mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-15 03:35:47 +00:00
945 lines
25 KiB
C++
945 lines
25 KiB
C++
// Hyperbolic Rogue -- cells
|
|
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
// cells the game is played on
|
|
|
|
namespace hr {
|
|
|
|
int fix6(int a) { return (a+MODFIXER)%S6; }
|
|
int fix7(int a) { return (a+MODFIXER)%S7; }
|
|
|
|
int dirdiff(int dd, int t) {
|
|
dd %= t;
|
|
if(dd<0) dd += t;
|
|
if(t-dd < dd) dd = t-dd;
|
|
return dd;
|
|
}
|
|
|
|
int fixdir(int a, cell *c) { a %= c->type; if(a<0) a += c->type; return a; }
|
|
|
|
int cellcount = 0;
|
|
|
|
void initcell(cell *c); // from game.cpp
|
|
|
|
cell *newCell(int type, heptagon *master) {
|
|
cell *c = tailored_alloc<cell> (type);
|
|
c->type = type;
|
|
c->master = master;
|
|
initcell(c);
|
|
return c;
|
|
}
|
|
|
|
struct cdata {
|
|
int val[4];
|
|
int bits;
|
|
};
|
|
|
|
// -- hrmap ---
|
|
|
|
hrmap *currentmap;
|
|
vector<hrmap*> allmaps;
|
|
|
|
hrmap *newAltMap(heptagon *o) { return new hrmap_hyperbolic(o); }
|
|
// --- hyperbolic geometry ---
|
|
|
|
hrmap_hyperbolic::hrmap_hyperbolic(heptagon *o) { origin = o; }
|
|
|
|
hrmap_hyperbolic::hrmap_hyperbolic() {
|
|
// printf("Creating hyperbolic map: %p\n", this);
|
|
origin = tailored_alloc<heptagon> (S7);
|
|
heptagon& h = *origin;
|
|
h.s = hsOrigin;
|
|
h.emeraldval = a46 ? 0 : 98;
|
|
h.zebraval = 40;
|
|
h.fiftyval = 0;
|
|
h.fieldval = 0;
|
|
h.rval0 = h.rval1 = 0;
|
|
h.cdata = NULL;
|
|
h.alt = NULL;
|
|
h.distance = 0;
|
|
mvar = variation;
|
|
if(0);
|
|
#if CAP_BT
|
|
else if(binarytiling) {
|
|
#if DEBUG_BINARY_TILING
|
|
binary::xcode.clear();
|
|
binary::rxcode.clear();
|
|
binary::xcode[&h] = (1 << 16);
|
|
binary::rxcode[1<<16] = &h;
|
|
#endif
|
|
h.zebraval = 0, h.emeraldval = 0,
|
|
h.c7 = newCell(DIM == 3 ? S7 : 6, origin);
|
|
}
|
|
#endif
|
|
#if CAP_IRR
|
|
else if(IRREGULAR)
|
|
irr::link_start(origin);
|
|
#endif
|
|
else
|
|
h.c7 = newCell(S7, origin);
|
|
}
|
|
|
|
// very similar to createMove in heptagon.cpp
|
|
cell *createMov(cell *c, int d) {
|
|
if(d<0 || d>= c->type) {
|
|
printf("ERROR createmov\n");
|
|
}
|
|
|
|
if(masterless && !c->move(d)) {
|
|
int id = decodeId(c->master);
|
|
for(int dx=-1; dx<=1; dx++)
|
|
for(int dy=-1; dy<=1; dy++)
|
|
euclideanAtCreate(id + pair_to_vec(dx, dy));
|
|
if(!c->move(d)) {
|
|
println(hlog, "id = ", id, " vec_to_pair(id) = ", vec_to_pair(id), ": failed to create move ", d, " in Euclidean\n");
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
if(c->move(d)) return c->move(d);
|
|
#if CAP_IRR
|
|
else if(IRREGULAR) {
|
|
irr::link_cell(c, d);
|
|
}
|
|
#endif
|
|
#if CAP_GP
|
|
else if(GOLDBERG) {
|
|
gp::extend_map(c, d);
|
|
if(!c->move(d)) {
|
|
printf("extend failed to create for %p/%d\n", c, d);
|
|
exit(1);
|
|
}
|
|
}
|
|
#endif
|
|
#if CAP_ARCM
|
|
else if(archimedean && PURE) {
|
|
if(arcm::id_of(c->master) < arcm::current.N * 2) {
|
|
heptspin hs = heptspin(c->master, d) + wstep + 2 + wstep + 1;
|
|
c->c.connect(d, hs.at->c7, hs.spin, hs.mirrored);
|
|
}
|
|
else c->c.connect(d, c, d, false);
|
|
}
|
|
else if(archimedean && DUAL) {
|
|
if(arcm::id_of(c->master) >= arcm::current.N * 2) {
|
|
heptagon *h2 = createStep(c->master, d*2);
|
|
int d1 = c->master->c.spin(d*2);
|
|
c->c.connect(d, h2->c7, d1/2, false);
|
|
}
|
|
else {
|
|
printf("bad connection\n");
|
|
c->c.connect(d,c,d,false);
|
|
}
|
|
}
|
|
#endif
|
|
else if(archimedean || PURE) {
|
|
heptagon *h2 = createStep(c->master, d);
|
|
c->c.connect(d, h2->c7,c->master->c.spin(d), c->master->c.mirror(d));
|
|
}
|
|
else if(c == c->master->c7) {
|
|
|
|
cell *n = newCell(S6, c->master);
|
|
|
|
heptspin hs(c->master, d, false);
|
|
|
|
int alt3 = c->type/2;
|
|
int alt4 = alt3+1;
|
|
|
|
for(int u=0; u<S6; u+=2) {
|
|
if(hs.mirrored && geometry == gSmallElliptic) hs+=1;
|
|
hs.at->c7->c.connect(hs.spin, n, u, hs.mirrored);
|
|
if(hs.mirrored && geometry == gSmallElliptic) hs+=-1;
|
|
hs = hs + alt3 + wstep - alt4;
|
|
}
|
|
extern void verifycell(cell *c);
|
|
verifycell(n);
|
|
}
|
|
|
|
else {
|
|
cellwalker cw(c, d, false);
|
|
cellwalker cw2 = cw - 1 + wstep - 1 + wstep - 1;
|
|
c->c.connect(d, cw2);
|
|
}
|
|
return c->move(d);
|
|
}
|
|
|
|
cell *createMovR(cell *c, int d) {
|
|
d %= MODFIXER; d += MODFIXER; d %= c->type;
|
|
return createMov(c, d);
|
|
}
|
|
|
|
cell *getMovR(cell *c, int d) {
|
|
d %= MODFIXER; d += MODFIXER; d %= c->type;
|
|
return c->move(d);
|
|
}
|
|
|
|
void eumerge(cell* c1, int s1, cell *c2, int s2, bool mirror) {
|
|
if(!c2) return;
|
|
c1->move(s1) = c2; c1->c.setspin(s1, s2, mirror);
|
|
c2->move(s2) = c1; c2->c.setspin(s2, s1, mirror);
|
|
}
|
|
|
|
// map<pair<eucoord, eucoord>, cell*> euclidean;
|
|
|
|
euc_pointer euclideanAt(int vec) {
|
|
if(fulltorus) { printf("euclideanAt called\n"); exit(1); }
|
|
hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
|
|
return euc->at(vec);
|
|
}
|
|
|
|
euc_pointer euclideanAtCreate(int vec) {
|
|
euc_pointer ep = euclideanAt(vec);
|
|
cell*& c = *ep.first;
|
|
if(!c) {
|
|
if(euwrap) {
|
|
int x, y;
|
|
tie(x, y) = vec_to_pair(vec);
|
|
torusconfig::be_canonical(x, y);
|
|
vec = pair_to_vec(x, y);
|
|
}
|
|
c = newCell(8, encodeId(vec));
|
|
// euclideanAt(vec) = c;
|
|
build_euclidean_moves(c, vec, [c,vec] (int delta, int d, int d2) {
|
|
euc_pointer ep2 = euclideanAt(vec + delta);
|
|
cell* c2 = *ep2.first;
|
|
if(!c2) return;
|
|
// if(ep.second) d = c->c.fix(torusconfig::mobius_dir(c) - d);
|
|
if(ep2.second) d2 = c2->c.fix(torusconfig::mobius_dir(c2) - d2);
|
|
eumerge(c, d, c2, d2, ep2.second);
|
|
});
|
|
}
|
|
return ep;
|
|
}
|
|
|
|
hookset<hrmap*()> *hooks_newmap;
|
|
|
|
// initializer (also inits origin from heptagon.cpp)
|
|
void initcells() {
|
|
DEBB(DF_INIT, (debugfile,"initcells\n"));
|
|
|
|
hrmap* res = callhandlers((hrmap*)nullptr, hooks_newmap);
|
|
if(res) currentmap = res;
|
|
#if CAP_CRYSTAL
|
|
else if(geometry == gCrystal) currentmap = crystal::new_map();
|
|
#endif
|
|
#if CAP_ARCM
|
|
else if(archimedean) currentmap = arcm::new_map();
|
|
#endif
|
|
else if(euclid && DIM == 3) currentmap = euclid3::new_map();
|
|
else if(fulltorus) currentmap = new hrmap_torus;
|
|
else if(euclid) currentmap = new hrmap_euclidean;
|
|
else if(DIM == 3 && !binarytiling) currentmap = reg3::new_map();
|
|
else if(sphere) currentmap = new hrmap_spherical;
|
|
else if(quotient) currentmap = new quotientspace::hrmap_quotient;
|
|
else if(binarytiling) currentmap = binary::new_map();
|
|
else currentmap = new hrmap_hyperbolic;
|
|
|
|
allmaps.push_back(currentmap);
|
|
|
|
#if CAP_FIELD
|
|
windmap::create();
|
|
#endif
|
|
|
|
// origin->emeraldval =
|
|
}
|
|
|
|
void clearcell(cell *c) {
|
|
if(!c) return;
|
|
DEBMEM ( printf("c%d %p\n", c->type, c); )
|
|
for(int t=0; t<c->type; t++) if(c->move(t)) {
|
|
DEBMEM ( printf("mov %p [%p] S%d\n", c->move(t), c->move(t)->move(c->c.spin(t)), c->c.spin(t)); )
|
|
if(c->move(t)->move(c->c.spin(t)) != NULL &&
|
|
c->move(t)->move(c->c.spin(t)) != c) {
|
|
printf("type = %d %d -> %d\n", c->type, t, c->c.spin(t));
|
|
printf("cell error\n");
|
|
exit(1);
|
|
}
|
|
c->move(t)->move(c->c.spin(t)) = NULL;
|
|
}
|
|
DEBMEM ( printf("DEL %p\n", c); )
|
|
tailored_delete(c);
|
|
}
|
|
|
|
heptagon deletion_marker;
|
|
|
|
template<class T> void subcell(cell *c, const T& t) {
|
|
if(GOLDBERG) {
|
|
forCellEx(c2, c) if(c2->move(0) == c && c2 != c2->master->c7) {
|
|
subcell(c2, t);
|
|
}
|
|
}
|
|
else if(BITRUNCATED && !archimedean && !binarytiling)
|
|
forCellEx(c2, c) t(c2);
|
|
t(c);
|
|
}
|
|
|
|
void clearHexes(heptagon *at) {
|
|
if(at->c7 && at->cdata) {
|
|
delete at->cdata;
|
|
at->cdata = NULL;
|
|
}
|
|
if(0);
|
|
#if CAP_IRR
|
|
else if(IRREGULAR) irr::clear_links(at);
|
|
#endif
|
|
else if(at->c7) subcell(at->c7, clearcell);
|
|
}
|
|
|
|
void unlink_cdata(heptagon *h) {
|
|
if(h->alt && h->c7) {
|
|
if(h->alt->cdata == (cdata*) h)
|
|
h->alt->cdata = NULL;
|
|
}
|
|
}
|
|
|
|
void clearfrom(heptagon *at) {
|
|
if(!at) return;
|
|
queue<heptagon*> q;
|
|
unlink_cdata(at);
|
|
q.push(at);
|
|
at->alt = &deletion_marker;
|
|
//int maxq = 0;
|
|
while(!q.empty()) {
|
|
at = q.front();
|
|
// if(q.size() > maxq) maxq = q.size();
|
|
q.pop();
|
|
DEBMEM ( printf("from %p\n", at); )
|
|
if(!at->c7) {
|
|
heptagon *h = (heptagon*) at->cdata;
|
|
if(h) {
|
|
if(h->alt != at) printf("alt error :: h->alt = %p\n", h->alt);
|
|
cell *c = h->c7;
|
|
subcell(c, destroycellcontents);
|
|
h->alt = NULL;
|
|
at->cdata = NULL;
|
|
}
|
|
}
|
|
int edges = at->degree();
|
|
if(binarytiling && DIM == 2) edges = at->c7->type;
|
|
for(int i=0; i<edges; i++) if(at->move(i)) {
|
|
if(at->move(i)->alt != &deletion_marker)
|
|
q.push(at->move(i));
|
|
unlink_cdata(at->move(i));
|
|
at->move(i)->alt = &deletion_marker;
|
|
DEBMEM ( printf("!mov %p [%p]\n", at->move(i), at->move(i)->move[at->c.spin(i)]); )
|
|
if(at->move(i)->move(at->c.spin(i)) != NULL &&
|
|
at->move(i)->move(at->c.spin(i)) != at) {
|
|
printf("hept error\n");
|
|
exit(1);
|
|
}
|
|
at->move(i)->move(at->c.spin(i)) = NULL;
|
|
at->move(i) = NULL;
|
|
}
|
|
clearHexes(at);
|
|
tailored_delete(at);
|
|
}
|
|
//printf("maxq = %d\n", maxq);
|
|
}
|
|
|
|
void verifycell(cell *c) {
|
|
int t = c->type;
|
|
for(int i=0; i<t; i++) {
|
|
cell *c2 = c->move(i);
|
|
if(c2) {
|
|
if(!masterless && BITRUNCATED && c == c->master->c7) verifycell(c2);
|
|
if(c2->move(c->c.spin(i)) && c2->move(c->c.spin(i)) != c) {
|
|
printf("cell error %p:%d [%d] %p:%d [%d]\n", c, i, c->type, c2, c->c.spin(i), c2->type);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void verifycells(heptagon *at) {
|
|
if(GOLDBERG || IRREGULAR || archimedean) return;
|
|
for(int i=0; i<S7; i++) if(at->move(i) && at->move(i)->move(at->c.spin(i)) && at->move(i)->move(at->c.spin(i)) != at) {
|
|
printf("hexmix error %p [%d s=%d] %p %p\n", at, i, at->c.spin(i), at->move(i), at->move(i)->move(at->c.spin(i)));
|
|
}
|
|
if(!sphere && !quotient)
|
|
for(int i=0; i<S7; i++) if(at->move(i) && at->c.spin(i) == 0 && at->s != hsOrigin)
|
|
verifycells(at->move(i));
|
|
verifycell(at->c7);
|
|
}
|
|
|
|
int eudist(int sx, int sy) {
|
|
int z0 = abs(sx);
|
|
int z1 = abs(sy);
|
|
if(a4 && BITRUNCATED)
|
|
return (z0 == z1 && z0 > 0) ? z0+1: max(z0, z1);
|
|
if(a4) return z0 + z1;
|
|
int z2 = abs(sx+sy);
|
|
return max(max(z0,z1), z2);
|
|
}
|
|
|
|
int eudist(int vec) {
|
|
auto p = vec_to_pair(vec);
|
|
return eudist(p.first, p.second);
|
|
}
|
|
|
|
int compdist(int dx[]) {
|
|
int mi = dx[0];
|
|
for(int u=0; u<S3; u++) mi = min(mi, dx[u]);
|
|
for(int u=0; u<S3; u++)
|
|
if(dx[u] > mi+2)
|
|
return -1; // { printf("cycle error!\n"); exit(1); }
|
|
for(int u=0; u<S3; u++)
|
|
if(dx[u] == mi+2)
|
|
return mi+1;
|
|
int cnt = 0;
|
|
for(int u=0; u<S3; u++)
|
|
if(dx[u] == mi) cnt++;
|
|
if(cnt < 2)
|
|
return mi+1;
|
|
return mi;
|
|
}
|
|
|
|
int celldist(cell *c) {
|
|
if(fulltorus && DIM == 2)
|
|
return torusmap()->dists[decodeId(c->master)];
|
|
if(euwrap)
|
|
return torusconfig::cyldist(decodeId(c->master), 0);
|
|
if(masterless)
|
|
return eudist(decodeId(c->master));
|
|
if(sphere || binarytiling || DIM == 3 || geometry == gCrystal) return celldistance(c, currentmap->gamestart());
|
|
#if CAP_IRR
|
|
if(IRREGULAR) return irr::celldist(c, false);
|
|
#endif
|
|
if(archimedean || ctof(c)) return c->master->distance;
|
|
#if CAP_GP
|
|
if(GOLDBERG) return gp::compute_dist(c, celldist);
|
|
#endif
|
|
int dx[MAX_S3];
|
|
for(int u=0; u<S3; u++)
|
|
dx[u] = createMov(c, u+u)->master->distance;
|
|
return compdist(dx);
|
|
}
|
|
|
|
#define ALTDIST_BOUNDARY 99999
|
|
#define ALTDIST_UNKNOWN 99998
|
|
|
|
#define ALTDIST_ERROR 90000
|
|
|
|
int celldistAlt(cell *c) {
|
|
if(masterless) {
|
|
if(fulltorus) return celldist(c);
|
|
if(euwrap) return cylinder_alt(c);
|
|
int x, y;
|
|
tie(x,y) = vec_to_pair(decodeId(c->master));
|
|
return euclidAlt(x, y);
|
|
}
|
|
#if CAP_BT
|
|
if(binarytiling) return c->master->distance + (specialland == laCamelot && !tactic::on? 30 : 0);
|
|
#endif
|
|
#if CAP_CRYSTAL
|
|
if(geometry == gCrystal)
|
|
return crystal::dist_alt(c);
|
|
#endif
|
|
if(sphere || quotient) {
|
|
return celldist(c) - 3;
|
|
}
|
|
#if MAXMDIM == 4
|
|
if(euclid && DIM == 3) return euclid3::dist_alt(c);
|
|
#endif
|
|
if(hyperbolic && DIM == 3) return reg3::altdist(c->master);
|
|
if(!c->master->alt) return 0;
|
|
#if CAP_IRR
|
|
if(IRREGULAR) return irr::celldist(c, true);
|
|
#endif
|
|
if(ctof(c)) return c->master->alt->distance;
|
|
#if CAP_GP
|
|
if(GOLDBERG) return gp::compute_dist(c, celldistAlt);
|
|
#endif
|
|
int dx[MAX_S3]; dx[0] = 0;
|
|
for(int u=0; u<S3; u++) if(createMov(c, u+u)->master->alt == NULL)
|
|
return ALTDIST_UNKNOWN;
|
|
for(int u=0; u<S3; u++)
|
|
dx[u] = createMov(c, u+u)->master->alt->distance;
|
|
// return compdist(dx); -> not OK because of boundary conditions
|
|
int mi = dx[0];
|
|
for(int i=1; i<S3; i++) mi = min(mi, dx[i]);
|
|
for(int i=0; i<S3; i++) if(dx[i] > mi+2)
|
|
return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); }
|
|
for(int i=0; i<S3; i++) if(dx[i] == mi+2)
|
|
return mi+1;
|
|
return mi;
|
|
}
|
|
|
|
int dirfromto(cell *cfrom, cell *cto) {
|
|
for(int i=0; i<cfrom->type; i++) if(cfrom->move(i) == cto) return i;
|
|
return -1;
|
|
}
|
|
|
|
#define RPV_MODULO 5
|
|
|
|
#define RPV_RAND 0
|
|
#define RPV_ZEBRA 1
|
|
#define RPV_EMERALD 2
|
|
#define RPV_PALACE 3
|
|
#define RPV_CYCLE 4
|
|
|
|
int getCdata(cell *c, int j);
|
|
|
|
// x mod 5 = pattern type
|
|
// x mod (powers of 2) = pattern type specific
|
|
// (x/5) mod 15 = picture for drawing floors
|
|
// x mod 7 = chance of pattern-specific pic
|
|
// whole = randomization
|
|
|
|
bool randpattern(cell *c, int rval) {
|
|
int i, sw=0;
|
|
switch(rval%5) {
|
|
case 0:
|
|
if(rval&1) {
|
|
return hrandpos() < rval;
|
|
}
|
|
else {
|
|
int cd = getCdata(c, 0);
|
|
return !((cd/(((rval/2)&15)+1))&1);
|
|
}
|
|
case 1:
|
|
i = zebra40(c);
|
|
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
|
|
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
|
|
i >>= 2;
|
|
i--; i /= 3;
|
|
if(rval & (16<<i)) sw^=1;
|
|
return sw;
|
|
case 2:
|
|
i = emeraldval(c);
|
|
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
|
|
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
|
|
i >>= 2; i--;
|
|
if(rval & (16<<i)) sw^=1;
|
|
return sw;
|
|
case 3:
|
|
if(polara50(c)) { if(rval&4) sw^=1; }
|
|
if(polarb50(c)) { if(rval&8) sw^=1; }
|
|
i = fiftyval049(c); i += 6; i /= 7;
|
|
if(rval & (16<<i)) sw^=1;
|
|
return sw;
|
|
case 4:
|
|
i = (rval&3);
|
|
if(i == 1 && (celldist(c)&1)) sw ^= 1;
|
|
if(i == 2 && (celldist(c)&2)) sw ^= 1;
|
|
if(i == 3 && ((celldist(c)/3)&1)) sw ^= 1;
|
|
if(rval & (4<<towerval(c, celldist))) sw ^= 1;
|
|
return sw;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
string describeRPM(eLand l) {
|
|
int rval = randompattern[l];
|
|
switch(rval%5) {
|
|
case 0:
|
|
if(rval&1)
|
|
return "R:"+its(rval/(HRANDMAX/100))+"%";
|
|
else
|
|
return "Landscape/"+its(((rval/2)&15)+1);
|
|
case 1:
|
|
return "Z/"+its((rval>>2)&3)+"/"+its((rval>>4)&15);
|
|
case 2:
|
|
return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047);
|
|
case 3:
|
|
return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255);
|
|
case 4:
|
|
return "C/"+its(rval&3)+"/"+its((rval>>2)&65535);
|
|
}
|
|
return "?";
|
|
}
|
|
|
|
int randpatternCode(cell *c, int rval) {
|
|
switch(rval % RPV_MODULO) {
|
|
case 1:
|
|
return zebra40(c);
|
|
case 2:
|
|
return emeraldval(c);
|
|
case 3:
|
|
return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0);
|
|
case 4:
|
|
return towerval(c, celldist) * 6 + celldist(c) % 6;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define RANDITER 31
|
|
|
|
char rpm_memoize[3][256][RANDITER+1];
|
|
|
|
void clearMemoRPM() {
|
|
for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; i<RANDITER+1; i++)
|
|
rpm_memoize[a][b][i] = 2;
|
|
}
|
|
|
|
bool randpatternMajority(cell *c, int ival, int iterations) {
|
|
int rval = 0;
|
|
if(ival == 0) rval = randompattern[laCaves];
|
|
if(ival == 1) rval = randompattern[laLivefjord];
|
|
if(ival == 2) rval = randompattern[laEmerald];
|
|
if(rval%RPV_MODULO == RPV_RAND) return randpattern(c, rval);
|
|
int code = randpatternCode(c, rval);
|
|
char& memo(rpm_memoize[ival][code][iterations]);
|
|
if(memo < 2) return memo;
|
|
int z = 0;
|
|
if(iterations) for(int i=0; i<c->type; i++) {
|
|
if(randpatternMajority(createMov(c,i), ival, iterations-1))
|
|
z++;
|
|
else
|
|
z--;
|
|
}
|
|
if(z!=0) memo = (z>0);
|
|
else memo = randpattern(c, rval);
|
|
// printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo);
|
|
return memo;
|
|
}
|
|
|
|
map<heptagon*, int> spins;
|
|
|
|
#define RVAL_MASK 0x10000000
|
|
#define DATA_MASK 0x20000000
|
|
|
|
cdata orig_cdata;
|
|
|
|
void affect(cdata& d, short rv, signed char signum) {
|
|
if(rv&1) d.val[0]+=signum; else d.val[0]-=signum;
|
|
if(rv&2) d.val[1]+=signum; else d.val[1]-=signum;
|
|
if(rv&4) d.val[2]+=signum; else d.val[2]-=signum;
|
|
if(rv&8) d.val[3]+=signum; else d.val[3]-=signum;
|
|
int id = (rv>>4) & 63;
|
|
if(id < 32)
|
|
d.bits ^= (1 << id);
|
|
}
|
|
|
|
void setHeptagonRval(heptagon *h) {
|
|
if(!(h->rval0 || h->rval1)) {
|
|
h->rval0 = hrand(0x10000);
|
|
h->rval1 = hrand(0x10000);
|
|
}
|
|
}
|
|
|
|
cdata *getHeptagonCdata(heptagon *h) {
|
|
if(h->cdata) return h->cdata;
|
|
|
|
if(sphere || quotient) h = currentmap->gamestart()->master;
|
|
|
|
if(h == currentmap->gamestart()->master) {
|
|
h->cdata = new cdata(orig_cdata);
|
|
for(int& v: h->cdata->val) v = 0;
|
|
h->cdata->bits = reptilecheat ? (1 << 21) - 1 : 0;
|
|
if(yendor::on && specialland == laVariant) h->cdata->bits |= (1 << 8) | (1 << 9) | (1 << 12);
|
|
return h->cdata;
|
|
}
|
|
|
|
cdata mydata = *getHeptagonCdata(h->move(0));
|
|
|
|
for(int di=3; di<5; di++) {
|
|
heptspin hs(h, di, false);
|
|
int signum = +1;
|
|
while(true) {
|
|
heptspin hstab[15];
|
|
hstab[7] = hs;
|
|
|
|
for(int i=8; i<12; i++) {
|
|
hstab[i] = hstab[i-1];
|
|
hstab[i] += ((i&1) ? 4 : 3);
|
|
hstab[i] += wstep;
|
|
hstab[i] += ((i&1) ? 3 : 4);
|
|
}
|
|
|
|
for(int i=6; i>=3; i--) {
|
|
hstab[i] = hstab[i+1];
|
|
hstab[i] += ((i&1) ? 3 : 4);
|
|
hstab[i] += wstep;
|
|
hstab[i] += ((i&1) ? 4 : 3);
|
|
}
|
|
|
|
if(hstab[3].at->distance < hstab[7].at->distance) {
|
|
hs = hstab[3]; continue;
|
|
}
|
|
|
|
if(hstab[11].at->distance < hstab[7].at->distance) {
|
|
hs = hstab[11]; continue;
|
|
}
|
|
|
|
int jj = 7;
|
|
for(int k=3; k<12; k++) if(hstab[k].at->distance < hstab[jj].at->distance) jj = k;
|
|
|
|
int ties = 0, tiespos = 0;
|
|
for(int k=3; k<12; k++) if(hstab[k].at->distance == hstab[jj].at->distance)
|
|
ties++, tiespos += (k-jj);
|
|
|
|
// printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj);
|
|
if(ties == 2) jj += tiespos/2;
|
|
|
|
if(jj&1) signum = -1;
|
|
hs = hstab[jj];
|
|
|
|
break;
|
|
}
|
|
hs = hs + 3 + wstep;
|
|
setHeptagonRval(hs.at);
|
|
|
|
affect(mydata, hs.spin ? hs.at->rval0 : hs.at->rval1, signum);
|
|
|
|
/* if(!(spins[hs.at] & hs.spin)) {
|
|
spins[hs.at] |= (1<<hs.spin);
|
|
int t = 0;
|
|
for(int k=0; k<7; k++) if(spins[hs.at] & (1<<k)) t++;
|
|
static bool wast[256];
|
|
if(!wast[spins[hs.at]]) {
|
|
printf("%p %4x\n", hs.at, spins[hs.at]);
|
|
wast[spins[hs.at]] = true;
|
|
}
|
|
} */
|
|
}
|
|
|
|
return h->cdata = new cdata(mydata);
|
|
}
|
|
|
|
cdata *getEuclidCdata(int h) {
|
|
|
|
if(euwrap) { // fix cylinder?
|
|
static cdata xx;
|
|
return &xx;
|
|
}
|
|
|
|
int x, y;
|
|
hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
|
|
if(euc->eucdata.count(h)) return &(euc->eucdata[h]);
|
|
|
|
tie(x,y) = vec_to_pair(h);
|
|
|
|
if(x == 0 && y == 0) {
|
|
cdata xx;
|
|
for(int i=0; i<4; i++) xx.val[i] = 0;
|
|
xx.bits = 0;
|
|
return &(euc->eucdata[h] = xx);
|
|
}
|
|
int ord = 1, bid = 0;
|
|
while(!((x|y)&ord)) ord <<= 1, bid++;
|
|
|
|
for(int k=0; k<3; k++) {
|
|
int x1 = x + (k<2 ? ord : 0);
|
|
int y1 = y - (k>0 ? ord : 0);
|
|
if((x1&ord) || (y1&ord)) continue;
|
|
int x2 = x - (k<2 ? ord : 0);
|
|
int y2 = y + (k>0 ? ord : 0);
|
|
|
|
cdata *d1 = getEuclidCdata(pair_to_vec(x1,y1));
|
|
cdata *d2 = getEuclidCdata(pair_to_vec(x2,y2));
|
|
cdata xx;
|
|
double disp = pow(2, bid/2.) * 6;
|
|
|
|
for(int i=0; i<4; i++) {
|
|
double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp;
|
|
xx.val[i] = floor(dv);
|
|
if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++;
|
|
}
|
|
xx.bits = 0;
|
|
|
|
for(int b=0; b<32; b++) {
|
|
bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1;
|
|
int flipchance = (1<<bid);
|
|
if(flipchance > 512) flipchance = 512;
|
|
if(hrand(1024) < flipchance) gbit = !gbit;
|
|
if(gbit) xx.bits |= (1<<b);
|
|
}
|
|
|
|
return &(euc->eucdata[h] = xx);
|
|
}
|
|
|
|
// impossible!
|
|
return NULL;
|
|
}
|
|
|
|
int getCdata(cell *c, int j) {
|
|
if(masterless) return getEuclidCdata(decodeId(c->master))->val[j];
|
|
else if(geometry) return 0;
|
|
else if(ctof(c)) return getHeptagonCdata(c->master)->val[j]*3;
|
|
else {
|
|
int jj = 0;
|
|
auto ar = gp::get_masters(c);
|
|
for(int k=0; k<3; k++)
|
|
jj += getHeptagonCdata(ar[k])->val[j];
|
|
return jj;
|
|
}
|
|
}
|
|
|
|
int getBits(cell *c) {
|
|
if(masterless) return getEuclidCdata(decodeId(c->master))->bits;
|
|
else if(geometry) return 0;
|
|
else if(c->type != 6) return getHeptagonCdata(c->master)->bits;
|
|
else {
|
|
auto ar = gp::get_masters(c);
|
|
int b0 = getHeptagonCdata(ar[0])->bits;
|
|
int b1 = getHeptagonCdata(ar[1])->bits;
|
|
int b2 = getHeptagonCdata(ar[2])->bits;
|
|
return (b0 & b1) | (b1 & b2) | (b2 & b0);
|
|
}
|
|
}
|
|
|
|
cell *heptatdir(cell *c, int d) {
|
|
if(d&1) {
|
|
cell *c2 = createMov(c, d);
|
|
int s = c->c.spin(d);
|
|
s += 3; s %= 6;
|
|
return createMov(c2, s);
|
|
}
|
|
else return createMov(c, d);
|
|
}
|
|
|
|
int heptdistance(heptagon *h1, heptagon *h2) {
|
|
// very rough distance
|
|
int d = 0;
|
|
#if CAP_CRYSTAL
|
|
if(geometry == gCrystal) return crystal::space_distance(h1->c7, h2->c7);
|
|
#endif
|
|
while(true) {
|
|
if(h1 == h2) return d;
|
|
for(int i=0; i<S7; i++) if(h1->move(i) == h2) return d + 1;
|
|
int d1 = h1->distance, d2 = h2->distance;
|
|
if(d1 >= d2) d++, h1 = createStep(h1, binarytiling ? 5 : 0);
|
|
if(d2 > d1) d++, h2 = createStep(h2, binarytiling ? 5 : 0);
|
|
}
|
|
}
|
|
|
|
int heptdistance(cell *c1, cell *c2) {
|
|
#if CAP_CRYSTAL
|
|
if(geometry == gCrystal) return crystal::space_distance(c1, c2);
|
|
#endif
|
|
if(!hyperbolic || quotient || DIM == 3) return celldistance(c1, c2);
|
|
else return heptdistance(c1->master, c2->master);
|
|
}
|
|
|
|
map<pair<cell*, cell*>, int> saved_distances;
|
|
|
|
int celldistance(cell *c1, cell *c2) {
|
|
|
|
if((masterless) && (euclid6 || (euclid4 && PURE))) {
|
|
if(!euwrap)
|
|
return eudist(decodeId(c1->master) - decodeId(c2->master)); // fix cylinder
|
|
else if(euwrap && torusconfig::torus_mode == 0)
|
|
return torusmap()->dists[torusconfig::vec_to_id(decodeId(c1->master)-decodeId(c2->master))];
|
|
else if(euwrap && !fulltorus)
|
|
return torusconfig::cyldist(decodeId(c1->master), decodeId(c2->master));
|
|
}
|
|
|
|
#if CAP_FIELD
|
|
if(geometry == gFieldQuotient && !GOLDBERG)
|
|
return currfp.getdist(fieldpattern::fieldval(c1), fieldpattern::fieldval(c2));
|
|
#endif
|
|
|
|
if(bounded) {
|
|
|
|
if(saved_distances.count(make_pair(c1,c2)))
|
|
return saved_distances[make_pair(c1,c2)];
|
|
|
|
celllister cl(c1, 100, 100000000, NULL);
|
|
for(int i=0; i<isize(cl.lst); i++)
|
|
saved_distances[make_pair(c1, cl.lst[i])] = cl.dists[i];
|
|
|
|
if(saved_distances.count(make_pair(c1,c2)))
|
|
return saved_distances[make_pair(c1,c2)];
|
|
|
|
return 64;
|
|
}
|
|
|
|
#if CAP_CRYSTAL
|
|
if(geometry == gCrystal) return crystal::precise_distance(c1, c2);
|
|
#endif
|
|
|
|
if(masterless || archimedean || quotient) {
|
|
|
|
if(saved_distances.count(make_pair(c1,c2)))
|
|
return saved_distances[make_pair(c1,c2)];
|
|
|
|
if(isize(saved_distances) > 1000000) saved_distances.clear();
|
|
|
|
celllister cl(c1, 64, 1000, c2);
|
|
|
|
for(int i=0; i<isize(cl.lst); i++)
|
|
saved_distances[make_pair(c1, cl.lst[i])] = cl.dists[i];
|
|
|
|
if(saved_distances.count(make_pair(c1,c2)))
|
|
return saved_distances[make_pair(c1,c2)];
|
|
|
|
return 64;
|
|
}
|
|
|
|
#if CAP_BT && MAXMDIM >= 4
|
|
if(binarytiling && DIM == 3)
|
|
return binary::celldistance3(c1, c2);
|
|
#endif
|
|
|
|
if(euclid && DIM == 3)
|
|
return euclid3::celldistance(c1, c2);
|
|
|
|
if(hyperbolic && DIM == 3) return reg3::celldistance(c1, c2);
|
|
|
|
return hyperbolic_celldistance(c1, c2);
|
|
}
|
|
|
|
vector<cell*> build_shortest_path(cell *c1, cell *c2) {
|
|
#if CAP_CRYSTAL
|
|
if(geometry == gCrystal) return crystal::build_shortest_path(c1, c2);
|
|
#endif
|
|
vector<cell*> p;
|
|
if(euclid) {
|
|
using namespace hyperpoint_vec;
|
|
p.push_back(c1);
|
|
hyperpoint h = tC0(calc_relative_matrix(c2, c1, C0)) - C0;
|
|
cell *x = c1;
|
|
hyperpoint h1 = C0;
|
|
int d = celldistance(c1, c2);
|
|
for(int i=0; i<=d * 10; i++) {
|
|
h1 += h / d / 10.;
|
|
virtualRebase(x, h1, true);
|
|
while(x != p.back()) {
|
|
forCellCM(c, p.back())
|
|
if(celldistance(c, x) < celldistance(p.back(), x)) {
|
|
p.push_back(c);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if(isize(p) != d + 1)
|
|
println(hlog, "warning: path size ", isize(p), " should be ", d+1);
|
|
}
|
|
else if(c2 == currentmap->gamestart()) {
|
|
while(c1 != c2) {
|
|
p.push_back(c1);
|
|
forCellCM(c, c1) if(celldist(c) < celldist(c1)) { c1 = c; goto next1; }
|
|
throw hr_shortest_path_exception();
|
|
next1: ;
|
|
}
|
|
p.push_back(c1);
|
|
}
|
|
else if(c1 == currentmap->gamestart()) {
|
|
p = build_shortest_path(c2, c1);
|
|
reverse(p.begin(), p.end());
|
|
}
|
|
else {
|
|
while(c1 != c2) {
|
|
p.push_back(c1);
|
|
forCellCM(c, c1) if(celldistance(c, c2) < celldistance(c1, c2)) { c1 = c; goto next; }
|
|
throw hr_shortest_path_exception();
|
|
next: ;
|
|
}
|
|
p.push_back(c1);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
void clearCellMemory() {
|
|
for(int i=0; i<isize(allmaps); i++)
|
|
if(allmaps[i])
|
|
delete allmaps[i];
|
|
allmaps.clear();
|
|
last_cleared = NULL;
|
|
saved_distances.clear();
|
|
pd_from = NULL;
|
|
}
|
|
|
|
auto cellhooks = addHook(clearmemory, 500, clearCellMemory);
|
|
|
|
}
|