
"float Mp = zpos.w - zpos.x;\n"
"float Mt = ztan.w - ztan.x;\n"
"float a = (Mp*Mp-Mt*Mt);\n"
"float b = Mp/a;\n"
"float c = (1.+Mt*Mt) / a;\n"
"if(b*b < c) continue;\n"
"if(sgn < 0. && Mt > 0.) continue;\n"
"float zsgn = (Mt > 0. ? -sgn : sgn);\n"
"float u = sqrt(b*b-c)*zsgn + b;\n"
"float v = -(Mp*u-1.) / Mt;\n"
"float d = asinh(v);\n"
"if(d < 0. && abs(log(position.w*position.w-position.x*position.x)) < uBLevel) continue;\n"
"if(d < dist) { dist = d; which = i; }\n"
"}\n";
}
if(prod) fmain +=
"if(zspeed > 0.) { float d = (uPLevel - zpos) / zspeed; if(d < dist) { dist = d; which = "+its(S7)+"+1; }}\n"
"if(zspeed < 0.) { float d = (-uPLevel - zpos) / zspeed; if(d < dist) { dist = d; which = "+its(S7)+"; }}\n";
fmain += "}\n";
fmain +=
" if(dist < 0.) { dist = 0.; }\n";
fmain +=
" if(which == -1 && dist == 0.) return;";
}
// shift d units
if(use_reflect) fmain +=
"bool reflect = false;\n";
if(in_h2xe()) fmain +=
" float ch = cosh(dist*xspeed); float sh = sinh(dist*xspeed);\n"
" vec4 v = position * ch + tangent * sh;\n"
" tangent = tangent * ch + position * sh;\n"
" position = v;\n"
" zpos += dist * zspeed;\n";
else if(in_s2xe()) fmain +=
" float ch = cos(dist*xspeed); float sh = sin(dist*xspeed);\n"
" vec4 v = position * ch + tangent * sh;\n"
" tangent = tangent * ch - position * sh;\n"
" position = v;\n"
" zpos += dist * zspeed;\n";
else if(hyperbolic) fmain +=
" float ch = cosh(dist); float sh = sinh(dist);\n"
" vec4 v = position * ch + tangent * sh;\n"
" tangent = tangent * ch + position * sh;\n"
" position = v;\n";
else if(nonisotropic) {
if(sol && nih) fsh +=
"vec4 christoffel(vec4 pos, vec4 vel, vec4 tra) {\n"
" return vec4(-(vel.z*tra.x + vel.x*tra.z)*log(2.), (vel.z*tra.y + vel.y * tra.z)*log(3.), vel.x*tra.x * exp(2.*log(2.)*pos.z)*log(2.) - vel.y * tra.y * exp(-2.*log(3.)*pos.z)*log(3.), 0.);\n"
" }\n";
else if(nih) fsh +=
"vec4 christoffel(vec4 pos, vec4 vel, vec4 tra) {\n"
" return vec4((vel.z*tra.x + vel.x*tra.z)*log(2.), (vel.z*tra.y + vel.y * tra.z)*log(3.), -vel.x*tra.x * exp(-2.*log(2.)*pos.z)*log(2.) - vel.y * tra.y * exp(-2.*log(3.)*pos.z)*log(3.), 0.);\n"
" }\n";
else if(sol) fsh +=
"vec4 christoffel(vec4 pos, vec4 vel, vec4 tra) {\n"
" return vec4(-vel.z*tra.x - vel.x*tra.z, vel.z*tra.y + vel.y * tra.z, vel.x*tra.x * exp(2.*pos.z) - vel.y * tra.y * exp(-2.*pos.z), 0.);\n"
" }\n";
else fsh +=
"vec4 christoffel(vec4 pos, vec4 vel, vec4 tra) {\n"
" float x = pos.x;\n"
" return vec4(x*vel.y*tra.y - 0.5*dot(vel.yz,tra.zy), -.5*x*dot(vel.yx,tra.xy) + .5 * dot(vel.zx,tra.xz), -.5*(x*x-1.)*dot(vel.yx,tra.xy)+.5*x*dot(vel.zx,tra.xz), 0.);\n"
// " return vec4(0.,0.,0.,0.);\n"
" }\n";
if(solnih && !asonov) fsh += "uniform mediump float uBinaryWidth;\n";
fmain +=
" dist = next < minstep ? 2.*next : next;\n";
if(nil) fsh +=
"vec4 translate(vec4 a, vec4 b) {\n"
"return vec4(a[0] + b[0], a[1] + b[1], a[2] + b[2] + a[0] * b[1], b[3]);\n"
"}\n"
"vec4 translatev(vec4 a, vec4 t) {\n"
"return vec4(t[0], t[1], t[2] + a[0] * t[1], 0.);\n"
"}\n"
"vec4 itranslate(vec4 a, vec4 b) {\n"
"return vec4(-a[0] + b[0], -a[1] + b[1], -a[2] + b[2] - a[0] * (b[1]-a[1]), b[3]);\n"
"}\n"
"vec4 itranslatev(vec4 a, vec4 t) {\n"
"return vec4(t[0], t[1], t[2] - a[0] * t[1], 0.);\n"
"}\n";
if(nil) fmain += "tangent = translate(position, itranslate(position, tangent));\n";
if(solnih) fmain +=
"vec4 acc = christoffel(position, tangent, tangent);\n"
"vec4 pos2 = position + tangent * dist / 2.;\n"
"vec4 tan2 = tangent + acc * dist / 2.;\n"
"vec4 acc2 = christoffel(pos2, tan2, tan2);\n"
"vec4 nposition = position + tangent * dist + acc2 / 2. * dist * dist;\n";
if(nil) {
fmain +=
"vec4 xp, xt;\n"
"vec4 back = itranslatev(position, tangent);\n"
"if(back.x == 0. && back.y == 0.) {\n"
" xp = vec4(0., 0., back.z*dist, 1.);\n"
" xt = back;\n"
" }\n"
"else if(abs(back.z) == 0.) {\n"
" xp = vec4(back.x*dist, back.y*dist, back.x*back.y*dist*dist/2., 1.);\n"
" xt = vec4(back.x, back.y, dist*back.x*back.y, 0.);\n"
" }\n"
"else if(abs(back.z) < 1e-1) {\n"
// we use the midpoint method here, because the formulas below cause glitches due to float precision
" vec4 acc = christoffel(vec4(0,0,0,1), back, back);\n"
" vec4 pos2 = back * dist / 2.;\n"
" vec4 tan2 = back + acc * dist / 2.;\n"
" vec4 acc2 = christoffel(pos2, tan2, tan2);\n"
" xp = vec4(0,0,0,1) + back * dist + acc2 / 2. * dist * dist;\n"
" xt = back + acc * dist;\n"
" }\n"
"else {\n"
" float alpha = atan2(back.y, back.x);\n"
" float w = back.z * dist;\n"
" float c = length(back.xy) / back.z;\n"
" xp = vec4(2.*c*sin(w/2.) * cos(w/2.+alpha), 2.*c*sin(w/2.)*sin(w/2.+alpha), w*(1.+(c*c/2.)*((1.-sin(w)/w)+(1.-cos(w))/w * sin(w+2.*alpha))), 1.);\n"
" xt = back.z * vec4("
"c*cos(alpha+w),"
"c*sin(alpha+w),"
"1. + c*c*2.*sin(w/2.)*sin(alpha+w)*cos(alpha+w/2.),"
"0.);\n"
" }\n"
"vec4 nposition = translate(position, xp);\n";
}
if(nil) fmain +=
"float rz = (abs(nposition.x) > abs(nposition.y) ? -nposition.x*nposition.y : 0.) + nposition.z;\n";
if(asonov) {
fsh += "uniform mediump mat4 uStraighten;\n";
fmain += "vec4 sp = uStraighten * nposition;\n";
}
fmain +=
"if(next >= minstep) {\n";
if(asonov) fmain +=
"if(abs(sp.x) > 1. || abs(sp.y) > 1. || abs(sp.z) > 1.) {\n";
else if(nih) fmain +=
"if(abs(nposition.x) > uBinaryWidth || abs(nposition.y) > uBinaryWidth || abs(nposition.z) > .5) {\n";
else if(sol) fmain +=
"if(abs(nposition.x) > uBinaryWidth || abs(nposition.y) > uBinaryWidth || abs(nposition.z) > log(2.)/2.) {\n";
else fmain +=
"if(abs(nposition.x) > .5 || abs(nposition.y) > .5 || abs(rz) > .5) {\n";
fmain +=
"next = dist / 2.; continue;\n"
"}\n"
"if(next < maxstep) next = next / 2.;\n"
"}\n"
"else {\n";
if(solnih) {
if(asonov) fmain +=
"if(sp.x > 1.) which = 4;\n"
"if(sp.y > 1.) which = 5;\n"
"if(sp.x <-1.) which = 10;\n"
"if(sp.y <-1.) which = 11;\n"
"if(sp.z > 1.) {\n"
"float best = 999.;\n"
"for(int i=0; i<4; i++) {\n"
"float cand = len(uStraighten * uM[i] * position);\n"
"if(cand < best) { best = cand; which = i;}\n"
"}\n"
"}\n"
"if(sp.z < -1.) {\n"
"float best = 999.;\n"
"for(int i=6; i<10; i++) {\n"
"float cand = len(uStraighten * uM[i] * position);\n"
"if(cand < best) { best = cand; which = i;}\n"
"}\n"
"}\n";
else if(sol && !nih) fmain +=
"if(nposition.x > uBinaryWidth) which = 0;\n"
"if(nposition.x <-uBinaryWidth) which = 4;\n"
"if(nposition.y > uBinaryWidth) which = 1;\n"
"if(nposition.y <-uBinaryWidth) which = 5;\n";
if(nih) fmain +=
"if(nposition.x > uBinaryWidth) which = 0;\n"
"if(nposition.x <-uBinaryWidth) which = 2;\n"
"if(nposition.y > uBinaryWidth) which = 1;\n"
"if(nposition.y <-uBinaryWidth) which = 3;\n";
if(sol && nih) fmain +=
"if(nposition.z > .5) which = nposition.x > 0. ? 5 : 4;\n"
"if(nposition.z <-.5) which = nposition.y > uBinaryWidth/3. ? 8 : nposition.y < -uBinaryWidth/3. ? 6 : 7;\n";
if(nih && !sol) fmain +=
"if(nposition.z > .5) which = 4;\n"
"if(nposition.z < -.5) which = (nposition.y > uBinaryWidth/3. ? 9 : nposition.y < -uBinaryWidth/3. ? 5 : 7) + (nposition.x>0.?1:0);\n";
if(sol && !nih && !asonov) fmain +=
"if(nposition.z > log(2.)/2.) which = nposition.x > 0. ? 3 : 2;\n"
"if(nposition.z <-log(2.)/2.) which = nposition.y > 0. ? 7 : 6;\n";
}
else fmain +=
"if(nposition.x > .5) which = 3;\n"
"if(nposition.x <-.5) which = 0;\n"
"if(nposition.y > .5) which = 4;\n"
"if(nposition.y <-.5) which = 1;\n"
"if(rz > .5) which = 5;\n"
"if(rz <-.5) which = 2;\n";
fmain +=
"next = maxstep;\n"
"}\n";
if(nil) fmain +=
"tangent = translatev(position, xt);\n";
fmain +=
"position = nposition;\n";
if(!nil) fmain +=
"tangent = tangent + acc * dist;\n";
}
else fmain +=
"position = position + tangent * dist;\n";
#if CAP_FIX_RAYCAST
if(hyperbolic) fmain +=
"position /= sqrt(position.w*position.w - dot(position.xyz, position.xyz));\n"
"tangent -= dot(vec4(-position.xyz, position.w), tangent) * position;\n"
"tangent /= sqrt(dot(tangent.xyz, tangent.xyz) - tangent.w*tangent.w);\n";
#endif
if(hyperbolic && binarytiling) {
fmain +=
"if(which == 20) {\n"
" float best = 999.;\n"
" for(int i="+its(flat2)+"; i<"+its(S7)+"; i++) {\n"
" float cand = len(uM[i] * position);\n"
" if(cand < best) { best = cand; which = i; }\n"
" }\n"
"}\n"
"if(which == 21) {\n"
"float best = 999.;\n"
"for(int i=0; i<"+its(flat1)+"; i++) {\n"
" float cand = len(uM[i] * position);\n"
" if(cand < best) { best = cand; which = i; }\n"
" }\n"
// "gl_FragColor = vec4(.5 + .5 * sin((go+dist)*100.), 1, float(which)/3., 1); return;\n"
"}\n";
}
fmain += " go = go + dist;\n";
fmain += "if(which == -1) continue;\n";
if(prod) fmain += "position.w = -zpos;\n";
// apply wall color
fmain +=
" vec2 u = cid + vec2(float(which) / float(uLength), 0);\n"
" vec4 col = texture2D(tWallcolor, u);\n"
" if(col[3] > 0.0) {\n";
if(hard_limit < NO_LIMIT)
fmain += " if(go > float(" + fts(hard_limit) + ")) { gl_FragDepth = 1.; return; }\n";
if(!(levellines && disable_texture)) fmain +=
" vec2 inface = map_texture(position, which);\n"
" vec3 tmap = texture2D(tTextureMap, u).rgb;\n"
" if(tmap.z == 0.) col.xyz *= min(1., (1.-inface.x)/ tmap.x);\n"
" else {\n"
" vec2 inface2 = tmap.xy + tmap.z * inface;\n"
" col.xyz *= texture2D(tTexture, inface2).rgb;\n"
" }\n";
fmain +=
" float d = max(1. - go / uLinearSightRange, uExpStart * exp(-go / uExpDecay));\n"
" col.xyz = col.xyz * d + uFogColor.xyz * (1.-d);\n";
if(nil) fmain +=
" if(abs(abs(position.x)-abs(position.y)) < .005) col.xyz /= 2.;\n";
if(use_reflect) fmain +=
" if(col.w == 1.) {\n"
" col.w = float("+fts(1-reflect_val)+");\n"
" reflect = true;\n"
" }\n";
ld vnear = glhr::vnear_default;
ld vfar = glhr::vfar_default;
fmain +=
" gl_FragColor.xyz += left * col.xyz * col.w;\n";
if(use_reflect) fmain +=
" if(reflect && depthtoset) {\n";
else fmain +=
" if(col.w == 1.) {\n";
if(hyperbolic) fmain +=
" float z = at0.z * sinh(go);\n"
" float w = 1.;\n";
else fmain +=
" float z = at0.z * go;\n"
" float w = 1.;\n";
if(levellines) {
if(hyperbolic)
fmain += "gl_FragColor.xyz *= 0.5 + 0.5 * cos(z/cosh(go) * uLevelLines * 2. * PI);\n";
else
fmain += "gl_FragColor.xyz *= 0.5 + 0.5 * cos(z * uLevelLines * 2. * PI);\n";
fsh += "uniform mediump float uLevelLines;\n";
}
fmain +=
" gl_FragDepth = (-float("+fts(vnear+vfar)+")+w*float("+fts(2*vnear*vfar)+")/z)/float("+fts(vnear-vfar)+");\n"
" gl_FragDepth = (gl_FragDepth + 1.) / 2.;\n";
if(!use_reflect) fmain +=
" return;\n";
else fmain +=
" depthtoset = false;\n";
fmain +=
" }\n"
" left *= (1. - col.w);\n"
" }\n";
if(use_reflect) {
if(prod) fmain += "if(reflect && which >= "+its(S7)+") { zspeed = -zspeed; continue; }\n";
if(hyperbolic && binarytiling) fmain +=
"if(reflect && (which < "+its(flat1)+" || which >= "+its(flat2)+")) {\n"
" float x = -log(position.w - position.x);\n"
" vec4 xtan = xpush(-x) * tangent;\n"
" float diag = (position.y*position.y+position.z*position.z)/2.;\n"
" vec4 normal = vec4(1.-diag, -position.y, -position.z, -diag);\n"
" float mdot = dot(xtan.xyz, normal.xyz) - xtan.w * normal.w;\n"
" xtan = xtan - normal * mdot * 2.;\n"
" tangent = xpush(x) * xtan;\n"
" continue;\n"
" }\n";
if(asonov) {
fmain +=
" if(reflect) {\n"
" if(which == 4 || which == 10) tangent = refl(tangent, position.z, uReflectX);\n"
" else if(which == 5 || which == 11) tangent = refl(tangent, position.z, uReflectY);\n"
" else tangent.z = -tangent.z;\n"
" }\n";
fsh +=
"uniform mediump vec4 uReflectX, uReflectY;\n"
"vec4 refl(vec4 t, float z, vec4 r) {\n"
"t.x *= exp(z); t.y /= exp(z);\n"
"t -= dot(t, r) * r;\n"
"t.x /= exp(z); t.y *= exp(z);\n"
"return t;\n"
"}\n";
}
else if(sol && !nih && !asonov) fmain +=
" if(reflect) {\n"
" if(which == 0 || which == 4) tangent.x = -tangent.x;\n"
" else if(which == 1 || which == 5) tangent.y = -tangent.y;\n"
" else tangent.z = -tangent.z;\n"
" continue;\n"
" }\n";
else if(nih) fmain +=
" if(reflect) {\n"
" if(which == 0 || which == 2) tangent.x = -tangent.x;\n"
" else if(which == 1 || which == 3) tangent.y = -tangent.y;\n"
" else tangent.z = -tangent.z;\n"
" continue;\n"
" }\n";
else fmain +=
" if(reflect) {\n"
" tangent = uM["+its(deg)+"+which] * tangent;\n"
" continue;\n"
" }\n";
}
// next cell
fmain +=
" vec4 connection = texture2D(tConnections, u);\n"
" cid = connection.xy;\n";
if(prod) fmain +=
" if(which == "+its(S7)+") { zpos += uPLevel+uPLevel; continue; }\n"
" if(which == "+its(S7)+"+1) { zpos -= uPLevel+uPLevel; continue; }\n";
fmain +=
" int mid = int(connection.z * 1024.);\n"
" position = uM[mid] * uM[which] * position;\n"
" tangent = uM[mid] * uM[which] * tangent;\n";
fmain +=
" }\n"
" gl_FragColor.xyz += left * uFogColor.xyz;\n";
if(use_reflect) fmain +=
" if(depthtoset) gl_FragDepth = 1.;\n";
else fmain +=
" gl_FragDepth = 1.;\n";
fmain +=
" }";
fsh += fmain;
our_raycaster = make_shared<raycaster> (vsh, fsh);
}
full_enable(our_raycaster);
}
int length, per_row, rows;
void bind_array(vector<array<float, 4>>& v, GLint t, GLuint& tx, int id) {
if(t == -1) println(hlog, "bind to nothing");
glUniform1i(t, id);
if(tx == 0) glGenTextures(1, &tx);
glActiveTexture(GL_TEXTURE0 + id);
glBindTexture(GL_TEXTURE_2D, tx);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, 0x8814 /* GL_RGBA32F */, length, isize(v)/length, 0, GL_RGBA, GL_FLOAT, &v[0]);
GLERR("bind_array");
}
void uniform2(GLint id, array<float, 2> fl) {
glUniform2f(id, fl[0], fl[1]);
}
array<float, 2> enc(int i, int a) {
array<float, 2> res;
res[0] = ((i%per_row) * deg + a + .5) / length;
res[1] = ((i / per_row) + .5) / rows;
return res;
};
color_t color_out_of_range = 0xFF0080FF;
EX void cast() {
enable_raycaster();
if(comparison_mode)
glColorMask( GL_TRUE,GL_FALSE,GL_FALSE,GL_TRUE );
auto& o = our_raycaster;
vector<glvertex> screen = {
glhr::makevertex(-1, -1, 1),
glhr::makevertex(-1, +1, 1),
glhr::makevertex(+1, -1, 1),
glhr::makevertex(-1, +1, 1),
glhr::makevertex(+1, -1, 1),
glhr::makevertex(+1, +1, 1)
};
ld d = current_display->eyewidth();
if(vid.stereo_mode == sLR) d = 2 * d - 1;
else d = -d;
glUniform1f(o->uShift, -global_projection * d);
auto& cd = current_display;
cd->set_viewport(global_projection);
cd->set_mask(global_projection);
glUniform1f(o->uFovX, cd->tanfov / (vid.stereo_mode == sLR ? 2 : 1));
glUniform1f(o->uFovY, cd->tanfov * cd->ysize / cd->xsize);
deg = S7;
if(prod) deg += 2;
length = 4096;
per_row = length / deg;
vector<cell*> lst;
cell *cs = centerover;
transmatrix T = cview();
if(global_projection)
T = xpush(vid.ipd * global_projection/2) * T;
if(nonisotropic) T = NLP * T;
T = inverse(T);
virtualRebase(cs, T);
if(true) {
manual_celllister cl;
cl.add(cs);
bool optimize = !isWall3(cs);
for(int i=0; i<isize(cl.lst); i++) {
cell *c = cl.lst[i];
if(racing::on && i > 0 && c->wall == waBarrier) continue;
if(optimize && isWall3(c)) continue;
forCellCM(c2, c) {
if(rays_generate) setdist(c2, 7, c);
cl.add(c2);
if(isize(cl.lst) >= max_cells) goto finish;
}
}
finish:
lst = cl.lst;
}
rows = next_p2((isize(lst)+per_row-1) / per_row);
map<cell*, int> ids;
for(int i=0; i<isize(lst); i++) ids[lst[i]] = i;
glUniform1i(o->uLength, length);
GLERR("uniform mediump length");
glUniformMatrix4fv(o->uStart, 1, 0, glhr::tmtogl_transpose3(T).as_array());
if(o->uLP != -1) glUniformMatrix4fv(o->uLP, 1, 0, glhr::tmtogl_transpose3(inverse(NLP)).as_array());
GLERR("uniform mediump start");
uniform2(o->uStartid, enc(ids[cs], 0));
GLERR("uniform mediump startid");
glUniform1f(o->uIPD, vid.ipd);
GLERR("uniform mediump IPD");
vector<transmatrix> ms;
for(int j=0; j<S7; j++) ms.push_back(currentmap->iadj(cwt.at, j));
if(prod) ms.push_back(Id);
if(prod) ms.push_back(Id);
if(!sol && !nil && reflect_val) {
for(int j=0; j<S7; j++) {
transmatrix T = inverse(ms[j]);
hyperpoint h = tC0(T);
ld d = hdist0(h);
transmatrix U = rspintox(h) * xpush(d/2) * MirrorX * xpush(-d/2) * spintox(h);
ms.push_back(U);
}
}
vector<array<float, 4>> connections(length * rows);
vector<array<float, 4>> wallcolor(length * rows);
vector<array<float, 4>> texturemap(length * rows);
if(1) for(cell *c: lst) {
int id = ids[c];
forCellIdEx(c1, i, c) {
int u = (id/per_row*length) + (id%per_row * deg) + i;
if(!ids.count(c1)) {
wallcolor[u] = glhr::acolor(color_out_of_range | 0xFF);
texturemap[u] = glhr::makevertex(0.1,0,0);
continue;
}
auto code = enc(ids[c1], 0);
connections[u][0] = code[0];
connections[u][1] = code[1];
if(isWall3(c1)) {
celldrawer dd;
dd.c = c1;
dd.setcolors();
transmatrix Vf;
dd.set_land_floor(Vf);
color_t wcol = darkena(dd.wcol, 0, 0xFF);
int dv = get_darkval(c1, c->c.spin(i));
float p = 1 - dv / 16.;
wallcolor[u] = glhr::acolor(wcol);
for(int a: {0,1,2}) wallcolor[u][a] *= p;
if(qfi.fshape) {
texturemap[u] = floor_texture_map[qfi.fshape->id];
}
else
texturemap[u] = glhr::makevertex(0.1,0,0);
}
else {
color_t col = transcolor(c, c1, winf[c->wall].color) | transcolor(c1, c, winf[c1->wall].color);
if(col == 0)
wallcolor[u] = glhr::acolor(0);
else {
int dv = get_darkval(c1, c->c.spin(i));
float p = 1 - dv / 16.;
wallcolor[u] = glhr::acolor(col);
for(int a: {0,1,2}) wallcolor[u][a] *= p;
texturemap[u] = glhr::makevertex(0.001,0,0);
}
}
if(prod && i >= S7) {
connections[u][2] = (S7+.5) / 1024.;
continue;
}
transmatrix T = currentmap->iadj(c, i) * inverse(ms[i]);
for(int k=0; k<=isize(ms); k++) {
if(k < isize(ms) && !eqmatrix(ms[k], T)) continue;
if(k == isize(ms)) ms.push_back(T);
connections[u][2] = (k+.5) / 1024.;
break;
}
}
}
vector<GLint> wallstart;
for(auto i: cgi.wallstart) wallstart.push_back(i);
glUniform1iv(o->uWallstart, isize(wallstart), &wallstart[0]);
vector<glvertex> wallx, wally;
for(auto& m: cgi.raywall) {
wallx.push_back(glhr::pointtogl(m[0]));
wally.push_back(glhr::pointtogl(m[1]));
}
glUniform4fv(o->uWallX, isize(wallx), &wallx[0][0]);
glUniform4fv(o->uWallY, isize(wally), &wally[0][0]);
if(o->uLevelLines != -1)
glUniform1f(o->uLevelLines, levellines);
if(o->uBinaryWidth != -1)
glUniform1f(o->uBinaryWidth, vid.binary_width/2 * (nih?1:log(2)));
if(o->uStraighten != -1) {
glUniformMatrix4fv(o->uStraighten, 1, 0, glhr::tmtogl_transpose(asonov::straighten).as_array());
}
if(o->uReflectX != -1) {
auto h = glhr::pointtogl(tangent_length(spin(90*degree) * asonov::ty, 2));
glUniform4fv(o->uReflectX, 1, &h[0]);
h = glhr::pointtogl(tangent_length(spin(90*degree) * asonov::tx, 2));
glUniform4fv(o->uReflectY, 1, &h[0]);
}
if(o->uPLevel != -1)
glUniform1f(o->uPLevel, cgi.plevel / 2);
if(o->uBLevel != -1)
glUniform1f(o->uBLevel, log(binary::expansion()) / 2);
glUniform1f(o->uLinearSightRange, sightranges[geometry]);
glUniform1f(o->uExpDecay, exp_decay_current());
glUniform1f(o->uExpStart, exp_start);
vector<glhr::glmatrix> gms;
for(auto& m: ms) gms.push_back(glhr::tmtogl_transpose3(m));
glUniformMatrix4fv(o->uM, isize(gms), 0, gms[0].as_array());
bind_array(wallcolor, o->tWallcolor, txWallcolor, 4);
bind_array(connections, o->tConnections, txConnections, 3);
bind_array(texturemap, o->tTextureMap, txTextureMap, 5);
auto cols = glhr::acolor(darkena(backcolor, 0, 0xFF));
glUniform4f(o->uFogColor, cols[0], cols[1], cols[2], cols[3]);
glVertexAttribPointer(hr::aPosition, 4, GL_FLOAT, GL_FALSE, sizeof(glvertex), &screen[0]);
if(ray::comparison_mode)
glhr::set_depthtest(false);
else {
glhr::set_depthtest(true);
glhr::set_depthwrite(true);
}
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glActiveTexture(GL_TEXTURE0 + 0);
glBindTexture(GL_TEXTURE_2D, floor_textures->renderedTexture);
glDrawArrays(GL_TRIANGLES, 0, 6);
GLERR("finish");
}
EX void configure() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen(0);
dialog::init(XLAT("raycasting configuration"));
dialog::addBoolItem(XLAT("available in current geometry"), available(), 0);
dialog::addBoolItem(XLAT("use raycasting?"), want_use == 2 ? true : in_use, 'u');
if(want_use == 1) dialog::lastItem().value = XLAT("SMART");
dialog::add_action([] {
want_use++; want_use %= 3;
});
dialog::addBoolItem_action(XLAT("comparison mode"), comparison_mode, 'c');
dialog::addSelItem(XLAT("exponential range"), fts(exp_decay_current()), 'r');
dialog::add_action([&] {
dialog::editNumber(exp_decay_current(), 0, 40, 0.25, 5, XLAT("exponential range"),
XLAT("brightness formula: max(1-d/sightrange, s*exp(-d/r))")
);
});
dialog::addSelItem(XLAT("exponential start"), fts(exp_start), 's');
dialog::add_action([&] {
dialog::editNumber(exp_start, 0, 1, 0.1, 1, XLAT("exponential start"),
XLAT("brightness formula: max(1-d/sightrange, s*exp(-d/r))\n")
);
});
if(hard_limit < NO_LIMIT)
dialog::addSelItem(XLAT("hard limit"), fts(hard_limit), 'H');
else
dialog::addBoolItem(XLAT("hard limit"), false, 'H');
dialog::add_action([&] {
if(hard_limit >= NO_LIMIT) hard_limit = 10;
dialog::editNumber(hard_limit, 0, 100, 1, 10, XLAT("hard limit"), "");
dialog::reaction = reset_raycaster;
dialog::extra_options = [] {
dialog::addItem("no limit", 'N');
dialog::add_action([] { hard_limit = NO_LIMIT; reset_raycaster(); });
};
});
if(!nil) {
dialog::addSelItem(XLAT("reflective walls"), fts(reflect_val), 'R');
dialog::add_action([&] {
dialog::editNumber(reflect_val, 0, 1, 0.1, 0, XLAT("reflective walls"), "");
dialog::reaction = reset_raycaster;
});
}
if(nonisotropic) {
dialog::addSelItem(XLAT("max step"), fts(maxstep_current()), 'x');
dialog::add_action([] {
dialog::editNumber(maxstep_current(), 1e-6, 1, 0.1, sol ? 0.03 : 0.1, XLAT("max step"), "affects the precision of solving the geodesic equation in Solv");
dialog::scaleLog();
dialog::bound_low(1e-9);
dialog::reaction = reset_raycaster;
});
dialog::addSelItem(XLAT("min step"), fts(minstep), 'n');
dialog::add_action([] {
dialog::editNumber(minstep, 1e-6, 1, 0.1, 0.001, XLAT("min step"), "how precisely should we find out when do cross the cell boundary");
dialog::scaleLog();
dialog::bound_low(1e-9);
dialog::reaction = reset_raycaster;
});
}
dialog::addSelItem(XLAT("iterations"), its(max_iter_current()), 's');
dialog::add_action([&] {
dialog::editNumber(max_iter_current(), 0, 600, 1, 60, XLAT("iterations"), "in H3/H2xE/E3 this is the number of cell boundaries; in nonisotropic, the number of simulation steps");
dialog::reaction = reset_raycaster;
});
dialog::addSelItem(XLAT("max cells"), its(max_cells), 's');
dialog::add_action([&] {
dialog::editNumber(max_cells, 16, 131072, 0.1, 4096, XLAT("max cells"), "");
dialog::scaleLog();
dialog::extra_options = [] {
dialog::addBoolItem_action("generate", rays_generate, 'G');
dialog::addColorItem(XLAT("out-of-range color"), color_out_of_range, 'X');
dialog::add_action([] {
dialog::openColorDialog(color_out_of_range);
dialog::dialogflags |= sm::SIDE;
});
};
});
edit_levellines('L');
dialog::addBack();
dialog::display();
}
#if CAP_COMMANDLINE
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-ray-do")) {
PHASEFROM(2);
want_use = 2;
}
else if(argis("-ray-dont")) {
PHASEFROM(2);
want_use = 0;
}
else if(argis("-ray-smart")) {
PHASEFROM(2);
want_use = 1;
}
else if(argis("-ray-out")) {
PHASEFROM(2); shift(); color_out_of_range = arghex();
}
else if(argis("-ray-comp")) {
PHASEFROM(2);
comparison_mode = true;
}
else if(argis("-ray-cells")) {
PHASEFROM(2); shift();
rays_generate = true;
max_cells = argi();
}
else if(argis("-ray-reflect")) {
PHASEFROM(2);
shift_arg_formula(reflect_val);
}
else if(argis("-ray-cells-no")) {
PHASEFROM(2); shift();
rays_generate = false;
max_cells = argi();
}
else return 1;
return 0;
}
auto hook = addHook(hooks_args, 100, readArgs);
#endif
#if CAP_CONFIG
void addconfig() {
addparam(exp_start, "ray_exp_start");
addparam(exp_decay_exp, "ray_exp_decay_exp");
addparam(maxstep_sol, "ray_maxstep_sol");
addparam(maxstep_nil, "ray_maxstep_nil");
addparam(minstep, "ray_minstep");
addparam(reflect_val, "ray_reflect_val");
addparam(hard_limit, "ray_hard_limit");
addsaver(want_use, "ray_want_use");
addsaver(exp_decay_poly, "ray_exp_decay_poly");
addsaver(max_iter_iso, "ray_max_iter_iso");
addsaver(max_iter_sol, "ray_max_iter_sol");
addsaver(max_cells, "ray_max_cells");
addsaver(rays_generate, "ray_generate");
}
auto hookc = addHook(hooks_configfile, 100, addconfig);
#endif
#endif
#if MAXMDIM == 3
EX always_false in_use;
EX always_false comparison_mode;
EX void reset_raycaster() { }
EX void cast() { }
#endif
EX }
}