1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-24 21:37:18 +00:00
hyperrogue/arbitrile.cpp

1355 lines
38 KiB
C++

// Hyperbolic Rogue -- Arbitrary Tilings
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file arbitrile.cpp
* \brief Arbitrary tilings
*
* Arbitrary tilings, defined in .tes files.
*/
#include "hyper.h"
namespace hr {
EX namespace arb {
EX int affine_limit = 200;
EX bool legacy; /* angleofs command */
#if HDR
/** a type used to specify the connections between shapes */
struct connection_t {
/** the index of the connected shape in the 'shapes' table */
int sid;
/** the index of the edge in the 'shapes' table */
int eid;
/** 1 if this connection mirrored, 0 otherwise. do_unmirror() removes all mirrors by doubling shapes */
int mirror;
};
inline void print(hstream& hs, const connection_t& conn) { print(hs, tie(conn.sid, conn.eid, conn.mirror)); }
/** \brief each shape of the arb tessellation
* note: the usual HyperRogue convention is: vertex 0, edge 0, vertex 1, edge 1, ...
* note: the tesfile convention is: edge 0, vertex 0, edge 1, vertex 1, ...
*/
struct shape {
/** index in the arbi_tiling::shapes */
int id;
/** flags such as sfLINE and sfPH */
int flags;
/** list of vertices in the usual convention */
vector<hyperpoint> vertices;
/** list of vertices in the tesfile convention */
vector<ld> angles;
/** list of edge lengths */
vector<ld> edges;
/** list of edge connections */
vector<connection_t> connections;
int size() const { return isize(vertices); }
void build_from_angles_edges();
vector<pair<int, int> > sublines;
vector<pair<ld, ld>> stretch_shear;
int repeat_value;
/** if a tile/edge combination may be connected to edges j1 and j2 of this, j1-j2 must be divisible by cycle_length */
int cycle_length;
/** list of valences of vertices in the tesfile convention */
vector<int> vertex_valence;
};
struct slider {
string name;
ld zero;
ld current;
ld min;
ld max;
};
struct arbi_tiling {
int order;
bool have_line, have_ph, have_tree;
int yendor_backsteps;
vector<shape> shapes;
string name;
string comment;
vector<slider> sliders;
ld cscale;
int range;
ld floor_scale;
ld boundary_ratio;
string filename;
int min_valence, max_valence;
geometryinfo1& get_geometry();
eGeometryClass get_class() { return get_geometry().kind; }
ld scale();
};
#endif
EX arbi_tiling current;
EX bool using_slided;
EX arbi_tiling slided;
EX bool in_slided() { return in() && using_slided; }
EX arbi_tiling& current_or_slided() {
return using_slided ? slided : current;
}
/** id of vertex in the arbitrary tiling */
EX short& id_of(heptagon *h) { return h->zebraval; }
#if HDR
struct hr_polygon_error : hr_exception {
vector<transmatrix> v;
eGeometryClass c;
int id;
transmatrix end;
map<string, cld> params;
hr_polygon_error(const vector<transmatrix>& _v, int _id, transmatrix _e) : v(_v), c(cgclass), id(_id), end(_e) {}
~hr_polygon_error() noexcept(true) {}
string generate_error();
};
#endif
string hr_polygon_error::generate_error() {
cld dist = (hdist0(tC0(end)) / params["distunit"]);
bool angle = abs(dist) < 1e-9;
if(angle) dist = (atan2(end * xpush0(1)) / params["angleunit"]);
return
XLAT("Polygon number %1 did not close correctly (%2 %3). Here is the picture to help you understand the issue.\n\n", its(id),
angle ? "angle" : "distance",
lalign(0, dist)
);
}
struct connection_debug_request : hr_exception {
int id;
eGeometryClass c;
connection_debug_request(int i): id(i), c(cgclass) {}
};
void ensure_geometry(eGeometryClass c) {
stop_game();
if(c != cgclass) {
if(c == gcEuclid) set_geometry(gEuclid);
if(c == gcHyperbolic) set_geometry(gNormal);
if(c == gcSphere) set_geometry(gSphere);
}
if(specialland != laCanvas) {
canvas_default_wall = waInvisibleFloor;
patterns::whichCanvas = 'g';
patterns::canvasback = 0xFFFFFF;
enable_canvas();
}
start_game();
}
void start_poly_debugger(hr_polygon_error& err) {
#if CAP_EDIT
ensure_geometry(err.c);
drawthemap();
mapeditor::drawing_tool = true;
pushScreen(mapeditor::showDrawEditor);
mapeditor::initdraw(cwt.at);
int n = isize(err.v);
mapeditor::dtcolor = 0xFF0000FF;
mapeditor::dtwidth = 0.02;
for(int i=0; i<n-1; i++)
mapeditor::dt_add_line(shiftless(tC0(err.v[i])), shiftless(tC0(err.v[i+1])), 0);
mapeditor::dtcolor = 0xFFFFFFFF;
for(int i=0; i<n; i++)
mapeditor::dt_add_text(shiftless(tC0(err.v[i])), 0.5, its(i));
#endif
}
void shape::build_from_angles_edges() {
transmatrix at = Id;
vertices.clear();
int n = isize(angles);
hyperpoint ctr = Hypc;
vector<transmatrix> matrices;
if(!legacy) for(auto& a: angles) a += M_PI;
for(int i=0; i<n; i++) {
matrices.push_back(at);
if(debugflags & DF_GEOM) println(hlog, "at = ", at);
vertices.push_back(tC0(at));
ctr += tC0(at);
at = at * xpush(edges[i]) * spin(angles[i]);
}
matrices.push_back(at);
if(!eqmatrix(at, Id)) {
throw hr_polygon_error(matrices, id, at);
}
if(sqhypot_d(3, ctr) < 1e-2) {
// this may happen for some spherical tilings
// try to move towards the center
if(debugflags & DF_GEOM) println(hlog, "special case encountered");
for(int i=0; i<n; i++) {
ctr += at * xpush(edges[i]) * spin((angles[i]+M_PI)/2) * xpush0(.01);
at = at * xpush(edges[i]) * spin(angles[i]);
}
if(debugflags & DF_GEOM) println(hlog, "ctr = ", ctr);
}
if(!legacy) for(auto& a: angles) a -= M_PI;
ctr = normalize(ctr);
for(auto& v: vertices) v = gpushxto0(ctr) * v;
}
EX bool correct_index(int index, int size) { return index >= 0 && index < size; }
template<class T> bool correct_index(int index, const T& v) { return correct_index(index, isize(v)); }
template<class T> void verify_index(int index, const T& v, exp_parser& ep) { if(!correct_index(index, v)) throw hr_parse_exception("bad index: " + its(index) + " at " + ep.where()); }
string unnamed = "unnamed";
EX void load_tile(exp_parser& ep, arbi_tiling& c, bool unit) {
c.shapes.emplace_back();
auto& cc = c.shapes.back();
cc.id = isize(c.shapes) - 1;
cc.flags = 0;
cc.repeat_value = 1;
while(ep.next() != ')') {
cld dist = 1;
if(!unit) {
dist = ep.parse(0);
ep.force_eat(",");
}
cld angle = ep.parse(0);
cc.edges.push_back(ep.validate_real(dist * ep.extra_params["distunit"]));
cc.angles.push_back(ep.validate_real(angle * ep.extra_params["angleunit"] + ep.extra_params["angleofs"]));
if(ep.eat(",")) continue;
else if(ep.eat(")")) break;
else throw hr_parse_exception("expecting , or )");
}
try {
cc.build_from_angles_edges();
}
catch(hr_parse_exception& ex) {
throw hr_parse_exception(ex.s + ep.where());
}
catch(hr_polygon_error& poly) {
poly.params = ep.extra_params;
throw;
}
cc.connections.resize(cc.size());
for(int i=0; i<isize(cc.connections); i++)
cc.connections[i] = connection_t{cc.id, i, false};
cc.stretch_shear.resize(cc.size(), make_pair(1, 0));
}
EX bool do_unmirror = true;
/** \brief for tessellations which contain mirror rules, remove them by taking the orientable double cover */
EX void unmirror() {
int mirror_rules = 0;
for(auto& s: arb::current.shapes)
for(auto& t: s.connections)
if(t.mirror)
mirror_rules++;
if(!mirror_rules) return;
auto& sh = current.shapes;
int s = isize(sh);
for(int i=0; i<s; i++)
sh.push_back(sh[i]);
for(int i=0; i<2*s; i++)
sh[i].id = i;
for(int i=s; i<s+s; i++) {
for(auto& v: sh[i].vertices)
v[1] = -v[1];
reverse(sh[i].edges.begin(), sh[i].edges.end());
reverse(sh[i].vertices.begin()+1, sh[i].vertices.end());
reverse(sh[i].angles.begin(), sh[i].angles.end()-1);
reverse(sh[i].connections.begin(), sh[i].connections.end());
}
if(true) for(int i=0; i<s+s; i++) {
for(auto& co: sh[i].connections) {
bool mirr = co.mirror ^ (i >= s);
co.mirror = false;
if(mirr) {
co.sid += s;
co.eid = isize(sh[co.sid].angles) - 1 - co.eid;
}
}
}
}
EX void compute_vertex_valence() {
auto& ac = arb::current;
int tcl = -1;
for(auto& sh: ac.shapes)
sh.cycle_length = isize(sh.vertices);
recompute:
while(true) {
for(auto& sh: ac.shapes) {
int i = sh.id;
int n = isize(sh.vertices);
for(int k=sh.cycle_length; k<n; k++) {
auto co = sh.connections[k];
auto co1 = sh.connections[k-sh.cycle_length];
if(co.sid != co1.sid) {
println(hlog, "ik = ", tie(i,k), " co=", co, "co1=", co1, " cl=", sh.cycle_length);
throw hr_parse_exception("connection error #2 in compute_vertex_valence");
}
ac.shapes[co.sid].cycle_length = abs(gcd(ac.shapes[co.sid].cycle_length, co.eid - co1.eid));
}
for(int k=0; k<n; k++) {
auto co = sh.connections[k];
co = ac.shapes[co.sid].connections[co.eid];
if(co.sid != i) throw hr_parse_exception("connection error in compute_vertex_valence");
sh.cycle_length = abs(gcd(sh.cycle_length, k-co.eid));
}
if(debugflags & DF_GEOM)
println(hlog, "tile ", i, " cycle_length = ", sh.cycle_length, " / ", n);
}
int new_tcl = 0;
for(auto& sh: ac.shapes) {
auto& len = sh.cycle_length;
if(len < 0) len = -len;
new_tcl += len;
}
if(new_tcl == tcl) break;
tcl = new_tcl;
}
if(cgflags & qAFFINE) return;
for(auto& sh: ac.shapes) {
int n = sh.size();
int i = sh.id;
sh.vertex_valence.resize(n);
for(int k=0; k<n; k++) {
ld total = 0;
int qty = 0;
connection_t at = {i, k, false};
do {
ld a = ac.shapes[at.sid].angles[at.eid];
while(a < 0) a += 360 * degree;
while(a > 360 * degree) a -= 360 * degree;
total += a;
qty++;
at.eid++;
if(at.eid == isize(ac.shapes[at.sid].angles)) at.eid = 0;
at = ac.shapes[at.sid].connections[at.eid];
}
while(total < 360*degree - 1e-6);
if(total > 360*degree + 1e-6) throw hr_parse_exception("improper total in compute_stats");
if(at.sid != i) throw hr_parse_exception("ended at wrong type determining vertex_valence");
if((at.eid - k) % ac.shapes[i].cycle_length) {
ac.shapes[i].cycle_length = abs(gcd(ac.shapes[i].cycle_length, at.eid - k));
goto recompute;
}
sh.vertex_valence[k] = qty;
}
if(debugflags & DF_GEOM)
println(hlog, "computed vertex_valence of ", i, " as ", ac.shapes[i].vertex_valence);
}
ac.min_valence = UNKNOWN; ac.max_valence = 0;
for(auto& sh: ac.shapes)
for(auto& val: sh.vertex_valence) {
if(val < ac.min_valence) ac.min_valence = val;
if(val > ac.max_valence) ac.max_valence = val;
}
}
EX void load(const string& fname, bool after_sliding IS(false)) {
fhstream f(fname, "rt");
if(!f.f) throw hr_parse_exception("file " + fname + " does not exist");
string s;
while(true) {
int c = fgetc(f.f);
if(c < 0) break;
s += c;
}
auto& c = after_sliding ? slided : current;
c.order++;
c.shapes.clear();
c.sliders.clear();
c.name = unnamed;
c.comment = "";
c.filename = fname;
c.cscale = 1;
c.range = 0;
c.boundary_ratio = 1;
c.floor_scale = .5;
c.have_ph = c.have_line = false;
c.have_tree = false;
c.yendor_backsteps = 0;
exp_parser ep;
ep.s = s;
ld angleunit = 1, distunit = 1, angleofs = 0;
auto addflag = [&] (int f) {
int ai;
if(ep.next() == ')') ai = isize(c.shapes)-1;
else ai = ep.iparse();
verify_index(ai, c.shapes, ep);
c.shapes[ai].flags |= f;
ep.force_eat(")");
};
while(true) {
ep.extra_params["distunit"] = distunit;
ep.extra_params["angleunit"] = angleunit;
ep.extra_params["angleofs"] = angleofs;
ep.skip_white();
if(ep.next() == 0) break;
if(ep.eat("#")) {
bool doubled = ep.eat("#");
while(ep.eat(" ")) ;
string s = "";
while(ep.next() >= 32) s += ep.next(), ep.at++;
if(doubled) {
if(c.name == unnamed) c.name = s;
else {
c.comment += s;
c.comment += "\n";
}
}
}
else if(ep.eat("e2.")) {
ginf[gArbitrary].g = giEuclid2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qBOUNDED, false);
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
geom3::apply_always3();
}
else if(ep.eat("a2.")) {
ginf[gArbitrary].g = giEuclid2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qBOUNDED, false);
set_flag(ginf[gArbitrary].flags, qAFFINE, true);
affine_limit = 200;
geom3::apply_always3();
}
else if(ep.eat("h2.")) {
ginf[gArbitrary].g = giHyperb2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qBOUNDED, false);
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
geom3::apply_always3();
}
else if(ep.eat("s2.")) {
ginf[gArbitrary].g = giSphere2;
ginf[gArbitrary].sides = 5;
set_flag(ginf[gArbitrary].flags, qBOUNDED, true);
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
geom3::apply_always3();
}
else if(ep.eat("legacysign.")) {
if(legacy) angleunit *= -1;
}
else if(ep.eat("angleunit(")) angleunit = real(ep.parsepar());
else if(ep.eat("angleofs(")) {
angleofs = real(ep.parsepar());
if(!legacy) angleofs = 0;
}
else if(ep.eat("distunit(")) distunit = real(ep.parsepar());
else if(ep.eat("line(")) {
addflag(arcm::sfLINE);
c.have_line = true;
}
else if(ep.eat("grave(")) {
addflag(arcm::sfPH);
c.have_ph = true;
}
else if(ep.eat("slider(")) {
slider sl;
sl.name = ep.next_token();
ep.force_eat(",");
sl.current = sl.zero = ep.rparse();
ep.force_eat(",");
sl.min = ep.rparse();
ep.force_eat(",");
sl.max = ep.rparse();
ep.force_eat(")");
c.sliders.push_back(sl);
if(after_sliding)
ep.extra_params[sl.name] = current.sliders[isize(c.sliders)-1].current;
else
ep.extra_params[sl.name] = sl.zero;
}
else if(ep.eat("let(")) {
string tok = ep.next_token();
ep.force_eat("=");
ep.extra_params[tok] =ep.parsepar();
if(debugflags & DF_GEOM)
println(hlog, "let ", tok, " = ", ep.extra_params[tok]);
}
else if(ep.eat("unittile(")) load_tile(ep, c, true);
else if(ep.eat("tile(")) load_tile(ep, c, false);
else if(ep.eat("affine_limit(")) {
affine_limit = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("cscale(")) {
c.cscale = ep.rparse();
ep.force_eat(")");
}
else if(ep.eat("treestate(")) {
rulegen::parse_treestate(c, ep);
}
else if(ep.eat("first_treestate(")) {
rulegen::rule_root = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("yendor_backsteps(")) {
c.yendor_backsteps = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("range(")) {
c.range = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("floor_scale(")) {
c.floor_scale = ep.rparse();
ep.force_eat(")");
}
else if(ep.eat("boundary_ratio(")) {
c.boundary_ratio = ep.rparse();
ep.force_eat(")");
}
else if(ep.eat("conway(\"")) {
string s = "";
while(true) {
int m = 0;
if(ep.eat("(")) m = 0;
else if(ep.eat("[")) m = 1;
else if(ep.eat("\"")) break;
else throw hr_parse_exception("cannot parse Conway notation, " + ep.where());
int ai = 0;
int as = ep.iparse();
while(ep.eat("'")) ai++;
if(ep.eat("@")) ai = ep.iparse();
int bi = 0, bs = 0;
if(ep.eat(")") || ep.eat("]")) bs = as, bi = ai;
else {
bs = ep.iparse();
while(ep.eat("'")) bi++;
if(ep.eat("@")) bi = ep.iparse();
}
if(ep.eat(")") || ep.eat("]")) {}
verify_index(ai, c.shapes, ep);
verify_index(as, c.shapes[ai], ep);
verify_index(bi, c.shapes, ep);
verify_index(bs, c.shapes[bi], ep);
c.shapes[ai].connections[as] = connection_t{bi, bs, m};
c.shapes[bi].connections[bs] = connection_t{ai, as, m};
}
ep.force_eat(")");
}
else if(ep.eat("c(")) {
int ai = ep.iparse(); verify_index(ai, c.shapes, ep); ep.force_eat(",");
int as = ep.iparse(); verify_index(as, c.shapes[ai], ep); ep.force_eat(",");
int bi = ep.iparse(); verify_index(bi, c.shapes, ep); ep.force_eat(",");
int bs = ep.iparse(); verify_index(bs, c.shapes[bi], ep); ep.force_eat(",");
int m = ep.iparse(); ep.force_eat(")");
c.shapes[ai].connections[as] = connection_t{bi, bs, m};
c.shapes[bi].connections[bs] = connection_t{ai, as, m};
}
else if(ep.eat("subline(")) {
int ai = ep.iparse(); verify_index(ai, c.shapes, ep); ep.force_eat(",");
int as = ep.iparse(); verify_index(as, c.shapes[ai], ep); ep.force_eat(",");
int bs = ep.iparse(); verify_index(bs, c.shapes[ai], ep); ep.force_eat(")");
c.shapes[ai].sublines.emplace_back(as, bs);
}
else if(ep.eat("sublines(")) {
ld d = ep.rparse() * distunit;
ld eps = 1e-4;
if(ep.eat(",")) eps = ep.rparse() * distunit;
ep.force_eat(")");
for(auto& sh: c.shapes) {
for(int i=0; i<isize(sh.vertices); i++)
for(int j=0; j<i; j++)
if(j != i+1 && i != j+1 && !(i==0 && j == isize(sh.vertices)-1) && !(j==0 && i == isize(sh.vertices)-1) && i != j) {
ld dist = hdist(sh.vertices[i], sh.vertices[j]);
if(abs(dist - d) < eps) {
sh.sublines.emplace_back(i, j);
if(debugflags & DF_GEOM) println(hlog, "add subline ", i, "-", j);
}
}
}
}
else if(ep.eat("repeat(")) {
int i = ep.iparse(0);
verify_index(i, c.shapes, ep);
ep.force_eat(",");
int rep = ep.iparse(0);
ep.force_eat(")");
auto& sh = c.shapes[i];
int N = isize(sh.angles);
if(N % rep)
throw hr_parse_exception("repeat value should be a factor of the number of vertices, " + ep.where());
sh.repeat_value = rep;
int d = N / rep;
for(int i=d; i<N; i++)
sh.connections[i] = sh.connections[i-d];
}
else if(ep.eat("debug(")) {
int i = ep.iparse(0);
verify_index(i, c.shapes, ep);
ep.force_eat(")");
throw connection_debug_request(i);
}
else if(ep.eat("stretch_shear(")) {
ld stretch = ep.rparse(0);
ep.force_eat(",");
ld shear = ep.rparse(0);
ep.force_eat(",");
int i = ep.iparse(0);
verify_index(i, c.shapes, ep);
ep.force_eat(",");
int j = ep.iparse(0);
verify_index(j, c.shapes[i], ep);
ep.force_eat(")");
auto& sh = c.shapes[i];
sh.stretch_shear[j] = {stretch, shear};
auto& co = sh.connections[j];
auto& xsh = c.shapes[co.sid];
ld scale = sh.edges[j] / xsh.edges[co.eid];
println(hlog, "scale = ", scale);
xsh.stretch_shear[co.eid] = {1/stretch, shear * (co.mirror ? 1 : -1) * stretch };
}
else throw hr_parse_exception("expecting command, " + ep.where());
}
if(!(cgflags & qAFFINE)) {
for(int i=0; i<isize(c.shapes); i++) {
auto& sh = c.shapes[i];
for(int j=0; j<isize(sh.edges); j++) {
ld d1 = sh.edges[j];
auto con = sh.connections[j];
auto& xsh = c.shapes[con.sid];
ld d2 = xsh.edges[con.eid];
if(abs(d1 - d2) > 1e-6)
throw hr_parse_exception(lalign(0, "connecting ", make_pair(i,j), " to ", con, " of different lengths only possible in a2"));
}
}
}
if(do_unmirror) {
unmirror();
}
if(!c.have_tree) compute_vertex_valence();
if(c.have_tree) rulegen::verify_parsed_treestates();
if(!after_sliding) slided = current;
}
arbi_tiling debugged;
vector<pair<transmatrix, int> > debug_polys;
string primes(int i) {
string res;
while(i--) res += "'";
return res;
}
void connection_debugger() {
cmode = sm::SIDE | sm::DIALOG_STRICT_X;
gamescreen(0);
auto& last = debug_polys.back();
initquickqueue();
for(auto& p: debug_polys) {
int id = p.second;
shiftmatrix V = gmatrix[cwt.at] * p.first;
auto& sh = debugged.shapes[id].vertices;
for(auto& v: sh)
curvepoint(v);
curvepoint(sh[0]);
color_t col = colortables['A'][id];
col = darkena(col, 0, 0xFF);
if(&p == &last) {
vid.linewidth *= 2;
queuecurve(V, 0xFFFF00FF, col, PPR::LINE);
vid.linewidth /= 2;
for(int i=0; i<isize(sh); i++)
queuestr(V * sh[i], vid.fsize, its(i), 0xFFFFFFFF);
}
else
queuecurve(V, 0xFFFFFFFF, col, PPR::LINE);
}
quickqueue();
dialog::init(XLAT("connection debugger"));
dialog::addInfo(debugged.name);
dialog::addHelp(debugged.comment);
dialog::addBreak(50);
dialog::addInfo("face index " + its(last.second));
dialog::addBreak(50);
auto& sh = debugged.shapes[last.second];
int N = isize(sh.edges);
for(int k=0; k<N; k++) {
auto con = sh.connections[k];
string cap = its(k) + primes(last.second) + " -> " + its(con.eid) + primes(con.sid) + (con.mirror ? " (m) " : "");
dialog::addSelItem(cap, "go", '0' + k);
dialog::add_action([k, last, con] {
if(euclid) cgflags |= qAFFINE;
debug_polys.emplace_back(last.first * get_adj(debugged, last.second, k, -1, -1), con.sid);
if(euclid) cgflags &= ~qAFFINE;
});
}
dialog::addItem("undo", 'u');
dialog::add_action([] {
if(isize(debug_polys) > 1)
debug_polys.pop_back();
});
dialog::addBack();
dialog::display();
keyhandler = [] (int sym, int uni) {
handlePanning(sym, uni);
dialog::handleNavigation(sym, uni);
if(doexiton(sym, uni)) popScreen();
};
}
geometryinfo1& arbi_tiling::get_geometry() {
return ginf[gEuclid].g;
}
map<heptagon*, vector<pair<heptagon*, transmatrix> > > altmap;
EX map<heptagon*, pair<heptagon*, transmatrix>> arbi_matrix;
EX hrmap *current_altmap;
heptagon *build_child(heptspin p, pair<int, int> adj);
EX transmatrix get_adj(arbi_tiling& c, int t, int dl, int t1, int xdl) {
auto& sh = c.shapes[t];
int dr = gmod(dl+1, sh.size());
auto& co = sh.connections[dl];
if(xdl == -1) xdl = co.eid;
if(t1 == -1) t1 = co.sid;
auto& xsh = c.shapes[t1];
int xdr = gmod(xdl+1, xsh.size());
hyperpoint vl = sh.vertices[dl];
hyperpoint vr = sh.vertices[dr];
hyperpoint vm = mid(vl, vr);
transmatrix rm = gpushxto0(vm);
hyperpoint xvl = xsh.vertices[xdl];
hyperpoint xvr = xsh.vertices[xdr];
hyperpoint xvm = mid(xvl, xvr);
transmatrix xrm = gpushxto0(xvm);
transmatrix Res = rgpushxto0(vm) * rspintox(rm*vr);
if(cgflags & qAFFINE) {
ld sca = hdist(vl, vr) / hdist(xvl, xvr);
transmatrix Tsca = Id;
Tsca[0][0] = Tsca[1][1] = sca;
auto& ss = sh.stretch_shear[dl];
Tsca[0][1] = ss.first * ss.second * sca;
Tsca[1][1] *= ss.first;
Res = Res * Tsca;
}
if(co.mirror) Res = Res * MirrorX;
Res = Res * spintox(xrm*xvl) * xrm;
if(co.mirror) swap(vl, vr);
if(hdist(vl, Res*xvr) + hdist(vr, Res*xvl) > .1) {
println(hlog, "s1 = ", kz(spintox(rm*vr)), " s2 = ", kz(rspintox(xrm*xvr)));
println(hlog, tie(t, dl), " = ", kz(Res));
println(hlog, hdist(vl, Res * xvr), " # ", hdist(vr, Res * xvl));
exit(3);
}
return Res;
}
struct hrmap_arbi : hrmap {
heptagon *origin;
heptagon *getOrigin() override { return origin; }
hrmap_arbi() {
dynamicval<hrmap*> curmap(currentmap, this);
origin = init_heptagon(current.shapes[0].size());
origin->s = hsOrigin;
origin->c7 = newCell(origin->type, origin);
heptagon *alt = NULL;
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
alt = init_heptagon(S7);
alt->s = hsOrigin;
alt->alt = alt;
current_altmap = newAltMap(alt);
}
transmatrix T = xpush(.01241) * spin(1.4117) * xpush(0.1241) * Id;
arbi_matrix[origin] = make_pair(alt, T);
altmap[alt].emplace_back(origin, T);
if(!current.range)
current.range = auto_compute_range(origin->c7);
}
~hrmap_arbi() {
clearfrom(origin);
altmap.clear();
arbi_matrix.clear();
if(current_altmap) {
dynamicval<eGeometry> g(geometry, gNormal);
delete current_altmap;
current_altmap = NULL;
}
}
void verify() override { }
transmatrix adj(heptagon *h, int dl) override {
return get_adj(current_or_slided(), id_of(h), dl, -1, h->c.move(dl) ? h->c.spin(dl) : -1);
}
heptagon *create_step(heptagon *h, int d) override {
dynamicval<bool> sl(using_slided, false);
int t = id_of(h);
auto& sh = current.shapes[t];
auto& co = sh.connections[d];
auto& xsh = current.shapes[co.sid];
if(cgflags & qAFFINE) {
set<heptagon*> visited;
vector<pair<heptagon*, transmatrix> > v;
visited.insert(h);
v.emplace_back(h, Id);
transmatrix goal = adj(h, d);
for(int i=0; i<affine_limit && i < isize(v); i++) {
transmatrix T = v[i].second;
heptagon *h2 = v[i].first;
if(eqmatrix(T, goal)) {
h->c.connect(d, h2, co.eid, co.mirror);
return h2;
}
for(int i=0; i<h2->type; i++) {
heptagon *h3 = h2->move(i);
if(!h3) continue;
if(visited.count(h3)) continue;
visited.insert(h3);
v.emplace_back(h3, T * adj(h2, i));
}
}
auto h1 = init_heptagon(current.shapes[co.sid].size());
h1->distance = h->distance + 1;
h1->zebraval = co.sid;
h1->c7 = newCell(h1->type, h1);
h1->emeraldval = h->emeraldval ^ co.mirror;
h->c.connect(d, h1, co.eid, co.mirror);
return h1;
}
const auto& p = arbi_matrix[h];
heptagon *alt = p.first;
transmatrix T = p.second * adj(h, d);
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
dynamicval<hrmap*> cm(currentmap, current_altmap);
// transmatrix U = T;
current_altmap->virtualRebase(alt, T);
// U = U * inverse(T);
}
fixmatrix(T);
if(euclid) {
/* hash the rough coordinates as heptagon* alt */
size_t s = size_t(T[0][LDIM]+.261) * 124101 + size_t(T[1][LDIM]+.261) * 82143;
alt = (heptagon*) s;
}
for(auto& p2: altmap[alt]) if(id_of(p2.first) == co.sid && hdist(tC0(p2.second), tC0(T)) < 1e-2) {
for(int oth=0; oth < p2.first->type; oth++) {
ld err = hdist(p2.second * xsh.vertices[oth], T * xsh.vertices[co.eid]);
if(err < 1e-2) {
static ld max_err = 0;
if(err > max_err) {
println(hlog, "err = ", err);
max_err = err;
}
h->c.connect(d, p2.first, oth%p2.first->type, co.mirror);
return p2.first;
}
}
}
auto h1 = init_heptagon(current.shapes[co.sid].size());
h1->distance = h->distance + 1;
h1->zebraval = co.sid;
h1->c7 = newCell(h1->type, h1);
h1->emeraldval = h->emeraldval ^ co.mirror;
h->c.connect(d, h1, co.eid, co.mirror);
arbi_matrix[h1] = make_pair(alt, T);
altmap[alt].emplace_back(h1, T);
return h1;
}
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
return relative_matrix_recursive(h2, h1);
}
transmatrix adj(cell *c, int dir) override { return adj(c->master, dir); }
ld spin_angle(cell *c, int d) override { return SPIN_NOT_AVAILABLE; }
int shvid(cell *c) override {
return id_of(c->master);
}
hyperpoint get_corner(cell *c, int cid, ld cf) override {
auto& sh = arb::current_or_slided().shapes[arb::id_of(c->master)];
return normalize(C0 + (sh.vertices[gmod(cid, c->type)] - C0) * 3 / cf);
}
};
EX hrmap *new_map() { return new hrmap_arbi; }
EX void run(string fname) {
stop_game();
eGeometry g = geometry;
arbi_tiling t = current;
auto v = variation;
set_geometry(gArbitrary);
try {
load(fname);
ginf[gArbitrary].tiling_name = current.name;
}
catch(hr_polygon_error& poly) {
set_geometry(g);
set_variation(v);
current = t;
start_poly_debugger(poly);
string help = poly.generate_error();
showstartmenu = false;
for(auto& p: poly.params)
help += lalign(-1, p.first, " = ", p.second, "\n");
gotoHelp(help);
}
catch(hr_parse_exception& ex) {
println(hlog, "failed: ", ex.s);
set_geometry(g);
current = t;
start_game();
addMessage("failed: " + ex.s);
}
catch(connection_debug_request& cr) {
set_geometry(g);
debugged = current;
current = t;
ensure_geometry(cr.c);
debug_polys.clear();
debug_polys.emplace_back(Id, cr.id);
pushScreen(connection_debugger);
}
start_game();
}
string slider_error;
EX void sliders_changed() {
try {
load(current.filename, true);
using_slided = true;
slider_error = "OK";
#if CAP_TEXTURE
texture::config.remap();
#endif
}
catch(hr_parse_exception& ex) {
using_slided = false;
slider_error = ex.s;
}
catch(hr_polygon_error& poly) {
using_slided = false;
slider_error = poly.generate_error();
}
}
EX void set_sliders() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen(1);
dialog::init(XLAT("tessellation sliders"));
char ch = 'A';
for(auto& sl: current.sliders) {
dialog::addSelItem(sl.name, fts(sl.current), ch++);
dialog::add_action([&] {
dialog::editNumber(sl.current, sl.min, sl.max, 1, sl.zero, sl.name, sl.name);
dialog::reaction = sliders_changed;
});
}
dialog::addInfo(slider_error);
dialog::addBack();
dialog::display();
}
/** convert a tessellation (e.g. Archimedean, regular, etc.) to the arb::current internal representation */
EX namespace convert {
EX eGeometry base_geometry;
EX eVariation base_variation;
struct id_record {
int target; /* master of this id type */
int shift; /* sample direction 0 == our direction shift */
int modval; /* this master type is the same as itself rotated by modval */
cell *sample; /* sample of the master type */
};
inline void print(hstream& hs, const id_record& i) { print(hs, "[", i.target, " shift=", i.shift, " mod=", i.modval, "]"); }
map<int, id_record> identification;
id_record& get_identification(int s, cell *c) {
if(!identification.count(s)) {
auto &id = identification[s];
id.target = s;
id.shift = 0;
id.modval = c->type;
id.sample = c;
}
return identification[s];
}
id_record& get_identification(cell *c) {
auto id = currentmap->full_shvid(c);
return get_identification(id, c);
}
int changes;
void be_identified(cellwalker cw1, cellwalker cw2) {
auto& id1 = get_identification(cw1.at);
auto& id2 = get_identification(cw2.at);
indenter ind(2);
int t = cw2.at->type;
if(cw1.at->type != t) {
println(hlog, cw1.at->type, " vs ", t);
throw hr_exception("numbers disagree");
}
int d2 = gmod(-cw2.to_spin(id2.shift), id2.modval);
int d1 = gmod(-cw1.to_spin(id1.shift), id1.modval);
indenter ind1(2);
if(id2.target != id1.target) {
auto oid2 = id2;
id1.modval = gcd(id1.modval, id2.modval);
if(id1.modval < 6 && t == 6) throw hr_exception("reducing hex");
for(auto& p: identification) {
auto& idr = p.second;
if(idr.target == oid2.target) {
idr.target = id1.target;
idr.modval = id1.modval;
idr.shift = gmod(idr.shift + (d2-d1), idr.modval);
idr.sample = id1.sample;
}
}
changes++;
println(hlog, identification);
return;
}
if(d2 != d1) {
auto oid2 = id2;
id2.modval = gcd(id2.modval, abs(d2-d1));
if(id1.modval == 1 && t == 6) throw hr_exception("reducing hex");
for(auto& p: identification)
if(p.second.target == oid2.target) p.second.modval = id2.modval;
changes++;
println(hlog, identification);
return;
}
}
EX void convert() {
start_game();
identification.clear(); changes = 0;
manual_celllister cl;
cl.add(currentmap->gamestart());
int chg = -1;
while(changes > chg) {
changes = chg;
set<int> masters_analyzed;
for(int i=0; i<isize(cl.lst); i++) {
auto c = cl.lst[i];
auto& id = get_identification(c);
if(masters_analyzed.count(id.target)) continue;
masters_analyzed.insert(id.target);
cellwalker cw0(c, id.shift);
cellwalker cws(id.sample, 0);
for(int i=0; i<c->type; i++) {
if(1) {
indenter ind(2);
be_identified(cw0 + i + wstep, cws + i + wstep);
be_identified(cw0 + i + wstep, cw0 + i + id.modval + wstep);
}
if(1) {
indenter ind(2);
auto cwx = cw0 + i + wstep;
auto idx = get_identification(cwx.at);
cellwalker xsample(idx.sample, cwx.spin);
xsample -= idx.shift;
be_identified(cwx + wstep, xsample + wstep);
cl.add((cw0 + i).cpeek());
}
}
}
}
vector<int> old_shvids;
map<int, int> old_to_new;
for(auto id: identification)
if(id.first == id.second.target) {
old_to_new[id.first] = isize(old_shvids);
old_shvids.push_back(id.first);
}
auto& ac = arb::current;
ac.order++;
ac.comment = ac.filename = "converted from: " + full_geometry_name();
ac.cscale = cgi.scalefactor;
ac.boundary_ratio = 1;
ac.floor_scale = cgi.hexvdist / cgi.scalefactor;
ac.range = cgi.base_distlimit;
int N = isize(old_shvids);
ac.shapes.clear();
ac.shapes.resize(N);
ginf[gArbitrary].g = cginf.g;
ginf[gArbitrary].flags = cgflags & qBOUNDED;
for(int i=0; i<N; i++) {
auto id = identification[old_shvids[i]];
cell *s = id.sample;
auto& sh = ac.shapes[i];
sh.id = i;
int t = s->type;
sh.vertices.clear();
sh.connections.clear();
sh.repeat_value = id.modval;
for(int j=0; j<t; j++) {
auto co = currentmap->get_corner(s, j);
sh.vertices.push_back(co);
cellwalker cw(s, j);
cw += wstep;
auto idx = get_identification(cw.at);
cellwalker xsample(idx.sample, cw.spin);
xsample -= idx.shift;
sh.connections.emplace_back(arb::connection_t{old_to_new.at(idx.target), xsample.spin, false});
}
sh.stretch_shear.resize(t, make_pair(1, 0));
sh.edges.clear();
for(int j=0; j<t-1; j++)
sh.edges.push_back(hdist(sh.vertices[j], sh.vertices[j+1]));
sh.edges.push_back(hdist(sh.vertices[t-1], sh.vertices[0]));
sh.angles.clear();
for(int j=0; j<t; j++) {
hyperpoint v0 = sh.vertices[j];
hyperpoint v1 = sh.vertices[(j+1) % t];
hyperpoint v2 = sh.vertices[(j+2) % t];
transmatrix T = gpushxto0(v1);
v0 = T * v0;
v2 = T * v2;
ld alpha = atan2(v0) - atan2(v2);
while(alpha > M_PI) alpha -= 360*degree;
while(alpha < -M_PI) alpha += 360*degree;
sh.angles.push_back(alpha);
}
if(debugflags & DF_GEOM) {
println(hlog, "shape ", i, ":");
indenter indp(2);
println(hlog, "vertices=", sh.vertices);
println(hlog, "connections=", sh.connections);
println(hlog, "edges=", sh.edges);
println(hlog, "angles=", sh.angles);
}
}
arb::compute_vertex_valence();
}
EX bool in() {
return arb::in() && base_geometry != gArbitrary;
}
/** activate the converted tessellation */
EX void activate() {
if(geometry != gArbitrary) {
base_geometry = geometry;
base_variation = variation;
stop_game();
geometry = gArbitrary;
variation = eVariation::pure;
}
}
EX }
#if CAP_COMMANDLINE
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-tes") || argis("-arbi")) {
PHASEFROM(2);
shift();
run(args());
}
else if(argis("-arb-legacy")) {
legacy = true;
}
else if(argis("-arb-convert")) {
try {
convert::convert();
set_geometry(gArbitrary);
}
catch(hr_exception& e) {
println(hlog, "failed to convert: ", e.what());
}
}
else if(argis("-arb-slider")) {
PHASEFROM(2);
shift();
string slider = args();
bool found = true;
for(auto& sl: current.sliders)
if(sl.name == slider) {
shift_arg_formula(sl.current, sliders_changed);
found = true;
}
if(!found) {
println(hlog, "warning: no slider named ", slider, " found");
shift();
}
}
else return 1;
return 0;
}
auto hook = addHook(hooks_args, 100, readArgs);
#endif
EX bool in() { return geometry == gArbitrary; }
EX string tes = "tessellations/sample/marjorie-rice.tes";
EX bool linespattern(cell *c) {
return current.shapes[id_of(c->master)].flags & arcm::sfLINE;
}
EX bool pseudohept(cell *c) {
if(!current.have_ph) return true;
return current.shapes[id_of(c->master)].flags & arcm::sfPH;
}
EX void choose() {
dialog::openFileDialog(tes, XLAT("open a tiling"), ".tes",
[] () {
run(tes);
return true;
});
}
#if MAXMDIM >= 4
auto hooksw = addHook(hooks_swapdim, 100, [] {
for(auto& p: {&current, &slided})
for(auto& s: p->shapes)
for(auto& v: s.vertices)
swapmatrix(v);
for(auto& p: altmap) for(auto& pp: p.second) swapmatrix(pp.second);
for(auto& p: arbi_matrix) swapmatrix(p.second.second);
});
#endif
EX }
}