1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-09 15:39:55 +00:00
hyperrogue/drawing.cpp
2024-06-28 14:00:52 +02:00

2992 lines
87 KiB
C++

// Hyperbolic Rogue -- rendering
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file drawing.cpp
* \brief Rendering shapes (dqi_draw), queue of shapes to render (ptds), etc.
*/
#include "hyper.h"
namespace hr {
#if HDR
static constexpr int POLY_DRAWLINES = 1; // draw the lines
static constexpr int POLY_DRAWAREA = 2; // draw the area
static constexpr int POLY_INVERSE = 4; // draw the inverse -- useful in stereographic projection
static constexpr int POLY_ISSIDE = 8; // never draw in inverse
static constexpr int POLY_BEHIND = 16; // there are points behind the camera
static constexpr int POLY_TOOLARGE = 32; // some coordinates are too large -- best not to draw to avoid glitches
static constexpr int POLY_INFRONT = 64; // on the sphere (orthogonal projection), do not draw without any points in front
static constexpr int POLY_HASWALLS = 128; // floor shapes which have their sidewalls
static constexpr int POLY_PLAIN = 256; // plain floors
static constexpr int POLY_FULL = 512; // full floors
static constexpr int POLY_HASSHADOW = 1024; // floor shapes which have their shadows, or can use shFloorShadow
static constexpr int POLY_GP = 2048; // Goldberg shapes
static constexpr int POLY_VCONVEX = 4096; // Convex shape (vertex)
static constexpr int POLY_CCONVEX = 8192; // Convex shape (central)
static constexpr int POLY_CENTERIN = 16384; // new system of side checking
static constexpr int POLY_FORCEWIDE = (1<<15); // force wide lines
static constexpr int POLY_NOTINFRONT = (1<<16); // points not in front
static constexpr int POLY_NIF_ERROR = (1<<17); // points moved to the outline cross the image, disable
static constexpr int POLY_BADCENTERIN = (1<<18); // new system of side checking
static constexpr int POLY_PRECISE_WIDE = (1<<19); // precise width calculation
static constexpr int POLY_FORCE_INVERTED = (1<<20); // force inverted
static constexpr int POLY_ALWAYS_IN = (1<<21); // always draw this
static constexpr int POLY_TRIANGLES = (1<<22); // made of TRIANGLES, not TRIANGLE_FAN
static constexpr int POLY_INTENSE = (1<<23); // extra intense colors
static constexpr int POLY_DEBUG = (1<<24); // debug this shape
static constexpr int POLY_PRINTABLE = (1<<25); // these walls are printable
static constexpr int POLY_FAT = (1<<26); // fatten this model in WRL export (used for Rug)
static constexpr int POLY_SHADE_TEXTURE = (1<<27); // texture has 'z' coordinate for shading
static constexpr int POLY_ONE_LEVEL = (1<<28); // only one level of the universal cover in SL(2,R)
static constexpr int POLY_APEIROGONAL = (1<<29); // only vertices indexed up to she are drawn as the boundary
static constexpr int POLY_NO_FOG = (1<<30); // disable fog for this
/** \brief A graphical element that can be drawn. Objects are not drawn immediately but rather queued.
*
* HyperRogue map rendering functions do not draw its data immediately; instead, they call the 'queue' functions
* which store the data to draw in hr::ptds. This approach lets us draw the elements in the correct order.
*/
struct drawqueueitem {
/** \brief The higher the priority, the earlier we should draw this object. */
PPR prio;
/** \brief Color of this object. */
color_t color;
/** \brief Some priorities need extra sorting inside the given class. This attribute is used to specify the inner sorting priority. */
int subprio;
/** \brief Draw the object. */
virtual void draw() = 0;
/** \brief Draw the object as background. */
virtual void draw_back() {}
virtual ~drawqueueitem() = default;
/** \brief When minimizing OpenGL calls, we need to group items of the same color, etc. together. This value is used as an extra sorting key. */
virtual color_t outline_group() = 0;
};
/** \brief Drawqueueitem used to draw polygons. The majority of drawqueueitems fall here. */
struct dqi_poly : drawqueueitem {
/** \brief matrix used to transform the model */
shiftmatrix V;
/** \brief a vector of GL vertices where the model is stored */
const vector<glvertex> *tab;
/** \brief the where does the model start */
int offset;
/** \brief how many vertices in the model */
int cnt;
/** cnt for POLY_APEIROGONAL */
int apeiro_cnt;
/** \brief the offset in the texture vertices */
int offset_texture;
/** \brief outline color */
color_t outline;
/** \brief width of boundary lines */
double linewidth;
/** \brief various flags */
int flags;
/** \brief Texture data for textured polygons. Requires POLY_TRIANGLES flag */
struct basic_textureinfo *tinf;
/** \brief used to find the correct side to draw in spherical geometries */
hyperpoint intester;
/** \brief temporarily cached data */
float cache;
void draw() override;
#if CAP_GL
void gldraw();
#endif
void draw_back() override;
color_t outline_group() override { return outline; }
};
/** \brief Drawqueueitem used to draw lines */
struct dqi_line : drawqueueitem {
/** \brief starting and ending point */
shiftpoint H1, H2;
/** \brief how accurately to render the line */
int prf;
/** \brief width of this line */
double width;
void draw() override;
void draw_back() override;
color_t outline_group() override { return color; }
};
/** \brief Drawqueueitem used to draw strings, using sccreen coodinates */
struct dqi_string : drawqueueitem {
/** \brief text */
string str;
/** onscreen position */
int x, y;
/** shift in anaglyph mode */
int shift;
/** font size */
int size;
/** frame color */
int frame;
/** alignment (0-8-16) */
int align;
void draw() override;
color_t outline_group() override { return 1; }
};
/** Drawqueueitem used to draw circles, using screen coordinates */
struct dqi_circle : drawqueueitem {
/** \brief onscreen position */
int x, y;
/** \brief circle size */
int size;
/** \brief which color should it be filled with */
color_t fillcolor;
/** \brief width of the circle */
double linewidth;
void draw() override;
color_t outline_group() override { return 2; }
};
/** \brief Perform an arbitrary action. May temporarily change the model, etc. */
struct dqi_action : drawqueueitem {
reaction_t action;
explicit dqi_action(const reaction_t& a) : action(a) {}
void draw() override { action(); }
color_t outline_group() override { return 2; }
};
#endif
EX bool in_vr_sphere;
hyperpoint vr_sphere_center;
bool fatborder;
EX color_t poly_outline;
EX vector<unique_ptr<drawqueueitem>> ptds;
#if CAP_GL
EX color_t text_color;
EX int text_shift;
EX GLuint text_texture;
EX int texts_merged;
EX int shapes_merged;
#if MINIMIZE_GL_CALLS
PPR lprio;
ld m_shift;
vector<glhr::colored_vertex> triangle_vertices;
vector<glhr::colored_vertex> line_vertices;
#endif
EX void glflush() {
DEBBI(DF_GRAPH, ("glflush"));
#if MINIMIZE_GL_CALLS
if(isize(triangle_vertices)) {
// printf("%3d | %d shapes, %d/%d vertices\n", lprio, shapes_merged, isize(triangle_vertices), isize(line_vertices));
current_display->next_shader_flags = GF_VARCOLOR;
current_display->set_all(0, m_shift);
if(true) {
glhr::be_nontextured();
glapplymatrix(Id);
glhr::current_vertices = NULL;
glhr::prepare(triangle_vertices);
glhr::color2(0xFFFFFFFF);
glDrawArrays(GL_TRIANGLES, 0, isize(triangle_vertices));
}
triangle_vertices.clear();
if(isize(line_vertices)) goto jump;
}
if(isize(line_vertices)) {
current_display->next_shader_flags = GF_VARCOLOR;
current_display->set_all(0, m_shift);
jump:
if(true) {
glhr::be_nontextured();
glapplymatrix(Id);
glhr::current_vertices = NULL;
glhr::prepare(line_vertices);
glhr::color2(0xFFFFFFFF);
glDrawArrays(GL_LINES, 0, isize(line_vertices));
}
line_vertices.clear();
}
shapes_merged = 0;
#endif
if(isize(text_vertices)) {
current_display->next_shader_flags = GF_TEXTURE;
dynamicval<eModel> m(pmodel, mdPixel);
if(!svg::in) current_display->set_all(0,0);
auto drawer = [] {
glhr::color2(text_color);
glBindTexture(GL_TEXTURE_2D, text_texture);
glhr::set_depthtest(false);
glhr::current_vertices = NULL;
glhr::prepare(text_vertices);
glDrawArrays(GL_TRIANGLES, 0, isize(text_vertices));
};
#if CAP_VR
if(vrhr::should_render() && vrhr::in_menu())
vrhr::in_vr_ui(drawer);
else
#endif
for(int ed = (current_display->separate_eyes() && text_shift)?-1:0; ed<2; ed+=2) {
glhr::set_modelview(glhr::translate(-ed*text_shift-current_display->xcenter,-current_display->ycenter, 0));
current_display->set_mask(ed);
drawer();
GLERR("print");
}
if(current_display->separate_eyes() && text_shift && !svg::in) current_display->set_mask(0);
texts_merged = 0;
text_vertices.clear();
}
}
#endif
#if CAP_SDL && !ISMOBILE
SDL_Surface *aux;
#if CAP_SDL2
SDL_Renderer *auxrend;
#else
#define auxrend aux
#endif
#endif
#if CAP_POLY
#if HDR
#define POLYMAX 60000
#endif
EX vector<glvertex> glcoords;
#endif
EX int spherespecial, spherephase;
#if CAP_POLY
int polyi;
EX int polyx[POLYMAX], polyxr[POLYMAX], polyy[POLYMAX];
int poly_flags;
void add1(const hyperpoint& H) {
glcoords.push_back(glhr::pointtogl(H));
}
int axial_sign() {
return ((axial_x ^ axial_y)&1) ? -1:1;
}
bool is_behind(const hyperpoint& H) {
if(pmodel == mdAxial && sphere) return axial_sign() * H[2] <= BEHIND_LIMIT;
if(in_vr_sphere) return false;
return pmodel == mdDisk && (hyperbolic ? H[2] >= 0 : true) && (nonisotropic ? false : pconf.alpha + H[2] <= BEHIND_LIMIT);
}
hyperpoint be_just_on_view(const hyperpoint& H1, const hyperpoint &H2) {
// H1[2] * t + H2[2] * (1-t) == BEHIND_LIMIT - pconf.alpha
// H2[2]- BEHIND_LIMIT + pconf.alpha = t * (H2[2] - H1[2])
ld t = (axial_sign() * H2[2] - BEHIND_LIMIT + (pmodel == mdAxial ? 0 : pconf.alpha)) / (H2[2] - H1[2]) * axial_sign();
return H1 * t + H2 * (1-t);
}
bool last_infront;
bool nif_error_in(ld x1, ld y1, ld x2, ld y2) {
return pow(x1 * x2 + y2 * y2, 2) < (x1*x1+y1*y1)*(x2*x2+y2*y2)*.5;
}
bool knowgood;
hyperpoint goodpoint;
vector<pair<int, hyperpoint>> tofix;
EX bool two_sided_model() {
#if CAP_VR
bool in_vr = vrhr::rendering();
#else
constexpr bool in_vr = false;
#endif
if(GDIM == 3) return false;
if(in_vr_sphere) return true;
if(pmodel == mdHemisphere || pmodel == mdHyperboloid) return !in_vr;
// if(pmodel == mdHemisphere) return true;
if(pmodel == mdDisk) return sphere || (hyperbolic && pconf.alpha < 0 && pconf.alpha > -1);
if(pmodel == mdRetroLittrow) return sphere;
if(pmodel == mdRetroHammer) return sphere;
if(pmodel == mdRotatedHyperboles) return true;
if(pmodel == mdSpiral && pconf.spiral_cone < 360) return true;
return false;
}
EX int get_side(const hyperpoint& H) {
#if CAP_VR
if(in_vr_sphere) {
hyperpoint Hscr;
applymodel(shiftless(H), Hscr);
Hscr[3] = 1;
E4;
hyperpoint actual = vrhr::hmd_mv * Hscr;
ld val = 0;
for(int i=0; i<3; i++) val += (vr_sphere_center[i] - actual[i]) * actual[i];
return val > 0 ? -1 : 1;
}
#endif
if(pmodel == mdDisk && sphere) {
double curnorm = H[0]*H[0]+H[1]*H[1]+H[2]*H[2];
double horizon = curnorm / pconf.alpha;
return (H[2] <= -horizon) ? -1 : 1;
}
if(pmodel == mdDisk && hyperbolic && pconf.alpha < 0 && pconf.alpha > -1) {
return (H[2] * (H[2] + pconf.alpha) < sqhypot_d(2, H)) ? -1 : 1;
}
if(pmodel == mdRetroLittrow && sphere) {
return H[2] >= 0 ? 1 : -1;
}
if(pmodel == mdRetroHammer && sphere) {
return H[2] >= 0 ? 1 : -1;
}
if(pmodel == mdRotatedHyperboles)
return H[1] > 0 ? -1 : 1;
if(pmodel == mdHyperboloid) {
auto H1 = H; if(sphere && pconf.small_hyperboloid) H1 = mid(H, C0);
return det2(pconf.ball() * cspin90(2, 1) * rgpushxto0(H1)) > 0 ? 1 : -1;
}
if(pmodel == mdHyperboloidFlat && sphere)
return H[2] >= 0 ? 1 : -1;
if(pmodel == mdHemisphere && !sphere) {
hyperpoint res;
applymodel(shiftless(H), res);
return res[2] < 0 ? 1 : -1;
}
if(pmodel == mdHemisphere && sphere) {
auto H1 = H;
if(pconf.small_hyperboloid) H1 = mid(H, C0);
int s = H1[2] > 0 ? 1 : -1;
if(hemi_side && s != hemi_side) return -spherespecial;
H1[0] /= H1[2]; H1[1] /= H1[2];
H1[2] = -s * sqrt(1 + H1[0]*H1[0] + H1[1] * H1[1]);
dynamicval<geometryinfo1> g(cginf.g, giHyperb2);
return det2(pconf.ball() * cspin90(2, 1) * rgpushxto0(H1)) > 0 ? 1 : -1;
}
if(pmodel == mdSpiral && pconf.spiral_cone < 360) {
return cone_side(shiftless(H));
}
return 0;
}
EX bool correct_side(const hyperpoint& H) {
return get_side(H) == spherespecial;
}
hyperpoint Hlast;
void fixpoint(glvertex& hscr, hyperpoint H) {
hyperpoint bad = H, good = goodpoint;
for(int i=0; i<10; i++) {
hyperpoint mid = midz(bad, good);
if(correct_side(mid))
good = mid;
else
bad = mid;
}
hyperpoint Hscr;
applymodel(shiftless(good), Hscr);
#if CAP_VR
if(vrhr::rendering())
hscr = glhr::makevertex(Hscr[0], Hscr[1]*pconf.stretch, Hscr[2]);
else
#endif
hscr = glhr::makevertex(Hscr[0]*current_display->radius, Hscr[1]*current_display->radius*pconf.stretch, Hscr[2]*current_display->radius);
}
void addpoint(const shiftpoint& H) {
if(true) {
ld z = current_display->radius;
// if(pconf.alpha + H[2] <= BEHIND_LIMIT && pmodel == mdDisk) poly_flags |= POLY_BEHIND;
#if CAP_VR
if(vrhr::rendering()) z = 1;
#endif
if(spherespecial) {
auto H0 = H.h;
if(correct_side(H0)) {
poly_flags |= POLY_INFRONT, last_infront = false;
if(!knowgood || (spherespecial > 0 ? H[2]>goodpoint[2] : H[2]<goodpoint[2])) goodpoint = H0, knowgood = true;
}
else if(sphere && (poly_flags & POLY_ISSIDE)) {
double curnorm = H[0]*H[0]+H[1]*H[1]+H[2]*H[2];
double horizon = curnorm / pconf.alpha;
poly_flags |= POLY_NOTINFRONT;
if(last_infront && nif_error_in(glcoords.back()[0], glcoords.back()[1], H[0], H[1]))
poly_flags |= POLY_NIF_ERROR;
last_infront = true;
z *=
(sqrt(curnorm - horizon*horizon) / (pconf.alpha - horizon)) /
(sqrt(curnorm - H[2]*H[2]) / (pconf.alpha+H[2]));
}
else {
poly_flags |= POLY_NOTINFRONT;
tofix.push_back(make_pair(glcoords.size(), H0));
add1(H0);
return;
}
}
hyperpoint Hscr;
applymodel(H, Hscr);
if(sphere && pmodel == mdSpiral) {
if(isize(glcoords)) {
hyperpoint Hscr1;
shiftpoint H1 = H; H1.shift += TAU;
applymodel(H1, Hscr1);
if(hypot_d(2, Hlast-Hscr1) < hypot_d(2, Hlast-Hscr)) { Hscr = Hscr1; }
H1.shift -= 2 * TAU;
applymodel(H1, Hscr1);
if(hypot_d(2, Hlast-Hscr1) < hypot_d(2, Hlast-Hscr)) { Hscr = Hscr1; }
}
Hlast = Hscr;
}
#if CAP_VR
if(vrhr::rendering()) {
for(int i=0; i<3; i++) Hscr[i] *= z;
}
else
#endif
if(GDIM == 2) {
for(int i=0; i<3; i++) Hscr[i] *= z;
Hscr[1] *= pconf.stretch;
}
else {
Hscr[0] *= z;
Hscr[1] *= z * pconf.stretch;
Hscr[2] = 1 - 2 * (-Hscr[2] - pconf.clip_min) / (pconf.clip_max - pconf.clip_min);
}
add1(Hscr);
}
}
void coords_to_poly() {
polyi = isize(glcoords);
for(int i=0; i<polyi; i++) {
if(!current_display->separate_eyes()) glcoords[i][2] = 0;
polyx[i] = current_display->xcenter + glcoords[i][0] - glcoords[i][2];
polyxr[i] = current_display->xcenter + glcoords[i][0] + glcoords[i][2];
polyy[i] = current_display->ycenter + glcoords[i][1];
}
}
bool behind3(shiftpoint h) {
if(pmodel == mdGeodesic)
return lp_apply(inverse_exp(h))[2] < 0;
if(pmodel == mdLiePerspective)
return lp_apply(lie_log(h))[2] < 0;
#if MAXMDIM >= 4
if(pmodel == mdRelPerspective)
return lp_apply(rel_log(h, false))[2] < 0;
#endif
return h[2] < 0;
}
void addpoly(const shiftmatrix& V, const vector<glvertex> &tab, int ofs, int cnt) {
if(pmodel == mdPixel) {
for(int i=ofs; i<ofs+cnt; i++) {
hyperpoint h = glhr::gltopoint(tab[i]);
#if MAXMDIM >= 4
h[3] = 1;
#endif
h = V.T * h;
add1(h);
}
return;
}
tofix.clear(); knowgood = false;
if(in_perspective()) {
if(get_shader_flags() & SF_SEMIDIRECT) {
dynamicval<bool> d(computing_semidirect, true);
for(int i=ofs; i<ofs+cnt; i++) {
hyperpoint Hscr;
applymodel(V * glhr::gltopoint(tab[i]), Hscr);
add1(Hscr);
}
}
else if(poly_flags & POLY_TRIANGLES) {
for(int i=ofs; i<ofs+cnt; i+=3) {
shiftpoint h0 = V * glhr::gltopoint(tab[i]);
shiftpoint h1 = V * glhr::gltopoint(tab[i+1]);
shiftpoint h2 = V * glhr::gltopoint(tab[i+2]);
if(!behind3(h0) && !behind3(h1) && !behind3(h2))
addpoint(h0), addpoint(h1), addpoint(h2);
}
}
else {
for(int i=ofs; i<ofs+cnt; i++) {
shiftpoint h = V * glhr::gltopoint(tab[i]);
if(!behind3(h)) addpoint(h);
}
}
return;
}
shiftpoint last = V * glhr::gltopoint(tab[ofs]);
bool last_behind = is_behind(last.h);
if(!last_behind) addpoint(last);
hyperpoint enter = C0;
hyperpoint firstleave;
int start_behind = last_behind ? 1 : 0;
for(int i=ofs+1; i<ofs+cnt; i++) {
shiftpoint curr = V*glhr::gltopoint(tab[i]);
if(is_behind(curr.h) != last_behind) {
hyperpoint h = be_just_on_view(last.h, curr.h);
if(start_behind == 1) start_behind = 2, firstleave = h;
if(!last_behind) enter = h;
else if(h[0] * enter[0] + h[1] * enter[1] < 0) poly_flags |= POLY_BEHIND;
addpoint(shiftless(h));
last_behind = !last_behind;
}
if(!last_behind) addpoint(curr);
last = curr;
}
if(start_behind == 2) {
if(firstleave[0] * enter[0] + firstleave[1] * enter[1] < 0) poly_flags |= POLY_BEHIND;
else addpoint(shiftless(firstleave));
}
if(knowgood && isize(tofix)) {
if(true) {
hyperpoint Hx = V.T * C0, Hy = goodpoint;
for(int i=0; i<20; i++) {
hyperpoint mid = midz(Hx, Hy);
if(correct_side(mid)) Hy = mid;
else Hx = mid;
}
goodpoint = midz(Hy, goodpoint);
}
for(auto& p: tofix)
fixpoint(glcoords[p.first], p.second);
if(sphere && among(pmodel, mdHemisphere, mdHyperboloid) && pconf.small_hyperboloid) {
bool left = false, right = false;
for(auto h: glcoords) { hyperpoint h1; applymodel(shiftless(glhr::gltopoint(h)), h1);
if(h1[0] < -0) left = true;
if(h1[0] > +0) right = true;
}
if(left && right) poly_flags |= POLY_NIF_ERROR;
}
/*
hyperpoint Hscr;
applymodel(goodpoint, Hscr);
glcoords.push_back(make_array<GLfloat>(Hscr[0]*current_display->radius+10, Hscr[1]*current_display->radius*pconf.stretch, Hscr[2]*vid.radius));
glcoords.push_back(make_array<GLfloat>(Hscr[0]*current_display->radius, Hscr[1]*current_display->radius*pconf.stretch+10, Hscr[2]*vid.radius));
glcoords.push_back(make_array<GLfloat>(Hscr[0]*current_display->radius-10, Hscr[1]*current_display->radius*pconf.stretch, Hscr[2]*vid.radius));
glcoords.push_back(make_array<GLfloat>(Hscr[0]*current_display->radius, Hscr[1]*current_display->radius*pconf.stretch-10, Hscr[2]*vid.radius));
glcoords.push_back(make_array<GLfloat>(Hscr[0]*current_display->radius+10, Hscr[1]*current_display->radius*pconf.stretch, Hscr[2]*vid.radius)); */
}
}
#if CAP_SDLGFX
void aapolylineColor(SDL_Renderer *s, int*x, int *y, int polyi, color_t col) {
for(int i=1; i<polyi; i++)
aalineColor(s, x[i-1], y[i-1], x[i], y[i], align(col));
}
void polylineColor(SDL_Renderer *s, int *x, int *y, int polyi, color_t col) {
for(int i=1; i<polyi; i++)
lineColor(s, x[i-1], y[i-1], x[i], y[i], align(col));
}
EX void filledPolygonColorI(SDL_Renderer *s, int* px, int *py, int polyi, color_t col) {
std::vector<Sint16> spx(px, px + polyi);
std::vector<Sint16> spy(py, py + polyi);
filledPolygonColor(s, spx.data(), spy.data(), polyi, align(col));
}
#endif
#if CAP_TEXTURE
void drawTexturedTriangle(SDL_Surface *s, int *px, int *py, glvertex *tv, color_t col) {
transmatrix source = matrix3(
px[0], px[1], px[2],
py[0], py[1], py[2],
1, 1, 1);
transmatrix target = matrix3(
tv[0][0], tv[1][0], tv[2][0],
tv[0][1], tv[1][1], tv[2][1],
1, 1, 1
);
transmatrix isource = inverse(source);
int minx = px[0], maxx = px[0];
int miny = py[0], maxy = py[0];
for(int i=1; i<3; i++)
minx = min(minx, px[i]), maxx = max(maxx, px[i]),
miny = min(miny, py[i]), maxy = max(maxy, py[i]);
for(int mx=minx; mx<maxx; mx++)
for(int my=miny; my<maxy; my++) {
hyperpoint h = isource * point3(mx, my, 1);
if(h[0] >= -1e-7 && h[1] >= -1e-7 && h[2] >= -1e-7) {
hyperpoint ht = target * h;
int tw = texture::config.data.twidth;
int x = int(ht[0] * tw) & (tw-1);
int y = int(ht[1] * tw) & (tw-1);
color_t c;
if(texture::config.data.texture_pixels.size() == 0)
c = 0xFFFFFFFF;
else
c = texture::config.data.texture_pixels[y * tw + x];
auto& pix = qpixel(s, mx, my);
for(int p=0; p<3; p++) {
int alpha = part(c, 3) * part(col, 0);
auto& v = part(pix, p);
v = ((255*255 - alpha) * 255 * v + alpha * part(col, p+1) * part(c, p) + 255 * 255 * 255/2 + 1) / (255 * 255 * 255);
}
}
}
}
#endif
EX int global_projection;
#if !CAP_GL
flagtype get_shader_flags() { return 0; }
#endif
#if CAP_GL
int min_slr, max_slr = 0;
#if MAXMDIM >= 4
extern renderbuffer *floor_textures;
#endif
void dqi_poly::gldraw() {
GLWRAP;
auto& v = *tab;
int ioffset = offset;
#if MINIMIZE_GL_CALLS
if(current_display->separate_eyes() == 0 && !tinf && (color == 0 || ((flags & (POLY_VCONVEX | POLY_CCONVEX)) && !(flags & (POLY_INVERSE | POLY_FORCE_INVERTED))))) {
if(lprio != prio || texts_merged || m_shift != V.shift) {
glflush();
lprio = prio;
m_shift = V.shift;
}
shapes_merged++;
if((flags & POLY_CCONVEX) && !(flags & POLY_VCONVEX)) {
vector<glhr::colored_vertex> v2(cnt+1);
for(int i=0; i<cnt+1; i++) v2[i] = glhr::colored_vertex( V.T * glhr::gltopoint( v[offset+i-1] ), color);
if(color) for(int i=0; i<cnt; i++) triangle_vertices.push_back(v2[0]), triangle_vertices.push_back(v2[i]), triangle_vertices.push_back(v2[i+1]);
if(outline) {
for(auto& v: v2) v.set_color(outline);
for(int i=1; i<cnt; i++) line_vertices.push_back(v2[i]), line_vertices.push_back(v2[i+1]);
}
}
else {
vector<glhr::colored_vertex> v2(cnt);
for(int i=0; i<cnt; i++) v2[i] = glhr::colored_vertex( V.T * glhr::gltopoint( v[offset+i] ), color);
if(color) for(int i=2; i<cnt-1; i++) triangle_vertices.push_back(v2[0]), triangle_vertices.push_back(v2[i-1]), triangle_vertices.push_back(v2[i]);
if(outline) {
for(auto& v: v2) v.set_color(outline);
for(int i=1; i<cnt; i++) line_vertices.push_back(v2[i-1]), line_vertices.push_back(v2[i]);
}
}
return;
}
else glflush();
#endif
if(tinf) {
bool col = isize(tinf->colors);
if(col)
glhr::be_color_textured();
else
glhr::be_textured();
if(flags & POLY_SHADE_TEXTURE) current_display->next_shader_flags |= GF_TEXTURE_SHADED;
if(flags & POLY_NO_FOG) current_display->next_shader_flags |= GF_NO_FOG;
glBindTexture(GL_TEXTURE_2D, tinf->texture_id);
if(isize(tinf->colors))
glhr::vertices_texture_color(v, tinf->tvertices, tinf->colors, offset, offset_texture);
else
glhr::vertices_texture(v, tinf->tvertices, offset, offset_texture);
ioffset = 0;
}
else {
glhr::be_nontextured();
if(flags & POLY_NO_FOG) current_display->next_shader_flags |= GF_NO_FOG;
glhr::vertices(v);
}
next_slr:
for(int ed = current_display->separate_eyes() ? -1 : 0; ed<2; ed+=2) {
if(global_projection && global_projection != ed) continue;
if(min_slr < max_slr) {
current_display->set_all(ed, sl2 ? 0 : V.shift);
glhr::set_index_sl(V.shift + M_PI * min_slr * hybrid::csteps / cgi.psl_steps);
}
else if(sl2) {
current_display->set_all(ed, 0);
glhr::set_index_sl(V.shift);
}
else {
current_display->set_all(ed, sl2 ? 0 : V.shift);
glhr::set_index_sl(V.shift + M_PI * min_slr * hybrid::csteps / cgi.psl_steps);
}
bool draw = color;
flagtype sp = get_shader_flags();
if(sp & SF_DIRECT) {
if((sp & SF_BAND) && V[2][2] > 1e8) continue;
glapplymatrix(V.T);
}
if(draw) {
if(flags & POLY_TRIANGLES) {
glhr::color2(color, (flags & POLY_INTENSE) ? 2 : 1);
glhr::set_depthtest(model_needs_depth() && prio < PPR::SUPERLINE);
glhr::set_depthwrite(model_needs_depth() && prio != PPR::TRANSPARENT_SHADOW && prio != PPR::EUCLIDEAN_SKY);
glhr::set_fogbase(prio == PPR::SKY ? 1.0 + ((abs(cgi.SKY - cgi.LOWSKY)) / sightranges[geometry]) : 1.0);
glDrawArrays(GL_TRIANGLES, ioffset, cnt);
}
else {
glEnable(GL_STENCIL_TEST);
glColorMask( GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE );
glhr::set_depthtest(false);
glStencilOp( GL_INVERT, GL_INVERT, GL_INVERT);
glStencilFunc( GL_ALWAYS, 0x1, 0x1 );
glhr::color2(0xFFFFFFFF);
glDrawArrays(tinf ? GL_TRIANGLES : GL_TRIANGLE_FAN, ioffset, cnt);
current_display->set_mask(ed);
glhr::color2(color);
glhr::set_depthtest(model_needs_depth() && prio < PPR::SUPERLINE);
glhr::set_depthwrite(model_needs_depth() && prio != PPR::TRANSPARENT_SHADOW && prio != PPR::EUCLIDEAN_SKY);
glhr::set_fogbase(prio == PPR::SKY ? 1.0 + (euclid ? 20 : 5 / sightranges[geometry]) : 1.0);
if(flags & (POLY_INVERSE | POLY_FORCE_INVERTED)) {
glStencilOp( GL_ZERO, GL_ZERO, GL_ZERO);
glStencilFunc( GL_NOTEQUAL, 1, 1);
GLfloat xx = vid.xres;
GLfloat yy = vid.yres;
vector<glvertex> scr = {
glhr::makevertex(-xx, -yy, 0),
glhr::makevertex(+xx, -yy, 0),
glhr::makevertex(+xx, +yy, 0),
glhr::makevertex(-xx, +yy, 0)
};
glhr::vertices(scr);
glhr::id_modelview();
glDrawArrays(tinf ? GL_TRIANGLES : GL_TRIANGLE_FAN, 0, 4);
glhr::vertices(v);
if(sp & SF_DIRECT) glapplymatrix(V.T);
}
else {
glStencilOp( GL_ZERO, GL_ZERO, GL_ZERO);
glStencilFunc( GL_EQUAL, 1, 1);
glDrawArrays(tinf ? GL_TRIANGLES : GL_TRIANGLE_FAN, ioffset, cnt);
}
glDisable(GL_STENCIL_TEST);
}
}
if(outline && !tinf) {
if(flags & POLY_APEIROGONAL) cnt = apeiro_cnt;
glhr::color2(outline);
glhr::set_depthtest(model_needs_depth() && prio < PPR::SUPERLINE);
glhr::set_depthwrite(model_needs_depth() && prio != PPR::TRANSPARENT_SHADOW && prio != PPR::EUCLIDEAN_SKY);
glhr::set_fogbase(prio == PPR::SKY ? 1.0 + (euclid ? 20 : 5 / sightranges[geometry]) : 1.0);
if(flags & POLY_TRIANGLES) {
vector<glvertex> v1;
v1.reserve(cnt * 2);
for(int i=0; i<cnt; i+= 3) {
v1.push_back(v[offset+i]);
v1.push_back(v[offset+i+1]);
v1.push_back(v[offset+i+1]);
v1.push_back(v[offset+i+2]);
v1.push_back(v[offset+i+2]);
v1.push_back(v[offset+i]);
}
glhr::vertices(v1);
glDrawArrays(GL_LINES, 0, cnt*2);
// glDrawArrays(GL_LINE_STRIP, ioffset, cnt);
}
else
glDrawArrays(GL_LINE_STRIP, offset, cnt);
}
}
if(min_slr+1 < max_slr) {
min_slr++;
goto next_slr;
}
}
#endif
EX ld scale_at(const shiftmatrix& T) {
if(GDIM == 3 && pmodel == mdPerspective) {
ld z = (tC0(unshift(T)))[2];
if(z == 0) return 1;
z = 1 / abs(z);
if(z > 10) return 10;
return z;
}
if(sol) return 1;
hyperpoint h1, h2, h3;
applymodel(tC0(T), h1);
applymodel(T * xpush0(.01), h2);
applymodel(T * ypush(.01) * C0, h3);
if(mdBandAny()) {
ld x2 = 2;
if(pmodel == mdBandEquiarea) x2 /= 2;
ld x4 = 2 * x2;
if(h2[0] > h1[0] + x2) h2[0] -= x4;
if(h2[0] < h1[0] - x2) h2[0] += x4;
if(h3[0] > h1[0] + x2) h3[0] -= x4;
if(h3[0] < h1[0] - x2) h3[0] += x4;
}
return sqrt(hypot_d(2, h2-h1) * hypot_d(2, h3-h1) / .0001);
}
EX int perfect_linewidth = 1;
EX ld linewidthat(const shiftpoint& h) {
if(!vid.fineline) return 1;
else if(hyperbolic && pmodel == mdDisk && pconf.alpha == 1 && !ISWEB && !flat_on) {
double dz = h[LDIM];
if(dz < 1) return 1;
else {
double dx = sqrt(dz * dz - 1);
double dfc = dx/(dz+1);
dfc = 1 - dfc*dfc;
return dfc;
}
}
else if(hyperbolic && pmodel == mdRelPerspective) {
if(abs(h[3]) < 1e-6) return 1;
return 1 / (1 + abs(h[3]));
}
else if(sl2 && pmodel == mdRelPerspective) {
if(abs(h[2]) < 1e-6) return 1;
return 1 / (1 + abs(h[2]));
}
else if(hyperbolic && GDIM == 3 && pmodel == mdPerspective && pconf.alpha == 0 && h[3] < 0.99) {
return 1;
}
else if(perfect_linewidth >= (inHighQual ? 1 : 2)) {
hyperpoint h0 = h.h / zlevel(h.h);
shiftmatrix T = shiftless(rgpushxto0(h0), h.shift);
return scale_at(T);
}
return 1;
}
EX void set_width(ld w) {
#if MINIMIZE_GL_CALLS
if(w != glhr::current_linewidth) glflush();
#endif
#if CAP_GL
glhr::set_linewidth(w);
#endif
}
// this part makes cylindrical projections on the sphere work
namespace cyl {
int loop_min = 0, loop_max = 0;
vector<ld> periods;
ld period_at(ld y) {
ld m = current_display->radius;
y /= (m * pconf.stretch);
switch(pmodel) {
case mdBand:
case mdMiller:
return m * 4;
case mdSinusoidal:
return m * 2 * cos(y * M_PI);
case mdMollweide:
return m * 2 * sqrt(1 - y*y*4);
case mdCollignon: {
if(pconf.collignon_reflected && y > 0) y = -y;
y += signed_sqrt(pconf.collignon_parameter);
return abs(m*y*2/1.2);
}
default:
return m * 2;
}
}
void ori_to_scr(glvertex& g) {
auto& Ori = pconf.mori().v2;
tie(g[0], g[1]) = make_pair(
Ori[0][0] * g[0] + Ori[0][1] * g[1],
Ori[1][0] * g[0] + Ori[1][1] * g[1]
);
}
void scr_to_ori(glvertex& g) {
auto& Ori = pconf.mori().v2;
/* we invert it, so transposition is applied in the formula */
tie(g[0], g[1]) = make_pair(
Ori[0][0] * g[0] + Ori[1][0] * g[1],
Ori[0][1] * g[0] + Ori[1][1] * g[1]
);
}
void adjust(bool tinf) {
periods.resize(isize(glcoords));
if(!models::model_straight)
for(auto& g: glcoords)
scr_to_ori(g);
for(int i = 0; i<isize(glcoords); i++) periods[i] = period_at(glcoords[i][1]);
auto dist = [] (ld a, ld b) { return max(b, a-b); };
ld chypot = hypot(dist(vid.xres, current_display->xcenter), dist(vid.yres, current_display->ycenter));
ld cmin = -chypot/2, cmax = chypot/2, dmin = -chypot, dmax = chypot;
ld z = pconf.stretch * current_display->radius;
switch(pmodel) {
case mdSinusoidal: case mdBandEquidistant: case mdMollweide:
dmax = z/2, dmin = -dmax;
break;
case mdBandEquiarea:
dmax = z/M_PI, dmin = -dmax;
break;
case mdCollignon:
dmin = z * (signed_sqrt(pconf.collignon_parameter - 1) - signed_sqrt(pconf.collignon_parameter));
if(pconf.collignon_reflected) dmax = -dmin;
else dmax = z * (signed_sqrt(pconf.collignon_parameter + 1) - signed_sqrt(pconf.collignon_parameter));
break;
default: ;
}
bool had = false;
ld first, next;
for(int i = 0; i<isize(glcoords); i++) if(periods[i] > 1) {
if(!had) {
next = first = glcoords[i][0] / periods[i];
had = true;
}
else {
glcoords[i][0] /= periods[i];
glcoords[i][0] -= round_nearest(glcoords[i][0]-next);
next = glcoords[i][0];
glcoords[i][0] *= periods[i];
}
loop_min = min<int>(loop_min, floor((cmin - glcoords[i][0]) / periods[i]));
loop_max = max<int>(loop_max, ceil((cmax - glcoords[i][0]) / periods[i]));
}
if(!had) return;
ld last = first - round_nearest(first-next);
if(loop_max > 100) loop_max = 100;
if(loop_min < -100) loop_min = -100;
if(abs(first - last) < 1e-6) {
if(!models::model_straight)
for(auto& g: glcoords)
ori_to_scr(g);
}
else {
if(tinf) {
// this cannot work after cycled
loop_min = 1; loop_max = 0; return;
}
if(last < first) {
reverse(glcoords.begin(), glcoords.end());
reverse(periods.begin(), periods.end());
swap(first, last);
}
for(int i=0; i<isize(glcoords); i++) glcoords[i][0] += periods[i] * loop_min;
int base = isize(glcoords);
for(int i=loop_min; i<loop_max; i++) {
for(int j=0; j<base; j++) {
glcoords.push_back(glcoords[isize(glcoords)-base]);
glcoords.back()[0] += periods[j];
}
}
glcoords.push_back(glcoords.back());
glcoords.push_back(glcoords[0]);
for(int u=1; u<=2; u++) {
auto& v = glcoords[isize(glcoords)-u][1];
v = v < 0 ? dmin : dmax;
}
if(!models::model_straight)
for(auto& g: glcoords)
ori_to_scr(g);
// we have already looped
loop_min = loop_max = 0;
}
}
}
bool in_twopoint = false;
ld glhypot2(glvertex a, glvertex b) {
return (a[0]-b[0]) * (a[0]-b[0]) + (a[1]-b[1]) * (a[1]-b[1]) + (a[2]-b[2]) * (a[2]-b[2]);
}
void compute_side_by_centerin(dqi_poly *p, bool& nofill) {
hyperpoint hscr;
shiftpoint h1 = p->V * p->intester;
if(is_behind(h1.h)) {
if(sphere) {
for(int i=0; i<3; i++) h1[i] = -h1[i];
poly_flags &= ~POLY_CENTERIN;
}
else
nofill = true;
}
applymodel(h1, hscr);
if(!vrhr::rendering()) {
hscr[0] *= current_display->radius; hscr[1] *= current_display->radius * pconf.stretch;
}
for(int i=0; i<isize(glcoords)-1; i++) {
double x1 = glcoords[i][0] - hscr[0];
double y1 = glcoords[i][1] - hscr[1];
double x2 = glcoords[i+1][0] - hscr[0];
double y2 = glcoords[i+1][1] - hscr[1];
if(asign(y1, y2)) {
ld x = xcross(x1, y1, x2, y2);
if(x < -1e-6) poly_flags ^= POLY_CENTERIN;
else if (x < 1e-6) nofill = true;
}
}
poly_flags &= ~POLY_INVERSE;
if(poly_flags & POLY_CENTERIN) {
poly_flags |= POLY_INVERSE;
if(abs(zlevel(tC0(p->V.T)) - 1) > 1e-6) nofill = true;
/* nofill = true;
outline = (flags & POLY_CENTERIN) ? 0x00FF00FF : 0xFF0000FF;
addpoint(hscr); */
}
/*
if(poly_flags & POLY_BADCENTERIN) {
glcoords.push_back(glhr::makevertex(hscr[0]+10, hscr[1]*pconf.stretch, hscr[2]));
glcoords.push_back(glhr::makevertex(hscr[0], hscr[1]*pconf.stretch+10, hscr[2]));
glcoords.push_back(glhr::makevertex(hscr[0]-10, hscr[1]*pconf.stretch, hscr[2]));
glcoords.push_back(glhr::makevertex(hscr[0], hscr[1]*pconf.stretch-10, hscr[2]));
glcoords.push_back(glhr::makevertex(hscr[0]+10, hscr[1]*pconf.stretch, hscr[2]));
} */
}
void compute_side_by_area() {
double rarea = 0;
for(int i=0; i<isize(glcoords)-1; i++)
rarea += glcoords[i][0] * glcoords[i+1][1] - glcoords[i][1] * glcoords[i+1][0];
rarea += glcoords.back()[0] * glcoords[0][1] - glcoords.back()[1] * glcoords[0][0];
if(rarea>0)
poly_flags ^= POLY_INVERSE;
}
ld get_width(dqi_poly* p) {
if((p->flags & POLY_FORCEWIDE) || pmodel == mdPixel)
return p->linewidth;
else if(p->flags & POLY_PRECISE_WIDE) {
ld maxwidth = 0;
for(int i=0; i<p->cnt; i++) {
shiftpoint h1 = p->V * glhr::gltopoint((*p->tab)[p->offset+i]);
maxwidth = max(maxwidth, linewidthat(h1));
}
return maxwidth * p->linewidth;
}
else
return linewidthat(tC0(p->V)) * p->linewidth;
}
void debug_this() { }
glvertex junk = glhr::makevertex(0,0,1);
EX namespace s2xe {
int maxgen;
bool with_zero;
ld minz, maxy, miny;
typedef array<ld, 5> pt;
basic_textureinfo stinf;
pt lerp(const pt& h0, const pt& h1, ld x) {
pt s;
for(int i=0; i<5; i++) s[i] = h0[i] + (h1[i]-h0[i]) * x;
return s;
}
void add2(pt h, int gen) {
glcoords.push_back(glhr::pointtogl(point31(sin(h[0]) * (h[1] + TAU * gen), cos(h[0]) * (h[1] + TAU * gen), h[2])));
stinf.tvertices.push_back(glhr::makevertex(h[3], h[4], 0));
}
void addall(pt h0, pt h1, pt h2) {
for(int gen=-maxgen; gen <= maxgen; gen++) if(gen || with_zero) {
add2(h0, gen);
add2(h1, gen);
add2(h2, gen);
}
}
void draw_s2xe0(dqi_poly *p);
bool to_right(const pt& h2, const pt& h1) {
ld x2 = h2[0];
ld x1 = h1[0];
if(x2 < x1) x2 += TAU;
return x2 >= x2 && x2 <= x1 + M_PI;
}
EX int qrings = 32;
ld seg() { return TAU / qrings; }
void add_ortho_triangle(pt bl, pt tl, pt br, pt tr) {
auto sg = seg();
int s0 = ceil(bl[0] / sg);
int s1 = floor(br[0] / sg);
pt bat[1000], tat[1000];
bat[0] = bl; tat[0] = tl;
int s = 1;
for(int i = s0; i <= s1; i++) {
ld f = (i*sg-bl[0]) / (br[0]-bl[0]);
bat[s] = lerp(bl, br, f);
tat[s] = lerp(tl, tr, f);
s++;
}
bat[s] = br; tat[s] = tr;
while(s--) {
addall(bat[s], bat[s+1], tat[s+1]);
addall(bat[s], tat[s+1], tat[s]);
}
}
void add_ordered_triangle(array<pt, 3> v) {
if(v[1][0] < v[0][0]) v[1][0] += TAU;
if(v[2][0] < v[1][0]) v[2][0] += TAU;
if(v[2][0] - v[0][0] < 1e-6) return;
ld x = (v[1][0] - v[0][0]) / (v[2][0] - v[0][0]);
if(v[2][0] < v[0][0] + 45._deg && maxy < 135._deg && sightranges[geometry] <= 5) {
addall(v[0], v[1], v[2]);
return;
}
auto mv = lerp(v[0], v[2], x);
add_ortho_triangle(v[0], v[0], mv, v[1]);
add_ortho_triangle(mv, v[1], v[2], v[2]);
/*
int zl = floor(v[1][0] / seg());
int zr = ceil(v[1][0] / seg());
if(zl < zr && zl * seg > v[0][0] && zr * seg < v[2][0]) {
ld fl = (zl*seg-v[0][0]) / (v[2][0]-v[0][0]);
ld fr = (zr*seg-v[0][0]) / (v[2][0]-v[0][0]);
addall(lerp(v[0], v[2], fl), v[1], lerp(v[0], v[2], fr));
}
*/
// add_ortho_triangle(v[0], tv[0], v[1], tv[1], v[2], tv[2], v[2], tv[2]);
}
void add_triangle_around(array<pt, 3> v) {
ld baseheight = (v[0][1] > 90._deg) ? M_PI : 0;
ld tu = (v[0][3] + v[1][3] + v[2][3]) / 3;
ld tv = (v[0][4] + v[1][4] + v[2][4]) / 3;
array<pt, 3> vhigh;
for(int i=0; i<3; i++) { vhigh[i] = v[i]; vhigh[i][1] = baseheight; vhigh[i][3] = tu; vhigh[i][4] = tv; }
if(v[1][0] < v[0][0]) v[1][0] = v[1][0] + TAU, vhigh[1][0] = vhigh[1][0] + TAU;
add_ortho_triangle(v[0], vhigh[0], v[1], vhigh[1]);
if(v[2][0] < v[1][0]) v[2][0] = v[2][0] + TAU, vhigh[2][0] = vhigh[2][0] + TAU;
add_ortho_triangle(v[1], vhigh[1], v[2], vhigh[2]);
if(v[0][0] < v[2][0]) v[0][0] = v[0][0] + TAU, vhigh[0][0] = vhigh[0][0] + TAU;
add_ortho_triangle(v[2], vhigh[2], v[0], vhigh[0]);
}
void add_s2xe_triangle(array<pt, 3> v) {
bool r0 = to_right(v[1], v[0]);
bool r1 = to_right(v[2], v[1]);
bool r2 = to_right(v[0], v[2]);
minz = min(abs(v[0][2]), max(abs(v[1][2]), abs(v[2][2])));
auto& s = sightranges[geometry];
maxgen = sqrt(s * s - minz * minz) / TAU + 1;
maxy = max(v[0][1], max(v[1][1], v[2][1]));
miny = min(v[0][1], min(v[1][1], v[2][1]));
with_zero = true;
if(maxy < 45._deg) {
add2(v[0], 0);
add2(v[1], 0);
add2(v[2], 0);
with_zero = false;
}
rotated:
if(r0 && r1 && r2) {
add_triangle_around(v);
}
else if(r0 && r1) {
add_ordered_triangle(v);
}
else if(r2 && !r0 && !r1) {
add_ordered_triangle(make_array(v[2], v[1], v[0]));
}
else if(!r0 && !r1 && !r2) {
add_triangle_around(make_array(v[2], v[1], v[0]));
}
else {
tie(r0, r1, r2) = make_tuple(r1, r2, r0);
tie(v[0], v[1], v[2]) = make_tuple(v[1], v[2], v[0]);
goto rotated;
}
}
#if CAP_GL
void draw_s2xe(dqi_poly *p) {
if(!p->cnt) return;
if(p->flags & POLY_TRIANGLES) {
dqi_poly npoly = *p;
npoly.offset = 0;
npoly.tab = &glcoords;
if(p->tinf) {
npoly.tinf = p->tinf ? &stinf : NULL;
npoly.offset_texture = 0;
stinf.texture_id = p->tinf->texture_id;
}
else {
npoly.tinf = NULL;
}
npoly.V = shiftless(Id);
auto& pV = p->V.T;
set_width(1);
glcoords.clear();
stinf.tvertices.clear();
for(int i=0; i<p->cnt; i+=3) {
array<pt, 3> v;
for(int k=0; k<3; k++) {
hyperpoint h = pV * glhr::gltopoint( (*p->tab)[p->offset+i+k]);
v[k][2] = hypot_d(3, h);
auto dp = product_decompose(h);
v[k][2] = dp.first;
v[k][0] = atan2(h[0], h[1]);
v[k][1] = acos_auto_clamp(dp.second[2]);
if(p->tinf) {
auto& tv = p->tinf->tvertices[p->offset_texture+i+k];
v[k][3] = tv[0];
v[k][4] = tv[1];
}
}
add_s2xe_triangle(v);
}
npoly.cnt = isize(glcoords);
npoly.gldraw();
}
else draw_s2xe0(p);
}
#endif
struct point_data {
hyperpoint direction;
ld distance;
ld z;
int bad;
};
#if CAP_GL
void draw_s2xe0(dqi_poly *p) {
if(!p->cnt) return;
dqi_poly npoly = *p;
npoly.offset = 0;
npoly.tab = &glcoords;
npoly.V = shiftless(Id);
npoly.flags &= ~ (POLY_INVERSE | POLY_FORCE_INVERTED);
set_width(1);
glcoords.clear();
int maxgen = sightranges[geometry] / TAU + 1;
auto crossdot = [&] (const hyperpoint h1, const hyperpoint h2) { return make_pair(h1[0] * h2[1] - h1[1] * h2[0], h1[0] * h2[0] + h1[1] * h2[1]); };
vector<point_data> pd;
for(int i=0; i<p->cnt; i++) {
hyperpoint h = p->V.T * glhr::gltopoint( (*p->tab)[p->offset+i]);
pd.emplace_back();
auto& next = pd.back();
auto dp = product_decompose(h);
next.direction = dp.second;
next.z = dp.first;
// next.tpoint = p->tinf ? p->tinf->tvertices[p->offset+i] : glvertex();
ld hyp = hypot_d(2, next.direction);
next.distance = acos_auto_clamp(next.direction[2]);
if(hyp == 0) {
next.direction = point2(1, 0);
}
else {
next.direction[0] /= hyp;
next.direction[1] /= hyp;
}
if(next.distance < 1e-3) next.bad = 1;
else if(next.distance > M_PI - 1e-3) next.bad = 2;
else next.bad = 0;
}
glcoords.resize(p->cnt);
for(auto c: pd) if(c.bad == 2) return;
bool no_gens = false;
for(int i=0; i<p->cnt; i++) {
auto &c1 = pd[i];
auto &c0 = pd[i==0?p->cnt-1 : i-1];
if(c1.distance > 90._deg && c0.distance > 90._deg && crossdot(c0.direction, c1.direction).second < 0) return;
if(c1.bad == 2) return;
if(c1.bad == 1) no_gens = true;
}
if(!no_gens) {
vector<ld> angles(p->cnt);
for(int i=0; i<p->cnt; i++) {
angles[i] = atan2(pd[i].direction[1], pd[i].direction[0]);
}
sort(angles.begin(), angles.end());
angles.push_back(angles[0] + TAU);
bool ok = false;
for(int i=1; i<isize(angles); i++)
if(angles[i] >= angles[i-1] + M_PI) ok = true;
if(!ok) {
for(auto &c: pd) if(c.distance > 90._deg) return;
no_gens = true;
}
}
int g = no_gens ? 0 : maxgen;
for(int gen=-g; gen<=g; gen++) {
for(int i=0; i<p->cnt; i++) {
auto& cur = pd[i];
ld d = cur.distance + TAU * gen;
hyperpoint h;
h[0] = cur.direction[0] * d;
h[1] = cur.direction[1] * d;
h[2] = cur.z;
glcoords[i] = glhr::pointtogl(h);
}
npoly.gldraw();
}
}
#endif
EX }
EX int berger_limit = 2;
void draw_stretch(dqi_poly *p) {
dqi_poly npoly = *p;
npoly.offset = 0;
npoly.tab = &glcoords;
npoly.V = shiftless(Id);
npoly.flags &= ~(POLY_INVERSE | POLY_FORCE_INVERTED);
transmatrix T2 = stretch::translate( tC0(iso_inverse(View)) );
transmatrix U = View * T2;
transmatrix iUV = iso_inverse(U) * p->V.T;
vector<hyperpoint> hs;
vector<hyperpoint> ths;
hs.resize(p->cnt);
ths.resize(p->cnt);
for(int i=0; i<p->cnt; i++)
hs[i] = iUV * glhr::gltopoint( (*p->tab)[p->offset+i] );
vector<vector<hyperpoint> > results;
results.resize(p->cnt);
auto& stinf = s2xe::stinf;
if(p->tinf) {
npoly.tinf = &stinf;
npoly.offset_texture = 0;
stinf.texture_id = p->tinf->texture_id;
stinf.tvertices.clear();
}
else {
npoly.tinf = NULL;
}
npoly.V = shiftless(Id);
set_width(1);
glcoords.clear();
for(int i=0; i<p->cnt; i++) results[i] = stretch::inverse_exp_all(hs[i], berger_limit);
auto test = [] (hyperpoint a, hyperpoint b) -> bool {
return sqhypot_d(3, a-b) < 2;
};
#if CAP_GL
if(p->flags & POLY_TRIANGLES) {
for(int i=0; i<p->cnt; i+=3) {
auto &la = results[i];
auto &lb = results[i+1];
auto &lc = results[i+2];
for(auto& ha: la) for(auto& hb: lb) if(test(ha, hb))
for(auto& hc: lc) if(test(ha, hc) && test(hb, hc)) {
glcoords.push_back(glhr::pointtogl(U * ha));
glcoords.push_back(glhr::pointtogl(U * hb));
glcoords.push_back(glhr::pointtogl(U * hc));
if(p->tinf)
for(int j=0; j<3; j++)
stinf.tvertices.push_back(p->tinf->tvertices[p->offset_texture+i+j]);
}
}
npoly.cnt = isize(glcoords);
npoly.gldraw();
}
else if(p->cnt) {
for(auto& ha: results[0]) {
vector<hyperpoint> has;
has.push_back(ha);
glcoords.push_back(glhr::pointtogl(U * ha));
for(int i=1; i<p->cnt; i++) {
hyperpoint best = C0;
ld dist = 10;
for(auto& hb: results[i]) {
ld d = sqhypot_d(3, hb-has.back());
if(d < dist) dist = d, best = hb;
}
if(dist < 2) has.push_back(best);
}
if(isize(has) < 3) continue;
glcoords.clear();
for(auto& h: has) glcoords.push_back(glhr::pointtogl(U * h));
npoly.cnt = isize(glcoords);
npoly.gldraw();
}
}
#endif
}
EX namespace ods {
#if CAP_ODS
EX bool project(hyperpoint h, hyperpoint& h1, hyperpoint& h2, bool eye) {
ld tanalpha = tan_auto(vid.ipd/2);
if(eye) tanalpha = -tanalpha;
if(!sphere) tanalpha = -tanalpha;
ld& x = h[0];
ld z = -h[1];
ld y = -h[2];
ld& t = h[3];
ld y02 = (x*x + y*y - tanalpha*tanalpha*t*t);
if(y02 < 0) return false;
ld y0 = sqrt(y02);
ld theta = atan(z / y0);
for(int i=0; i<2; i++) {
hyperpoint& h = (i ? h1 : h2);
if(i == 1) theta = -theta, y0 = -y0;
ld x0 = t * tanalpha;
ld phi = atan2(y, x) - atan2(y0, x0) + M_PI;
ld delta;
if(euclid) delta = hypot(y0, z);
else if(sphere) delta = atan2_auto(z / sin(theta), t / cos_auto(vid.ipd/2));
else {
// ld delta = euclid ? hypot(y0,z) : atan2_auto(z / sin(theta), t / cos_auto(vid.ipd/2));
ld p = z / sin(theta) / t * cos_auto(vid.ipd / 2);
delta = (p > 1) ? 13 : (p < -1) ? -13 : atanh(p);
}
if(euclid || hyperbolic) phi -= M_PI;
if(hyperbolic) delta = -delta;
h[0] = phi;
h[1] = theta;
h[2] = delta;
if(euclid || hyperbolic) h[1] = -theta;
}
return true;
}
void draw_ods(dqi_poly *p) {
auto& stinf = s2xe::stinf;
if(!p->cnt) return;
if(!(p->flags & POLY_TRIANGLES)) return;
dqi_poly npoly = *p;
npoly.offset = 0;
npoly.tab = &glcoords;
npoly.V = shiftless(Id);
npoly.tinf = p->tinf ? &stinf : NULL;
if(npoly.tinf) {
npoly.offset_texture = 0;
stinf.texture_id = p->tinf->texture_id;
stinf.tvertices.clear();
}
npoly.V = shiftless(Id);
glcoords.clear();
array<hyperpoint, 6> h;
if(0) for(int i=0; i<p->cnt; i+=3) {
for(int j=0; j<3; j++)
h[j] = unshift(p->V) * glhr::gltopoint((*p->tab)[p->offset+i+j]);
for(int j=0; j<3; j++) {
glcoords.push_back(glhr::makevertex(h[j][0], h[j][1], h[j][2]));
if(npoly.tinf) stinf.tvertices.push_back(p->tinf->tvertices[i+j]);
}
}
if(1) for(int i=0; i<p->cnt; i+=3) {
for(int j=0; j<3; j++) {
shiftpoint o = p->V * glhr::gltopoint((*p->tab)[p->offset+i+j]);
if(nonisotropic || gproduct) {
auto o1 = lp_apply(inverse_exp(o, pNORMAL));
o1[3] = 1;
dynamicval<eGeometry> g(geometry, gEuclid);
if(!project(o1, h[j], h[j+3], global_projection == -1))
goto next_i;
}
else if(!project(unshift(o), h[j], h[j+3], global_projection == -1))
goto next_i;
}
for(int j=0; j<6; j++) {
// let Delta be from 0 to 2PI
if(h[j][2]<0) h[j][2] += TAU;
// Theta is from -PI/2 to PI/2. Let it be from 0 to PI
h[j][1] += global_projection * 90._deg;
h[j][3] = 1;
}
/* natsph here */
if(h[0][2] < 0) swap(h[0], h[3]);
if(h[1][2] < 0) swap(h[1], h[4]);
if(h[2][2] < 0) swap(h[2], h[5]);
cyclefix(h[0][0], 0);
cyclefix(h[1][0], h[0][0]);
cyclefix(h[2][0], h[0][0]);
cyclefix(h[3][0], 0);
cyclefix(h[4][0], h[3][0]);
cyclefix(h[5][0], h[3][0]);
if(abs(h[1][1] - h[0][1]) > 90._deg) goto next_i;
if(abs(h[2][1] - h[0][1]) > 90._deg) goto next_i;
if(h[0][0] < -M_PI || h[0][0] > M_PI) println(hlog, h[0][0]);
if(1) {
int fst = 0, lst = 0;
if(h[1][0] < -M_PI || h[2][0] < -M_PI) lst++;
if(h[1][0] > +M_PI || h[2][0] > +M_PI) fst--;
for(int x=fst; x<=lst; x++) for(int j=0; j<3; j++) {
glcoords.push_back(glhr::makevertex(h[j][0] + TAU * x, h[j][1], h[j][2]));
if(npoly.tinf) stinf.tvertices.push_back(p->tinf->tvertices[p->offset_texture+i+j]);
}
}
/* natsph here */
next_i: ;
}
npoly.cnt = isize(glcoords);
// npoly.color = 0xFFFFFFFF;
npoly.gldraw();
}
#endif
EX }
/** @brief render in a broken projection; return false if normal rendering is not applicable */
bool broken_projection(dqi_poly& p0) {
int broken_coord = models::get_broken_coord(pmodel);
static bool in_broken = false;
bool both_broken = pmodel == mdConformalSquare;
transmatrix T = p0.V.T, IT = Id, FT = Id;
if(both_broken) FT = cspin(0, 1, 45._deg), T = FT * T, IT = cspin(0, 1, -45._deg);
ld zlow = 0;
if(both_broken) {
ld t = pconf.model_transition;
zlow = (1-t*t) / (1+t*t);
}
// x * mt / (1-z) <= 1
// sqrt(1-z*z) * mt / (1-z) <= 1
// sqrt(1-z*z) <= (1-z) / mt
if(broken_coord && !in_broken) {
int zcoord = broken_coord;
int ycoord = 3 - zcoord;
int xcoord = 0;
zcoord = 2;
vector<hyperpoint> all;
for(int i=0; i<p0.cnt; i++)
all.push_back(T * glhr::gltopoint((*p0.tab)[p0.offset+i]));
int fail = 0;
int last_fail;
for(auto& h: all) models::scr_to_ori(h);
auto break_in_xz = [&] (hyperpoint a, hyperpoint b, int xcoord, int zcoord) {
return a[xcoord] * b[xcoord] <= 0 && (a[xcoord] * (b[zcoord]+zlow) - b[xcoord] * (a[zcoord]+zlow)) * (a[xcoord] - b[xcoord]) < 0;
};
auto break_in = [&] (hyperpoint a, hyperpoint b) {
if(both_broken) {
for(int xc=0; xc<2; xc++) {if(break_in_xz(a, b, xc, zcoord)) { xcoord = xc; ycoord = 1-xc; return true; } }
return false;
}
return break_in_xz(a, b, xcoord, zcoord);
};
for(int i=0; i<p0.cnt-1; i++)
if(break_in(all[i], all[i+1]))
last_fail = i, fail++;
vector<glvertex> v;
dqi_poly p = p0;
p.tab = &v;
p.offset = 0;
p.V.T = IT;
/* we don't rotate h's back, just change p.V */
for(int i=0; i<3; i++)
models::scr_to_ori(p.V.T[i]);
if(fail) {
if(p0.tinf) return true;
dynamicval<bool> ib(in_broken, true);
ld part = ilerp(all[last_fail][xcoord], all[last_fail+1][xcoord], 0);
if(both_broken && all[last_fail][ycoord] * all[last_fail+1][ycoord] < 0) {
ld part2 = ilerp(all[last_fail][ycoord], all[last_fail+1][ycoord], 0);
if(part2 > part) part = part2, swap(xcoord, ycoord);
}
hyperpoint initial = normalize(lerp(all[last_fail], all[last_fail+1], 1 - (1-part) * .99));
bool have_initial = true;
v.push_back(glhr::pointtogl(initial));
last_fail++;
int at = last_fail;
do {
v.push_back(glhr::pointtogl(all[at]));
if(at == p0.cnt-1 && sqhypot_d(2, all[at] - all[0]) > 1e-6) {
p.cnt = isize(v); p.draw(); v.clear(); at = 0;
have_initial = false;
}
int next = at+1;
if(next == p0.cnt) next = 0;
if(break_in(all[at], all[next])) {
ld part = ilerp(all[at][xcoord], all[next][xcoord], 0);
if(both_broken && all[at][ycoord] * all[next][ycoord] < 0) {
ld part2 = ilerp(all[at][ycoord], all[next][ycoord], 0);
if(part2 < part) part = part2, swap(xcoord, ycoord);
}
hyperpoint final = normalize(lerp(all[at], all[next], part * .99));
v.push_back(glhr::pointtogl(final));
if(have_initial) {
int max = 4 << vid.linequality;
if(both_broken) {
auto square_close_corner = [&] (hyperpoint h) {
hyperpoint end = -C0;
end[0] = 0.01 * signum(h[0]);
end[1] = 0.01 * signum(h[1]);
/* if(abs(h1[0]) > abs(h1[1]))
end[0] = 0.01 * signum(h1[0]), end[1] = 0.001 * signum(h1[1]);
else
end[1] = 0.01 * signum(h1[1]), end[0] = 0.001 * signum(h1[0]); */
return normalize(end);
};
hyperpoint endf = square_close_corner(final);
hyperpoint endi = square_close_corner(initial);
if(endf != endi) {
for(int i=1; i<=max; i++)
v.push_back(glhr::pointtogl(lerp(final, endf, i * 1. / max)));
for(int i=0; i<=max; i++)
v.push_back(glhr::pointtogl(lerp(endi, initial, i * 1. / max)));
}
else {
for(int i=1; i<=max; i++)
v.push_back(glhr::pointtogl(lerp(final, initial, i * 1. / max)));
}
}
else if(final[xcoord] * initial[xcoord] > 0) {
for(int i=1; i<=max; i++)
v.push_back(glhr::pointtogl(lerp(final, initial, i * 1. / max)));
}
else {
hyperpoint end = Hypc;
end[ycoord] = final[ycoord] > 0 ? 1 : -1;
for(int i=1; i<=max; i++)
v.push_back(glhr::pointtogl(lerp(final, end, i * 1. / max)));
for(int i=1; i<=max; i++)
v.push_back(glhr::pointtogl(lerp(end, initial, i * 1. / max)));
}
}
p.cnt = isize(v); p.draw(); v.clear();
initial = normalize(lerp(all[at], all[next], 1 - (1-part) * .99));
have_initial = true;
v.push_back(glhr::pointtogl(initial));
}
at = next;
}
while(at != last_fail);
return true;
}
}
return false;
}
void dqi_poly::draw() {
if(flags & POLY_DEBUG) debug_this();
if(debugflags & DF_VERTEX) {
println(hlog, int(prio), ": V=", V, " o=", offset, " c=", cnt, " ot=", offset_texture, " ol=", outline, " lw=", linewidth, " f=", flags, " i=", intester, " c=", cache, " ti=", (cell*) tinf);
for(int i=0; i<cnt; i++) print(hlog, (*tab)[offset+i]);
println(hlog);
}
#if CAP_ODS
if(vid.stereo_mode == sODS) {
ods::draw_ods(this);
return;
}
#endif
#if CAP_GL
if(in_s2xe() && vid.usingGL && pmodel == mdPerspective && (current_display->set_all(global_projection, 0), (get_shader_flags() & SF_DIRECT))) {
s2xe::draw_s2xe(this);
return;
}
#endif
if(!hyperbolic && among(pmodel, mdPolygonal, mdPolynomial)) {
bool any = false;
for(int i=0; i<cnt; i++) {
hyperpoint h1 = V.T * glhr::gltopoint((*tab)[offset+i]);
if(h1[2] > 0) any = true;
}
if(!any) return;
}
if(sphere && tinf && GDIM == 2 && cnt > 3) {
int i = cnt;
cnt = 3;
for(int j=0; j<i; j+=3) {
offset += j;
offset_texture += j;
draw();
offset -= j;
offset_texture -= j;
}
cnt = i;
return;
}
if(broken_projection(*this)) return;
if(sphere && pmodel == mdTwoPoint && !in_twopoint) {
#define MAX_PHASE 4
vector<glvertex> phases[MAX_PHASE];
extern int twopoint_sphere_flips;
extern bool twopoint_do_flips;
int pha;
if(twopoint_do_flips) {
for(int i=0; i<cnt; i++) {
shiftpoint h1 = V * glhr::gltopoint((*tab)[offset+i]);
for(int j=0; j<MAX_PHASE; j++) {
twopoint_sphere_flips = j;
hyperpoint h2; applymodel(h1, h2);
glvertex h = glhr::pointtogl(h2 * current_display->radius); h[1] *= pconf.stretch;
if(i == 0)
phases[j].push_back(h);
else {
int best = -1;
ld bhypot = 1e60;
for(int j0=0; j0<MAX_PHASE; j0++)
if(isize(phases[j0]) == i) {
ld chypot = glhypot2(phases[j0].back(), h);
if(chypot < bhypot || best == -1) bhypot = chypot, best = j0;
}
phases[best].push_back(h);
}
}
}
twopoint_sphere_flips = 0;
pha = MAX_PHASE-1;
}
else {
pha = 1;
if(true) {
// a
// b
// lin(a,b) is of form (x, 0, z)
int cpha = 0;
for(int i=0; i<cnt; i++) {
shiftpoint h1 = V * glhr::gltopoint((*tab)[offset+i]);
hyperpoint mh1; applymodel(h1, mh1); mh1[1] *= pconf.stretch;
phases[cpha].push_back(glhr::pointtogl(mh1 * current_display->radius));
// check if the i-th edge intersects the boundary of the ellipse
// (which corresponds to the segment between the antipodes of foci)
// if yes, switch cpha to the opposite
shiftpoint h2 = V * glhr::gltopoint((*tab)[offset+(i+1)%cnt]);
hyperpoint ah1 = h1.h, ah2 = h2.h;
models::scr_to_ori(ah1);
models::scr_to_ori(ah2);
if(ah1[1] * ah2[1] > 0) continue;
ld c1 = ah1[1], c2 = -ah2[1];
if(c1 < 0) c1 = -c1, c2 = -c2;
hyperpoint h = ah1 * c1 + ah2 * c2;
h /= hypot_d(3, h);
if(h[2] < 0 && abs(h[0]) < sin(pconf.twopoint_param)) cpha = 1-cpha, pha = 2;
}
if(cpha == 1) pha = 0;
}
}
dynamicval<eModel> d1(pmodel, mdPixel);
dynamicval<transmatrix> d2(V.T, Id);
dynamicval<int> d3(offset, 0);
dynamicval<decltype(tab)> d4(tab, tab);
for(int j=0; j<pha; j++) {
dynamicval<int> d5(cnt, isize(phases[j]));
tab = &phases[j];
draw();
}
return;
}
/* if(spherespecial && prio == PPR::MOBILE_ARROW) {
if(spherephase == 0) return;
dynamicval<int> ss(spherespecial, 0);
draw();
return;
} */
#if CAP_GL
if(vid.usingGL && (current_display->set_all(global_projection, V.shift), get_shader_flags() & SF_DIRECT) && sphere && (stretch::factor || ray::in_use)) {
draw_stretch(this);
return;
}
#endif
#if CAP_GL
if(vid.usingGL && (current_display->set_all(global_projection, V.shift), get_shader_flags() & SF_DIRECT)) {
if(sl2 && pmodel == mdGeodesic && hybrid::csteps) {
ld z = atan2(V.T[2][3], V.T[3][3]) + V.shift;
auto zr = sightranges[geometry];
ld ns = stretch::not_squared();
ld db = cgi.psl_steps / M_PI / ns / hybrid::csteps;
min_slr = floor((-zr - z) * db);
max_slr = ceil((zr - z) * db);
if(min_slr > max_slr) return;
if(flags & POLY_ONE_LEVEL) min_slr = max_slr = 0;
max_slr++;
}
else min_slr = 0, max_slr = 0;
set_width(get_width(this));
flags &= ~POLY_INVERSE;
gldraw();
return;
}
#endif
glcoords.clear();
poly_flags = flags;
double d = 0, curradius = 0;
if(sphere) {
d = det(V.T);
curradius = pow(abs(d), 1/3.);
}
/* outline = 0x80808080;
color = 0; */
last_infront = false;
addpoly(V, *tab, offset, cnt);
if(!(sphere && pconf.alpha < .9)) if(pmodel != mdJoukowsky) if(!(flags & POLY_ALWAYS_IN)) for(int i=1; i<isize(glcoords); i++) {
ld dx = glcoords[i][0] - glcoords[i-1][0];
ld dy = glcoords[i][1] - glcoords[i-1][1];
if(dx > vid.xres * 2 || dy > vid.yres * 2) return;
}
if(poly_flags & POLY_BEHIND) return;
if(isize(glcoords) <= 1) return;
cyl::loop_min = cyl::loop_max = 0;
if((sphere && mdBandAny()) || pmodel == mdPolar)
cyl::adjust(tinf);
int poly_limit = max(vid.xres, vid.yres) * 2;
if(0) for(auto& p: glcoords) {
if(abs(p[0]) > poly_limit || abs(p[1]) > poly_limit)
return; // too large!
}
bool equi = mdAzimuthalEqui() || pmodel == mdFisheye;
bool nofill = false;
if(poly_flags & POLY_NIF_ERROR) return;
if(spherespecial == 1 && sphere && (poly_flags & POLY_INFRONT) && (poly_flags & POLY_NOTINFRONT) && pconf.alpha <= 1) {
bool around_center = false;
for(int i=0; i<isize(glcoords)-1; i++) {
double x1 = glcoords[i][0];
double y1 = glcoords[i][1];
double x2 = glcoords[i+1][0];
double y2 = glcoords[i+1][1];
if(asign(y1, y2)) {
ld x = xcross(x1, y1, x2, y2);
if(x < -1e-6) around_center = !around_center;
}
}
if(around_center) return;
}
bool can_have_inverse = false;
if(sphere && pmodel == mdDisk && (spherespecial > 0 || equi)) can_have_inverse = true;
if(vrhr::rendering()) can_have_inverse = false;
if(sphere && among(pmodel, mdEquidistant, mdEquiarea)) can_have_inverse = true;
if(pmodel == mdJoukowsky) can_have_inverse = true;
if(pmodel == mdJoukowskyInverted && pconf.skiprope) can_have_inverse = true;
if(pmodel == mdDisk && hyperbolic && pconf.alpha <= -1) can_have_inverse = true;
if(pmodel == mdSpiral && pconf.skiprope) can_have_inverse = true;
if(pmodel == mdCentralInversion) can_have_inverse = true;
if(among(pmodel, mdHemisphere, mdHyperboloid) && sphere && pconf.small_hyperboloid) can_have_inverse = true;
if(can_have_inverse && !(poly_flags & POLY_ISSIDE)) {
if(!tinf)
compute_side_by_centerin(this, nofill);
else {
if(d < 0) poly_flags ^= POLY_INVERSE;
if(pmodel == mdCentralInversion) poly_flags ^= POLY_INVERSE;
compute_side_by_area();
}
if(poly_flags & POLY_INVERSE) {
if(curradius < pconf.alpha - 1e-6) return;
if(!sphere) return;
}
}
else poly_flags &=~ POLY_INVERSE;
if(among(pmodel, mdHemisphere, mdHyperboloid) && sphere && pconf.small_hyperboloid && (poly_flags & POLY_INVERSE)) return;
if(spherespecial) {
if(!(poly_flags & POLY_INFRONT)) return;
}
int lastl = 0;
for(int l=cyl::loop_min; l <= cyl::loop_max; l++) {
if(l || lastl) {
for(int i=0; i<isize(glcoords); i++) {
glcoords[i][0] += pconf.mori().get()[0][0] * cyl::periods[i] * (l - lastl);
glcoords[i][1] += pconf.mori().get()[1][0] * cyl::periods[i] * (l - lastl);
}
lastl = l;
}
if(equi && (poly_flags & POLY_INVERSE)) {
if(abs(zlevel(V.T * C0) - 1) < 1e-6 && !tinf) {
// we should fill the other side
ld h = atan2(glcoords[0][0], glcoords[0][1]);
for(int i=0; i<=360; i++) {
ld a = i * degree + h;
glcoords.push_back(glhr::makevertex(current_display->radius * sin(a), current_display->radius * pconf.stretch * cos(a), 0));
}
poly_flags ^= POLY_INVERSE;
}
else {
// If we are on a zlevel, the algorithm above will not work correctly.
// It is hard to tell what to do in this case. Just fill neither side
nofill = true;
}
}
#if CAP_GL
if(vid.usingGL) {
poly_flags &= ~(POLY_VCONVEX | POLY_CCONVEX);
// if(pmodel == 0) for(int i=0; i<qglcoords; i++) glcoords[i][2] = current_display->scrdist;
if(tinf && (poly_flags & POLY_INVERSE)) {
return;
}
set_width(get_width(this));
dqi_poly npoly = (*this);
npoly.V = shiftless(Id, V.shift);
npoly.tab = &glcoords;
npoly.offset = 0;
npoly.cnt = isize(glcoords);
if(nofill) npoly.color = 0, npoly.tinf = NULL;
npoly.flags = poly_flags;
npoly.gldraw();
continue;
}
#endif
#if CAP_SVG
if(svg::in) {
coords_to_poly();
color_t col = color;
if(poly_flags & POLY_INVERSE) col = 0;
if(poly_flags & POLY_TRIANGLES) {
for(int i=0; i<polyi; i+=3)
svg::polygon(polyx+i, polyy+i, 3, col, outline, get_width(this));
}
else
svg::polygon(polyx, polyy, polyi, col, outline, get_width(this));
continue;
}
#endif
coords_to_poly();
#if CAP_XGD
gdpush(1); gdpush(color); gdpush(outline); gdpush(polyi);
for(int i=0; i<polyi; i++) gdpush(polyx[i]), gdpush(polyy[i]);
#elif CAP_SDLGFX
if(tinf) {
#if CAP_TEXTURE
if(!(poly_flags & POLY_INVERSE))
for(int i=0; i<polyi; i += 3)
drawTexturedTriangle(s, polyx+i, polyy+i, &tinf->tvertices[offset_texture + i], color);
#endif
}
else if(poly_flags & POLY_INVERSE) {
int i = polyi;
if(true) {
polyx[i] = 0; polyy[i] = 0; i++;
polyx[i] = vid.xres; polyy[i] = 0; i++;
polyx[i] = vid.xres; polyy[i] = vid.yres; i++;
polyx[i] = 0; polyy[i] = vid.yres; i++;
polyx[i] = 0; polyy[i] = 0; i++;
}
filledPolygonColorI(srend, polyx, polyy, polyi+5, color);
}
else if(poly_flags & POLY_TRIANGLES) {
for(int i=0; i<polyi; i+=3)
filledPolygonColorI(srend, polyx+i, polyy+i, 3, color);
}
else
filledPolygonColorI(srend, polyx, polyy, polyi, color);
if(current_display->separate_eyes()) filledPolygonColorI(auxrend, polyxr, polyy, polyi, color);
((vid.antialias & AA_NOGL) ?aapolylineColor:polylineColor)(srend, polyx, polyy, polyi, outline);
if(current_display->separate_eyes()) aapolylineColor(auxrend, polyxr, polyy, polyi, outline);
if(vid.xres >= 2000 || fatborder) {
int xmi = 3000, xma = -3000;
for(int t=0; t<polyi; t++) xmi = min(xmi, polyx[t]), xma = max(xma, polyx[t]);
if(xma > xmi + 20) for(int x=-1; x<2; x++) for(int y=-1; y<=2; y++) if(x*x+y*y == 1) {
for(int t=0; t<polyi; t++) polyx[t] += x, polyy[t] += y;
aapolylineColor(srend, polyx, polyy, polyi, outline);
for(int t=0; t<polyi; t++) polyx[t] -= x, polyy[t] -= y;
}
}
#endif
}
}
vector<glvertex> prettylinepoints;
EX void prettypoint(const hyperpoint& h) {
prettylinepoints.push_back(glhr::pointtogl(h));
}
EX void prettylinesub(const hyperpoint& h1, const hyperpoint& h2, int lev) {
if(lev >= 0 && pmodel != mdPixel) {
hyperpoint h3 = midz(h1, h2);
prettylinesub(h1, h3, lev-1);
prettylinesub(h3, h2, lev-1);
}
else prettypoint(h2);
}
EX void prettyline(hyperpoint h1, hyperpoint h2, ld shift, color_t col, int lev, int flags, PPR prio) {
prettylinepoints.clear();
prettypoint(h1);
prettylinesub(h1, h2, lev);
dqi_poly ptd;
ptd.V = shiftless(Id, shift);
ptd.tab = &prettylinepoints;
ptd.offset = 0;
ptd.cnt = isize(prettylinepoints);
ptd.linewidth = vid.linewidth;
ptd.color = 0;
ptd.outline = col;
ptd.flags = POLY_ISSIDE | POLY_PRECISE_WIDE | flags;
ptd.tinf = NULL;
ptd.intester = C0;
ptd.prio = prio;
ptd.draw();
}
EX void prettypoly(const vector<hyperpoint>& t, color_t fillcol, color_t linecol, int lev) {
prettylinepoints.clear();
prettypoint(t[0]);
for(int i=0; i<isize(t); i++)
prettylinesub(t[i], t[(i+1)%3], lev);
dqi_poly ptd;
ptd.V = shiftless(Id);
ptd.tab = &prettylinepoints;
ptd.offset = 0;
ptd.cnt = isize(prettylinepoints);
ptd.linewidth = vid.linewidth;
ptd.color = fillcol;
ptd.outline = linecol;
ptd.flags = POLY_ISSIDE | POLY_PRECISE_WIDE;
ptd.tinf = NULL;
ptd.intester = C0;
ptd.draw();
}
EX vector<glvertex> curvedata;
EX int curvestart = 0;
EX bool keep_curvedata = false;
EX void queuereset(eModel m, PPR prio) {
queueaction(prio, [m] () { glflush(); pmodel = m; });
}
void dqi_line::draw() {
dynamicval<ld> d(vid.linewidth, width);
prettyline(H1.h, unshift(H2, H1.shift), H1.shift, color, prf, 0, prio);
}
void dqi_string::draw() {
#if CAP_SVG
if(svg::in) {
svg::text(x, y, size, str, frame, color, align);
return;
}
#endif
#if !ISMOBILE
int fr = frame & 255;
displayfrSP(x, y, shift, fr, size, str, color, align, frame >> 8);
#else
displayfr(x, y, frame, size, str, color, align);
#endif
}
void dqi_circle::draw() {
#if CAP_SVG
if(svg::in) {
svg::circle(x, y, size, color, fillcolor, linewidth);
}
else
#endif
drawCircle(x, y, size, color, fillcolor);
}
EX void initquickqueue() {
ptds.clear();
poly_outline = OUTLINE_NONE;
}
EX void sortquickqueue() {
for(int i=1; i<isize(ptds);)
if(i && ptds[i]->prio < ptds[i-1]->prio) {
swap(ptds[i], ptds[i-1]);
i--;
}
else i++;
}
EX void quickqueue() {
current_display->next_shader_flags = 0;
spherespecial = 0;
reset_projection(); current_display->set_all(0, 0);
int siz = isize(ptds);
for(int i=0; i<siz; i++) ptds[i]->draw();
ptds.clear();
if(!keep_curvedata) {
curvedata.clear();
finf.tvertices.clear();
curvestart = 0;
}
}
/* todo */
ld xintval(const shiftpoint& h) {
if(sphere_flipped) return -h.h[2];
if(hyperbolic) return -h.h[2];
return -intval(h.h, C0);
}
EX ld backbrightness = .25;
EX purehookset hooks_drawqueue;
constexpr int PMAX = int(PPR::MAX);
int qp[PMAX], qp0[PMAX];
color_t darken_color(color_t& color, bool outline) {
int alpha = color & 255;
if(sphere && pmodel == mdDisk && pconf.alpha <= 0.99)
return 0;
else {
if(outline && alpha < 255)
return color - alpha + int(backbrightness * alpha);
else
return (gradient(modelcolor>>8, color>>8, 0, backbrightness, 1)<<8) | 0xFF;
}
}
void dqi_poly::draw_back() {
dynamicval<color_t> dvo(outline, darken_color(outline, true));
dynamicval<color_t> dvc(color, darken_color(color, false));
draw();
}
void dqi_line::draw_back() {
dynamicval<color_t> dvc(color, darken_color(color, true));
draw();
}
EX void sort_drawqueue() {
DEBBI(DF_GRAPH, ("sort_drawqueue"));
for(int a=0; a<PMAX; a++) qp[a] = 0;
int siz = isize(ptds);
#if MINIMIZE_GL_CALLS
map<color_t, vector<unique_ptr<drawqueueitem>>> subqueue;
for(auto& p: ptds) subqueue[(p->prio == PPR::CIRCLE || p->prio == PPR::OUTCIRCLE) ? 0 : p->outline_group()].push_back(std::move(p));
ptds.clear();
for(auto& p: subqueue) for(auto& r: p.second) ptds.push_back(std::move(r));
subqueue.clear();
for(auto& p: ptds) subqueue[(p->prio == PPR::CIRCLE || p->prio == PPR::OUTCIRCLE) ? 0 : p->color].push_back(std::move(p));
ptds.clear();
for(auto& p: subqueue) for(auto& r: p.second) ptds.push_back(std::move(r));
#endif
for(auto& p: ptds) {
int pd = p->prio - PPR::ZERO;
if(pd < 0 || pd >= PMAX) {
printf("Illegal priority %d\n", pd);
p->prio = PPR(rand() % int(PPR::MAX));
}
qp[pd]++;
}
int total = 0;
for(int a=0; a<PMAX; a++) {
int b = qp[a];
qp0[a] = qp[a] = total; total += b;
}
vector<unique_ptr<drawqueueitem>> ptds2;
ptds2.resize(siz);
for(int i = 0; i<siz; i++) ptds2[qp[int(ptds[i]->prio)]++] = std::move(ptds[i]);
swap(ptds, ptds2);
}
EX void reverse_priority(PPR p) {
reverse(ptds.begin()+qp0[int(p)], ptds.begin()+qp[int(p)]);
}
EX void reverse_side_priorities() {
for(PPR p: {PPR::REDWALLs, PPR::REDWALLs2, PPR::REDWALLs3, PPR::WALL3s,
PPR::LAKEWALL, PPR::INLAKEWALL, PPR::BELOWBOTTOM, PPR::BSHALLOW, PPR::ASHALLOW})
reverse_priority(p);
}
// on the sphere, parts on the back are drawn first
EX void draw_backside() {
DEBBI(DF_GRAPH, ("draw_backside"));
if(pmodel == mdHyperboloid && hyperbolic && pconf.show_hyperboloid_flat) {
dynamicval<eModel> dv (pmodel, mdHyperboloidFlat);
for(auto& ptd: ptds)
if(!among(ptd->prio, PPR::MOBILE_ARROW, PPR::OUTCIRCLE, PPR::CIRCLE))
ptd->draw();
}
spherespecial = sphere_flipped ? 1 : -1;
reset_projection();
if(pmodel == mdRotatedHyperboles) {
for(auto& ptd: ptds)
if(!among(ptd->prio, PPR::MOBILE_ARROW, PPR::OUTCIRCLE, PPR::CIRCLE))
ptd->draw();
glflush();
}
else {
reverse_side_priorities();
for(int i=isize(ptds)-1; i>=0; i--)
if(!among(ptds[i]->prio, PPR::MOBILE_ARROW, PPR::OUTCIRCLE, PPR::CIRCLE))
ptds[i]->draw_back();
glflush();
reverse_side_priorities();
}
spherespecial *= -1;
spherephase = 1;
reset_projection();
}
extern bool lshiftclick, lctrlclick;
EX void reverse_transparent_walls() {
int pt = int(PPR::TRANSPARENT_WALL);
reverse(&ptds[qp0[pt]], &ptds[qp[pt]]);
}
EX void set_vr_sphere() {
in_vr_sphere = false;
#if CAP_VR
in_vr_sphere = vrhr::rendering() && among(pmodel, mdDisk, mdBall, mdHyperboloid, mdHalfplane, mdHemisphere) && sphere;
if(in_vr_sphere) {
hyperpoint a, b;
applymodel(shiftless(point3(0, 0, 1)), a);
applymodel(shiftless(point3(0, 0, -1)), b);
vr_sphere_center = (a + b) / 2;
vr_sphere_center[3] = 1;
E4;
vr_sphere_center = vrhr::hmd_mv * vr_sphere_center;
}
#endif
}
EX int hemi_side = 0;
EX void draw_main() {
DEBBI(DF_GRAPH, ("draw_main"));
if(pconf.back_and_front == 1 && vid.consider_shader_projection) {
dynamicval<int> pa(pconf.back_and_front);
pconf.back_and_front = 0;
draw_main();
pconf.back_and_front = 2;
reset_projection();
draw_main();
return;
}
if(pmodel == mdHemisphere && sphere && hemi_side == 0 && !vrhr::rendering() && !pconf.small_hyperboloid) {
hemi_side = (pconf.ball() * hyperpoint(0,1,0,1)) [2] < 0 ? 1 : -1;
draw_main();
if(pconf.show_hyperboloid_flat) {
dynamicval<eModel> dv (pmodel, mdHyperboloidFlat);
dynamicval<int> ds (spherespecial, 1);
for(auto& ptd: ptds)
if(!among(ptd->prio, PPR::MOBILE_ARROW, PPR::OUTCIRCLE, PPR::CIRCLE))
ptd->draw();
}
for(auto& ptd: ptds) if(ptd->prio == PPR::OUTCIRCLE) {
auto c = dynamic_cast<dqi_poly*> (&*ptd);
if(c) { c->color = 0; c->outline = 0; }
}
hemi_side *= -1;
draw_main();
hemi_side = 0;
return;
}
set_vr_sphere();
if(sphere && GDIM == 3 && pmodel == mdPerspective && !stretch::in() && !ray::in_use) {
if(ray::in_use && !ray::comparison_mode) {
ray::cast();
reset_projection();
}
#if CAP_GL
for(int p: {1, 0, 2, 3}) {
if(elliptic && p < 2) continue;
glhr::set_depthwrite(true);
if(p == 0 || p == 3) {
#ifdef GL_ES
glClearDepthf(1.0f);
#else
glClearDepth(1.0f);
#endif
glDepthFunc(GL_LEQUAL);
}
else {
#ifdef GL_ES
glClearDepthf(0.0f);
#else
glClearDepth(0.0f);
#endif
glDepthFunc(GL_GEQUAL);
}
glClear(GL_DEPTH_BUFFER_BIT);
glhr::be_nontextured();
spherephase = p;
reset_projection();
for(auto& ptd: ptds) ptd->draw();
if(elliptic) {
spherephase = p | 4;
reset_projection();
for(auto& ptd: ptds) ptd->draw();
}
// glflush();
}
#endif
}
else if(pmodel == mdAxial && sphere) {
for(auto& ptd: ptds) if(ptd->prio == PPR::OUTCIRCLE)
ptd->draw();
for(axial_x=-4; axial_x<=4; axial_x++)
for(axial_y=-4; axial_y<=4; axial_y++)
for(auto& ptd: ptds) if(ptd->prio != PPR::OUTCIRCLE) {
ptd->draw();
}
glflush();
}
else {
DEBB(DF_GRAPH, ("draw_main1"));
if(ray::in_use && !ray::comparison_mode) {
ray::cast();
reset_projection();
}
DEBB(DF_GRAPH, ("outcircle"));
for(auto& ptd: ptds) if(ptd->prio == PPR::OUTCIRCLE)
ptd->draw();
if(two_sided_model()) draw_backside();
for(auto& ptd: ptds) if(ptd->prio != PPR::OUTCIRCLE) {
DEBBI(DF_VERTEX, ("prio: ", int(ptd->prio), " color ", ptd->color));
dynamicval<int> ss(spherespecial, among(ptd->prio, PPR::MOBILE_ARROW, PPR::OUTCIRCLE, PPR::CIRCLE) ? 0 : spherespecial);
ptd->draw();
}
glflush();
#if CAP_RAY
if(ray::in_use && ray::comparison_mode) {
glDepthFunc(GL_LEQUAL);
#ifdef GLES_ONLY
glClearDepthf(1.0f);
#else
glClearDepth(1.0f);
#endif
glClear(GL_DEPTH_BUFFER_BIT);
ray::cast();
}
#endif
}
}
EX void drawqueue() {
DEBBI(DF_GRAPH, ("drawqueue"));
#if CAP_WRL
if(wrl::in) { wrl::render(); return; }
#endif
#if MAXMDIM >= 4 && CAP_GL
make_air();
#endif
#if CAP_VR
if(vrhr::should_render() == 1) {
vrhr::render();
return;
}
#endif
callhooks(hooks_drawqueue);
current_display->next_shader_flags = 0;
reset_projection();
// reset_projection() is not sufficient here, because we need to know shaderside_projection
#if CAP_GL
if(vid.usingGL)
glClear(GL_STENCIL_BUFFER_BIT);
#endif
sort_drawqueue();
DEBB(DF_GRAPH, ("sort walls"));
if(GDIM == 2)
for(PPR p: {PPR::REDWALLs, PPR::REDWALLs2, PPR::REDWALLs3, PPR::WALL3s,
PPR::LAKEWALL, PPR::INLAKEWALL, PPR::BELOWBOTTOM, PPR::ASHALLOW, PPR::BSHALLOW}) {
int pp = int(p);
if(qp0[pp] == qp[pp]) continue;
for(int i=qp0[pp]; i<qp[pp]; i++) {
auto ap = (dqi_poly&) *ptds[i];
ap.cache = xintval(ap.V * xpush0(.1));
}
sort(&ptds[qp0[pp]], &ptds[qp[pp]],
[] (const unique_ptr<drawqueueitem>& p1, const unique_ptr<drawqueueitem>& p2) {
auto ap1 = (dqi_poly&) *p1;
auto ap2 = (dqi_poly&) *p2;
return ap1.cache < ap2.cache;
});
}
for(PPR p: {PPR::TRANSPARENT_WALL}) {
int pp = int(p);
if(qp0[pp] == qp[pp]) continue;
sort(&ptds[qp0[int(p)]], &ptds[qp[int(p)]],
[] (const unique_ptr<drawqueueitem>& p1, const unique_ptr<drawqueueitem>& p2) {
return p1->subprio > p2->subprio;
});
}
if(draw_plain_floors && (default_flooralpha < 255 || svg::in)) for(PPR p: {PPR::FLOOR}) {
int pp = int(p);
if(qp0[pp] == qp[pp]) continue;
auto get_z = [&] (const unique_ptr<drawqueueitem>& p) -> ld {
auto d = dynamic_cast<dqi_poly*> (&*p);
if(!d) return 0;
hyperpoint h = Hypc;
for(int i=0; i<d->cnt; i++) h += glhr::gltopoint( (*d->tab)[d->offset + i] );
h /= d->cnt; normalize(h);
h = unshift(d->V) * h;
return h[2];
};
sort(&ptds[qp0[int(p)]], &ptds[qp[int(p)]],
[&] (const unique_ptr<drawqueueitem>& p1, const unique_ptr<drawqueueitem>& p2) {
return get_z(p1) > get_z(p2);
});
}
#if CAP_SDL
if(current_display->separate_eyes() && !vid.usingGL) {
if(aux && (aux->w != s->w || aux->h != s->h)) {
SDL_FreeSurface(aux);
#if CAP_SDL2
SDL_DestroyRenderer(auxrend);
#endif
}
if(!aux) {
aux = SDL_CreateRGBSurface(SDL_SWSURFACE,s->w,s->h,32,0,0,0,0);
#if CAP_SDL2
auxrend = SDL_CreateSoftwareRenderer(aux);
#endif
}
// SDL_LockSurface(aux);
// memset(aux->pixels, 0, vid.xres * vid.yres * 4);
// SDL_UnlockSurface(aux);
SDL_BlitSurface(s, NULL, aux, NULL);
}
#endif
spherespecial = 0;
spherephase = 0;
reset_projection();
#if CAP_GL
if(model_needs_depth() && current_display->separate_eyes()) {
global_projection = -1;
draw_main();
#if CAP_GL
glClear(GL_DEPTH_BUFFER_BIT);
#endif
global_projection = +1;
draw_main();
global_projection = 0;
}
else
#endif
{
draw_main();
}
#if CAP_SDL
if(vid.stereo_mode == sAnaglyph && !vid.usingGL) {
int qty = s->w * s->h;
int *a = (int*) s->pixels;
int *b = (int*) aux->pixels;
SDL_LockSurface(aux);
while(qty) {
*a = ((*a) & 0xFF0000) | ((*b) & 0x00FFFF);
a++; b++; qty--;
}
SDL_UnlockSurface(aux);
}
if(vid.stereo_mode == sLR && !vid.usingGL) {
SDL_LockSurface(aux);
for(int y=0; y<vid.yres; y++)
for(int x=vid.xres/2; x<vid.xres; x++)
qpixel(s,x,y) = qpixel(aux,x,y);
SDL_UnlockSurface(aux);
}
#endif
if(!keep_curvedata) {
curvedata.clear();
finf.tvertices.clear();
curvestart = 0;
}
#if CAP_GL
GLERR("drawqueue");
#endif
}
#if HDR
template<class T, class... U> T& queuea(PPR prio, U... u) {
ptds.push_back(unique_ptr<T>(new T (u...)));
ptds.back()->prio = prio;
return (T&) *ptds.back();
}
#endif
#if CAP_SHAPES
EX dqi_poly& queuepolyat(const shiftmatrix& V, const hpcshape& h, color_t col, PPR prio) {
if(prio == PPR::DEFAULT) prio = h.prio;
auto& ptd = queuea<dqi_poly> (prio);
ptd.V = V;
ptd.offset = h.s;
ptd.cnt = h.e-h.s;
ptd.tab = &cgi.ourshape;
apply_neon_color(col, ptd.color, ptd.outline, h.flags);
ptd.linewidth = vid.linewidth;
ptd.flags = h.flags;
ptd.tinf = h.tinf;
if(neon_mode != eNeon::none && (h.flags & POLY_TRIANGLES))
ptd.tinf = nullptr;
ptd.apeiro_cnt = h.she - h.s;
ptd.offset_texture = h.texture_offset;
ptd.intester = h.intester;
return ptd;
}
#endif
EX dqi_poly& queuetable(const shiftmatrix& V, const vector<glvertex>& f, int cnt, color_t linecol, color_t fillcol, PPR prio) {
auto& ptd = queuea<dqi_poly> (prio);
ptd.V = V;
ptd.tab = &f;
ptd.offset = 0;
ptd.cnt = cnt;
ptd.color = fillcol;
ptd.outline = linecol;
ptd.linewidth = vid.linewidth;
ptd.flags = POLY_ISSIDE | POLY_PRECISE_WIDE;
ptd.tinf = NULL;
ptd.intester = C0;
return ptd;
}
#if CAP_SHAPES
EX dqi_poly& queuepoly(const shiftmatrix& V, const hpcshape& h, color_t col) {
return queuepolyat(V,h,col,h.prio);
}
void queuepolyb(const shiftmatrix& V, const hpcshape& h, color_t col, int b) {
queuepolyat(V,h,col,h.prio+b);
}
#endif
EX void curvepoint(const hyperpoint& H1) {
curvedata.push_back(glhr::pointtogl(H1));
}
EX void curvepoint_first() {
curvedata.push_back(curvedata[curvestart]);
}
EX dqi_poly& queuecurve_reuse(const shiftmatrix& V, color_t linecol, color_t fillcol, PPR prio) {
auto &res = queuetable(V, curvedata, isize(curvedata)-curvestart, linecol, fillcol, prio);
res.offset = curvestart;
return res;
}
EX dqi_poly& queuecurve(const shiftmatrix& V, color_t linecol, color_t fillcol, PPR prio) {
auto &res = queuecurve_reuse(V, linecol, fillcol, prio);
curvestart = isize(curvedata);
return res;
}
EX dqi_action& queueaction(PPR prio, const reaction_t& action) {
return queuea<dqi_action> (prio, action);
}
EX dqi_line& queueline(const shiftpoint& H1, const shiftpoint& H2, color_t col, int prf IS(0), PPR prio IS(PPR::LINE)) {
auto& ptd = queuea<dqi_line> (prio);
ptd.H1 = H1;
ptd.H2 = H2;
ptd.prf = prf;
ptd.width = vid.linewidth;
ptd.color = (darkened(col >> 8) << 8) + (col & 0xFF);
return ptd;
}
EX void queuestr(int x, int y, int shift, int size, string str, color_t col, int frame IS(0), int align IS(8)) {
auto& ptd = queuea<dqi_string> (PPR::TEXT);
ptd.x = x;
ptd.y = y;
ptd.str = str;
ptd.align = align;
ptd.shift = shift;
ptd.size = size;
ptd.color = darkened(col);
ptd.frame = frame ? ((poly_outline & ~ 255)+frame) : 0;
}
EX void queuecircle(int x, int y, int size, color_t color, PPR prio IS(PPR::CIRCLE), color_t fillcolor IS(0)) {
auto& ptd = queuea<dqi_circle>(prio);
ptd.x = x;
ptd.y = y;
ptd.size = size;
ptd.color = color;
ptd.fillcolor = fillcolor;
ptd.linewidth = vid.linewidth;
}
EX void getcoord0(const shiftpoint& h, int& xc, int &yc, int &sc) {
hyperpoint hscr;
applymodel(h, hscr);
xc = current_display->xcenter + current_display->radius * hscr[0];
yc = current_display->ycenter + current_display->radius * pconf.stretch * hscr[1];
sc = 0;
// EYETODO sc = vid.eye * current_display->radius * hscr[2];
}
EX ld scale_in_pixels(const shiftmatrix& V) {
return scale_at(V) * cgi.scalefactor * current_display->radius / 2.5;
}
EX bool getcoord0_checked(const shiftpoint& h, int& xc, int &yc, int &zc) {
if(invalid_point(h)) return false;
if(point_behind(h)) return false;
getcoord0(h, xc, yc, zc);
return true;
}
EX void queuestr(const shiftpoint& h, int size, const string& chr, color_t col, int frame IS(0)) {
int xc, yc, sc;
if(getcoord0_checked(h, xc, yc, sc))
queuestr(xc, yc, sc, size, chr, col, frame);
}
EX basic_textureinfo finf;
#if CAP_GL
#if HDR
using pointfunction = function<hyperpoint(ld, ld)>;
#endif
EX hyperpoint default_pointfunction(ld x, ld y) {
return xpush(x) * ypush(y) * C0;
}
#if !CAP_EXTFONT
EX void write_in_space(const shiftmatrix& V, int fsize, double size, const string& s, color_t col, int frame IS(0), int align IS(8), PPR prio IS(PPR::TEXT), pointfunction pf IS(default_pointfunction)) {
init_glfont(fsize);
glfont_t& f(*(glfont[fsize]));
finf.texture_id = f.texture;
int fstart = isize(finf.tvertices);
vector<int> chars;
int i = 0;
while(i < isize(s)) { chars.push_back(getnext(s.c_str(), i)); }
ld tw = 0;
for(int c: chars) tw += f.chars[c].w;
ld th = f.chars[32].h;
ld xpos = -tw * align / 16;
ld scale = cgi.scalefactor * size / fsize / 2;
auto pt = [&] (ld tx, ld ty, ld ix, ld iy) {
finf.tvertices.push_back(glhr::makevertex(tx, ty, 0));
curvedata.push_back(glhr::pointtogl(pf(ix*scale, iy*scale)));
};
for(int ch: chars) {
auto& c = f.chars[ch];
pt(c.tx0, c.ty0, xpos, -th/2);
pt(c.tx0, c.ty1, xpos, +th/2);
pt(c.tx1, c.ty1, xpos+c.w, +th/2);
pt(c.tx1, c.ty1, xpos+c.w, +th/2);
pt(c.tx1, c.ty0, xpos+c.w, -th/2);
pt(c.tx0, c.ty0, xpos, -th/2);
xpos += c.w;
}
if(frame) for(int i=0; i<360; i+=45) {
auto &res = queuetable(V * xspinpush(i*degree, frame*scale), curvedata, isize(curvedata)-curvestart, poly_outline, poly_outline, prio);
res.offset = curvestart;
res.offset_texture = fstart;
res.tinf = &finf;
res.flags |= POLY_TRIANGLES;
}
auto &res = queuetable(V, curvedata, isize(curvedata)-curvestart, col, col, prio);
res.offset = curvestart;
res.offset_texture = fstart;
res.tinf = &finf;
res.flags |= POLY_TRIANGLES;
curvestart = isize(curvedata);
}
#endif
#endif
EX void queuestr(const shiftmatrix& V, double size, const string& chr, color_t col, int frame IS(0), int align IS(8)) {
#if CAP_GL && !CAP_EXTFONT
if(vid.usingGL) {
shiftmatrix V1 ;
if(GDIM == 3)
V1 = face_the_player(V);
else {
V1 = V;
V1.T = rgpushxto0(tC0(V1.T));
}
auto col1 = (col << 8) | 0xFF;
write_in_space(V1, max_glfont_size, size, chr, col1, frame, align);
return;
}
#endif
int xc, yc, sc;
if(getcoord0_checked(tC0(V), xc, yc, sc))
queuestr(xc, yc, sc, scale_in_pixels(V) * size, chr, col, frame, align);
}
EX void queuestrn(const shiftmatrix& V, double size, const string& chr, color_t col, int frame IS(0), int align IS(8)) {
switch(neon_mode) {
case eNeon::none:
queuestr(V, size, chr, col, frame, align);
break;
case eNeon::neon: {
dynamicval<color_t> c(poly_outline, col << 8);
queuestr(V, size, chr, 0, frame, align);
break;
}
case eNeon::no_boundary: {
queuestr(V, size, chr, col, 0, align);
break;
}
case eNeon::neon2: {
dynamicval<color_t> c(poly_outline, (col << 8) | 0xFF);
queuestr(V, size, chr, (col & 0xFEFEFE) >> 1, frame, align);
break;
}
case eNeon::illustration: {
dynamicval<color_t> c(poly_outline, poly_outline);
if(poly_outline && (poly_outline>>8) != bordcolor) {
col = magentize(col << 8) >> 8;
poly_outline = 0xFF;
}
else {
col = monochromatize(col << 8) >> 8;
}
queuestr(V, size, chr, col, frame, align);
}
}
}
EX void queuecircle(const shiftmatrix& V, double size, color_t col) {
int xc, yc, sc;
if(!getcoord0_checked(tC0(V), xc, yc, sc)) return;
int xs, ys, ss; getcoord0(V * xpush0(.01), xs, ys, ss);
queuecircle(xc, yc, scale_in_pixels(V) * size, col);
}
#endif
}