1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-22 23:17:04 +00:00
hyperrogue/cell.cpp
2023-01-06 00:09:12 +01:00

1588 lines
46 KiB
C++

// Hyperbolic Rogue -- cells
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file cell.cpp
* \brief General cells and maps
*
* Start with locations.cpp
*/
#include "hyper.h"
namespace hr {
#if HDR
extern int default_levs();
struct hrmap {
virtual heptagon *getOrigin() { return NULL; }
virtual cell *gamestart() { return getOrigin()->c7; }
virtual ~hrmap() { }
virtual vector<cell*>& allcells();
virtual void verify() { }
virtual void on_dim_change() { }
virtual bool link_alt(heptagon *h, heptagon *alt, hstate firststate, int dir);
virtual void extend_altmap(heptagon *h, int levs = default_levs(), bool link_cdata = true);
heptagon *may_create_step(heptagon *h, int direction) {
if(h->move(direction)) return h->move(direction);
return create_step(h, direction);
}
virtual heptagon *create_step(heptagon *h, int direction);
protected:
virtual transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint);
virtual transmatrix relative_matrixc(cell *c2, cell *c1, const hyperpoint& hint);
public:
transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) { return relative_matrixh(h2, h1, hint); }
transmatrix relative_matrix(cell *h2, cell *h1, const hyperpoint& hint) { return relative_matrixc(h2, h1, hint); }
virtual transmatrix adj(cell *c, int i) { return adj(c->master, i); }
virtual transmatrix adj(heptagon *h, int i);
transmatrix iadj(cell *c, int i) { cell *c1 = c->cmove(i); return adj(c1, c->c.spin(i)); }
transmatrix iadj(heptagon *h, int d) {
heptagon *h1 = h->cmove(d); return adj(h1, h->c.spin(d));
}
virtual void draw_all();
virtual void draw_at(cell *at, const shiftmatrix& where);
virtual void virtualRebase(heptagon*& base, transmatrix& at);
static constexpr ld SPIN_NOT_AVAILABLE = 1e5;
virtual ld spin_angle(cell *c, int d) { return SPIN_NOT_AVAILABLE; }
virtual transmatrix spin_to(cell *c, int d, ld bonus=0);
virtual transmatrix spin_from(cell *c, int d, ld bonus=0);
virtual double spacedist(cell *c, int i) { return hdist(tile_center(), adj(c, i) * tile_center()); }
virtual bool strict_tree_rules() { return false; }
virtual void find_cell_connection(cell *c, int d);
virtual int shvid(cell *c) { return 0; }
virtual int full_shvid(cell *c) { return shvid(c); }
virtual hyperpoint get_corner(cell *c, int cid, ld cf=3) { return C0; }
virtual transmatrix master_relative(cell *c, bool get_inverse = false) { return Id; }
virtual int wall_offset(cell *c);
virtual transmatrix ray_iadj(cell *c, int i);
virtual subcellshape& get_cellshape(cell *c);
/** \brief in 3D honeycombs, returns a cellwalker res at cw->move(j) such that the face pointed at by cw and res share an edge */
virtual cellwalker strafe(cellwalker cw, int j);
/** \brief in 3D honeycombs, returns a vector<bool> v, where v[j] iff faces i and j are adjacent */
const vector<char>& dirdist(cellwalker cw) { return get_cellshape(cw.at).dirdist[cw.spin]; }
/** \brief the sequence of heptagon movement direction to get from c->master to c->move(i)->master; implemented only for reg3 */
virtual const vector<int>& get_move_seq(cell *c, int i);
/** generate a new map that is disconnected from what we already have, disconnected from the map we have so far */
virtual cell* gen_extra_origin(int fv) { throw hr_exception("gen_extra_origin not supported on this map"); }
};
/** hrmaps which are based on regular non-Euclidean 2D tilings, possibly quotient
* Operators can be applied to these maps.
* Liskov substitution warning: maps which produce both tiling like above and 3D tilings
* (e.g. Euclidean and Crystal) also inherit from hrmap_standard
**/
struct hrmap_standard : hrmap {
void draw_at(cell *at, const shiftmatrix& where) override;
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override;
transmatrix relative_matrixc(cell *c2, cell *c1, const hyperpoint& hint) override;
heptagon *create_step(heptagon *h, int direction) override;
transmatrix adj(cell *c, int d) override;
transmatrix adj(heptagon *h, int d) override;
ld spin_angle(cell *c, int d) override;
double spacedist(cell *c, int i) override;
void find_cell_connection(cell *c, int d) override;
virtual int shvid(cell *c) override;
virtual hyperpoint get_corner(cell *c, int cid, ld cf) override;
virtual transmatrix master_relative(cell *c, bool get_inverse) override;
virtual bool link_alt(heptagon *h, heptagon *alt, hstate firststate, int dir) override;
};
void clearfrom(heptagon*);
void verifycells(heptagon*);
struct hrmap_hyperbolic : hrmap_standard {
heptagon *origin;
hrmap_hyperbolic();
hrmap_hyperbolic(heptagon *origin);
heptagon *getOrigin() override { return origin; }
~hrmap_hyperbolic() {
// verifycells(origin);
// printf("Deleting hyperbolic map: %p\n", hr::voidp(this));
clearfrom(origin);
}
void verify() override { verifycells(origin); }
void virtualRebase(heptagon*& base, transmatrix& at) override;
};
#endif
heptagon *hrmap::create_step(heptagon *h, int direction) {
throw hr_exception("create_step called unexpectedly");
return NULL;
}
transmatrix hrmap::relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) {
println(hlog, "relative_matrixh called unexpectedly\n");
return Id;
}
transmatrix hrmap::relative_matrixc(cell *c2, cell *c1, const hyperpoint& hint) {
return relative_matrixh(c2->master, c1->master, hint);
}
bool hrmap::link_alt(heptagon *h, heptagon *alt, hstate firststate, int dir) {
return true;
}
bool hrmap_standard::link_alt(heptagon *h, heptagon *alt, hstate firststate, int dir) {
altmap::relspin(alt) = 3;
return true;
}
void hrmap::virtualRebase(heptagon*& base, transmatrix& at) {
printf("virtualRebase called unexpectedly\n");
return;
}
transmatrix hrmap::ray_iadj(cell *c, int i) {
if(WDIM == 2) {
return to_other_side(get_corner(c, i), get_corner(c, (i+1)));
}
return currentmap->iadj(c, i);
}
subcellshape& hrmap::get_cellshape(cell *c) {
if(cgi.heptshape) return *cgi.heptshape;
throw hr_exception("get_cellshape called unexpectedly");
}
cellwalker hrmap::strafe(cellwalker cw, int j) {
throw hr_exception("strafe called unexpectedly");
}
const vector<int>& hrmap::get_move_seq(cell *c, int i) {
throw hr_exception("get_move_seq not implemented for this map class");
}
transmatrix hrmap::spin_to(cell *c, int d, ld bonus) {
ld sa = spin_angle(c, d);
if(sa != SPIN_NOT_AVAILABLE) { return spin(bonus + sa); }
transmatrix T = lrspintox(tC0(adj(c, d)));
if(WDIM == 3) return T * cspin(2, 0, bonus);
return T * spin(bonus);
}
transmatrix hrmap::spin_from(cell *c, int d, ld bonus) {
ld sa = spin_angle(c, d);
if(sa != SPIN_NOT_AVAILABLE) { return spin(bonus - sa); }
transmatrix T = lspintox(tC0(adj(c, d)));
if(WDIM == 3) return T * cspin(2, 0, bonus);
return T * spin(bonus);
}
transmatrix hrmap::adj(heptagon *h, int i) { return relative_matrix(h->cmove(i), h, C0); }
vector<cell*>& hrmap::allcells() {
static vector<cell*> default_allcells;
if(disksize) return all_disk_cells;
if(closed_manifold && !(cgflags & qHUGE_BOUNDED) && !(mhybrid && hybrid::csteps == 0)) {
celllister cl(gamestart(), 1000000, 1000000, NULL);
default_allcells = cl.lst;
return default_allcells;
}
if(isize(dcal) <= 1) {
extern cellwalker cwt;
celllister cl(cwt.at, 1, 1000, NULL);
default_allcells = cl.lst;
return default_allcells;
}
return dcal;
}
EX int dirdiff(int dd, int t) {
dd %= t;
if(dd<0) dd += t;
if(t-dd < dd) dd = t-dd;
return dd;
}
EX int cellcount = 0;
EX void destroy_cell(cell *c) {
tailored_delete(c);
cellcount--;
}
EX cell *newCell(int type, heptagon *master) {
cell *c = tailored_alloc<cell> (type);
c->type = type;
c->master = master;
initcell(c);
hybrid::will_link(c);
cellcount++;
return c;
}
// -- hrmap ---
EX hrmap *currentmap;
EX vector<hrmap*> allmaps;
EX hrmap *newAltMap(heptagon *o) {
#if MAXMDIM >= 4
if(reg3::in_hrmap_rule_or_subrule())
return reg3::new_alt_map(o);
#endif
if(currentmap->strict_tree_rules())
return rulegen::new_hrmap_rulegen_alt(o);
return new hrmap_hyperbolic(o);
}
// --- hyperbolic geometry ---
EX heptagon* hyperbolic_origin() {
int odegree = geometry == gBinaryTiling ? 6 : S7;
heptagon *origin = init_heptagon(odegree);
heptagon& h = *origin;
h.s = hsOrigin;
h.emeraldval = a46 ? 0 : 98;
h.zebraval = 40;
#if CAP_IRR
if(IRREGULAR) irr::link_start(origin);
else
#endif
h.c7 = newCell(odegree, origin);
return origin;
}
hrmap_hyperbolic::hrmap_hyperbolic(heptagon *o) { origin = o; }
hrmap_hyperbolic::hrmap_hyperbolic() { origin = hyperbolic_origin(); }
void hrmap::find_cell_connection(cell *c, int d) {
heptagon *h2 = createStep(c->master, d);
c->c.connect(d, h2->c7,c->master->c.spin(d), c->master->c.mirror(d));
hybrid::link();
}
void hrmap_standard::find_cell_connection(cell *c, int d) {
#if CAP_IRR
if(IRREGULAR) {
irr::link_cell(c, d);
}
#else
if(0) {}
#endif
#if CAP_GP
else if(GOLDBERG) {
gp::extend_map(c, d);
if(!c->move(d)) {
println(hlog, "extend failed to create for ", cellwalker(c, d));
exit(1);
}
hybrid::link();
}
#endif
else if(PURE) {
hrmap::find_cell_connection(c, d);
}
else if(c == c->master->c7) {
cell *n = newCell(S6, c->master);
heptspin hs(c->master, d, false);
int alt3 = c->type/2;
int alt4 = alt3+1;
for(int u=0; u<S6; u+=2) {
if(hs.mirrored && (S7%2 == 0)) hs++;
hs.at->c7->c.connect(hs.spin, n, u, hs.mirrored);
if(hs.mirrored && (S7%2 == 0)) hs--;
hs = hs + alt3 + wstep - alt4;
}
hybrid::link();
extern void verifycell(cell *c);
verifycell(n);
}
else {
cellwalker cw(c, d, false);
cellwalker cw2 = cw - 1 + wstep - 1 + wstep - 1;
c->c.connect(d, cw2);
hybrid::link();
}
}
/** very similar to createMove in heptagon.cpp */
EX cell *createMov(cell *c, int d) {
if(d<0 || d>= c->type)
throw hr_exception("ERROR createmov\n");
if(c->move(d)) return c->move(d);
currentmap->find_cell_connection(c, d);
return c->move(d);
}
EX void eumerge(cell* c1, int s1, cell *c2, int s2, bool mirror) {
if(!c2) return;
c1->move(s1) = c2; c1->c.setspin(s1, s2, mirror);
c2->move(s2) = c1; c2->c.setspin(s2, s1, mirror);
}
// map<pair<eucoord, eucoord>, cell*> euclidean;
EX hookset<hrmap*()> hooks_newmap;
#if HDR
enum eDiskShape { dshTiles, dshVertices, dshGeometric };
#endif
/** requested disk size */
EX int req_disksize;
/** currently used disk size */
EX int disksize;
/** all the cells in the disk */
EX vector<cell*> all_disk_cells;
/** for quick test of membership */
EX vector<cell*> all_disk_cells_sorted;
/** the disk shape to use */
EX eDiskShape diskshape;
EX void init_disk_cells() {
disksize = req_disksize;
all_disk_cells.clear();
all_disk_cells_sorted.clear();
if(!disksize) return;
if(diskshape == dshTiles) {
celllister cl(currentmap->gamestart(), 1000000, disksize, NULL);
all_disk_cells = cl.lst;
}
else {
struct tileinfo {
ld dist;
cell *c;
transmatrix T;
bool operator < (const tileinfo& t2) const { return -dist < -t2.dist - 1e-6; }
};
set<cell*> seen;
std::priority_queue<tileinfo> tiles;
tiles.push(tileinfo{0, currentmap->gamestart(), Id});
ld last_dist = 0;
dynamicval<int> dmar(mine_adjacency_rule, 1);
while(isize(tiles)) {
auto ti = tiles.top();
tiles.pop();
println(hlog, "dist=", ti.dist, " for c=", ti.c);
if(seen.count(ti.c)) continue;
seen.insert(ti.c);
if(ti.dist > last_dist + 1e-6 && isize(all_disk_cells) >= disksize) break;
last_dist = ti.dist;
all_disk_cells.push_back(ti.c);
for(auto p: adj_minefield_cells_full(ti.c)) {
tileinfo next;
next.c = p.c;
next.T = ti.T * p.T;
if(diskshape == dshVertices) next.dist = ti.dist + 1;
else next.dist = hdist0(tC0(next.T));
println(hlog, ti.c, " -> ", p.c, " at ", next.dist);
tiles.push(next);
}
}
}
all_disk_cells_sorted = all_disk_cells;
sort(all_disk_cells_sorted.begin(), all_disk_cells_sorted.end());
}
EX bool is_in_disk(cell *c) {
auto it = lower_bound(all_disk_cells_sorted.begin(), all_disk_cells_sorted.end(), c);
if(it == all_disk_cells_sorted.end()) return false;
return *it == c;
}
/** create a map in the current geometry */
EX void initcells() {
DEBB(DF_INIT, ("initcells"));
if(embedded_plane) return IPF( initcells() );
hrmap* res = callhandlers((hrmap*)nullptr, hooks_newmap);
if(res) currentmap = res;
#if CAP_SOLV
else if(asonov::in()) currentmap = asonov::new_map();
#endif
else if(nonisotropic || mhybrid) currentmap = nisot::new_map();
else if(INVERSE) currentmap = gp::new_inverse();
else if(fake::in()) currentmap = fake::new_map();
#if CAP_CRYSTAL
else if(cryst) currentmap = crystal::new_map();
#endif
else if(arb::in() && rulegen::known()) currentmap = rulegen::new_hrmap_rulegen();
else if(arb::in()) currentmap = arb::new_map();
#if CAP_ARCM
else if(arcm::in()) currentmap = arcm::new_map();
#endif
else if(euc::in()) currentmap = euc::new_map();
#if CAP_BT
else if(kite::in()) currentmap = kite::new_map();
#endif
#if MAXMDIM >= 4
else if(WDIM == 3 && !bt::in()) currentmap = reg3::new_map();
#endif
else if(sphere) currentmap = new_spherical_map();
else if(quotient) currentmap = quotientspace::new_map();
#if CAP_BT
else if(bt::in()) currentmap = bt::new_map();
#endif
else if(S3 >= OINF) currentmap = inforder::new_map();
else currentmap = new hrmap_hyperbolic;
allmaps.push_back(currentmap);
#if CAP_FIELD
windmap::create();
#endif
// origin->emeraldval =
}
EX void clearcell(cell *c) {
if(!c) return;
DEBB(DF_MEMORY, (format("c%d %p\n", c->type, hr::voidp(c))));
for(int t=0; t<c->type; t++) if(c->move(t)) {
DEBB(DF_MEMORY, (format("mov %p [%p] S%d\n", hr::voidp(c->move(t)), hr::voidp(c->move(t)->move(c->c.spin(t))), c->c.spin(t))));
if(c->move(t)->move(c->c.spin(t)) != NULL &&
c->move(t)->move(c->c.spin(t)) != c) {
DEBB(DF_MEMORY | DF_ERROR, (format("cell error: type = %d %d -> %d\n", c->type, t, c->c.spin(t))));
if(worst_precision_error < 1e-3) exit(1);
}
c->move(t)->move(c->c.spin(t)) = NULL;
}
DEBB(DF_MEMORY, (format("DEL %p\n", hr::voidp(c))));
gp::delete_mapped(c);
destroy_cell(c);
}
EX heptagon deletion_marker;
template<class T> void subcell(cell *c, const T& t) {
if(GOLDBERG) {
forCellEx(c2, c) if(c2->move(0) == c && c2 != c2->master->c7) {
subcell(c2, t);
}
}
else if(BITRUNCATED && !arcm::in() && !bt::in())
forCellEx(c2, c) t(c2);
t(c);
}
EX void clearHexes(heptagon *at) {
if(at->c7 && at->cdata) {
delete at->cdata;
at->cdata = NULL;
}
if(0);
#if CAP_IRR
else if(IRREGULAR) irr::clear_links(at);
#endif
else if(at->c7) subcell(at->c7, clearcell);
}
void unlink_cdata(heptagon *h) {
if(h->alt && h->c7) {
if(h->alt->cdata == (cdata*) h)
h->alt->cdata = NULL;
}
}
EX void clear_heptagon(heptagon *at) {
clearHexes(at);
tailored_delete(at);
}
EX void clearfrom(heptagon *at) {
if(!at) return;
queue<heptagon*> q;
unlink_cdata(at);
q.push(at);
at->alt = &deletion_marker;
//int maxq = 0;
while(!q.empty()) {
at = q.front();
// if(q.size() > maxq) maxq = q.size();
q.pop();
DEBB(DF_MEMORY, ("from %p", at));
if(!at->c7) {
heptagon *h = dynamic_cast<heptagon*> ((cdata_or_heptagon*) at->cdata);
if(h) {
if(h->alt != at) { DEBB(DF_MEMORY | DF_ERROR, ("alt error :: h->alt = ", h->alt, " expected ", at)); }
cell *c = h->c7;
subcell(c, destroycellcontents);
h->alt = NULL;
at->cdata = NULL;
}
}
int edges = at->degree();
if(bt::in() && WDIM == 2) edges = at->c7->type;
for(int i=0; i<edges; i++) if(at->move(i) && at->move(i) != at) {
if(at->move(i)->alt != &deletion_marker)
q.push(at->move(i));
unlink_cdata(at->move(i));
at->move(i)->alt = &deletion_marker;
DEBB(DF_MEMORY, ("!mov ", at->move(i), " [", at->move(i)->move(at->c.spin(i)), "]"));
if(at->move(i)->move(at->c.spin(i)) != NULL &&
at->move(i)->move(at->c.spin(i)) != at) {
DEBB(DF_MEMORY | DF_ERROR, ("hept error"));
exit(1);
}
at->move(i)->move(at->c.spin(i)) = NULL;
at->move(i) = NULL;
}
clearHexes(at);
tailored_delete(at);
}
//printf("maxq = %d\n", maxq);
}
EX void verifycell(cell *c) {
int t = c->type;
for(int i=0; i<t; i++) {
cell *c2 = c->move(i);
if(c2) {
if(BITRUNCATED && c == c->master->c7) verifycell(c2);
if(c2->move(c->c.spin(i)) && c2->move(c->c.spin(i)) != c) {
printf("cell error %p:%d [%d] %p:%d [%d]\n", hr::voidp(c), i, c->type, hr::voidp(c2), c->c.spin(i), c2->type);
exit(1);
}
}
}
}
EX void verifycells(heptagon *at) {
if(GOLDBERG || IRREGULAR || arcm::in()) return;
for(int i=0; i<at->type; i++) if(at->move(i) && at->move(i)->move(at->c.spin(i)) && at->move(i)->move(at->c.spin(i)) != at) {
printf("hexmix error %p [%d s=%d] %p %p\n", hr::voidp(at), i, at->c.spin(i), hr::voidp(at->move(i)), hr::voidp(at->move(i)->move(at->c.spin(i))));
}
if(!sphere && !quotient)
for(int i=0; i<S7; i++) if(at->move(i) && at->c.spin(i) == 0 && at->s != hsOrigin)
verifycells(at->move(i));
verifycell(at->c7);
}
EX int compdist(int dx[]) {
int mi = dx[0];
for(int u=0; u<S3; u++) mi = min(mi, dx[u]);
for(int u=0; u<S3; u++)
if(dx[u] > mi+2)
return -1; // { printf("cycle error!\n"); exit(1); }
for(int u=0; u<S3; u++)
if(dx[u] == mi+2)
return mi+1;
int cnt = 0;
for(int u=0; u<S3; u++)
if(dx[u] == mi) cnt++;
if(cnt < 2)
return mi+1;
return mi;
}
EX int celldist(cell *c) {
if(experimental) return 0;
if(mhybrid)
return hybrid::celldistance(c, currentmap->gamestart());
if(nil && !quotient) return DISTANCE_UNKNOWN;
if(euc::in()) return celldistance(currentmap->gamestart(), c);
if(sphere || bt::in() || WDIM == 3 || cryst || sn::in() || kite::in() || closed_manifold) return celldistance(currentmap->gamestart(), c);
#if CAP_IRR
if(IRREGULAR) return irr::celldist(c, false);
#endif
if(arcm::in() || ctof(c) || arb::in()) return c->master->distance;
#if CAP_GP
if(INVERSE) {
cell *c1 = gp::get_mapped(c);
return UIU(gp::compute_dist(c1, celldist)) / 2;
/* TODO */
}
if(GOLDBERG) return gp::compute_dist(c, celldist);
#endif
int dx[MAX_S3];
for(int u=0; u<S3; u++)
dx[u] = createMov(c, u+u)->master->distance;
return compdist(dx);
}
#if HDR
static const int ALTDIST_BOUNDARY = 99999;
static const int ALTDIST_UNKNOWN = 99998;
static const int ALTDIST_ERROR = 90000;
#endif
EX int celldistAlt(cell *c) {
if(experimental) return 0;
if(mhybrid) {
if(in_s2xe()) return hybrid::get_where(c).second;
auto w = hybrid::get_where(c);
int d = c->master->alt && c->master->alt->alt ? hybrid::altmap_heights[c->master->alt->alt] : 0;
d = sl2 ? 0 : abs(w.second - d);
PIU ( d += celldistAlt(w.first) );
return d;
}
#if CAP_BT
if(bt::in() || sn::in()) return c->master->distance + (specialland == laCamelot && !ls::single() ? 30 : 0);
#endif
if(nil) return c->master->zebraval + abs(c->master->emeraldval) + (specialland == laCamelot && !ls::single() ? 30 : 0);;
#if CAP_CRYSTAL
if(cryst)
return crystal::dist_alt(c);
#endif
if(sphere || quotient) {
return celldist(c) - 3;
}
#if MAXMDIM >= 4
if(euc::in()) return euc::dist_alt(c);
if(hyperbolic && WDIM == 3 && !reg3::in_hrmap_rule_or_subrule())
return reg3::altdist(c->master);
#endif
if(!c->master->alt) return 0;
#if CAP_IRR
if(IRREGULAR) return irr::celldist(c, true);
#endif
if(ctof(c)) return c->master->alt->distance;
if(reg3::in()) return c->master->alt->distance;
#if CAP_GP
if(GOLDBERG) return gp::compute_dist(c, celldistAlt);
if(INVERSE) {
cell *c1 = gp::get_mapped(c);
return UIU(gp::compute_dist(c1, celldistAlt)) / 2;
/* TODO */
}
#endif
int dx[MAX_S3]; dx[0] = 0;
for(int u=0; u<S3; u++) if(createMov(c, u+u)->master->alt == NULL)
return ALTDIST_UNKNOWN;
for(int u=0; u<S3; u++)
dx[u] = createMov(c, u+u)->master->alt->distance;
// return compdist(dx); -> not OK because of boundary conditions
int mi = dx[0];
for(int i=1; i<S3; i++) mi = min(mi, dx[i]);
for(int i=0; i<S3; i++) if(dx[i] > mi+2)
return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); }
for(int i=0; i<S3; i++) if(dx[i] == mi+2)
return mi+1;
return mi;
}
/** direction upwards in the tree */
EX int updir(heptagon *h) {
#if CAP_BT
if(bt::in()) return bt::updir();
#endif
#if MAXMDIM >= 4
if(WDIM == 3 && reg3::in_hrmap_rule_or_subrule()) {
for(int i=0; i<h->type; i++) if(h->move(i) && h->move(i)->distance < h->distance)
return i;
return -1;
}
#endif
if(h->s == hsOrigin) return -1;
return 0;
}
/** direction upwards in the alt-tree */
EX int updir_alt(heptagon *h) {
if(euclid || !h->alt) return -1;
#if MAXMDIM >= 4
if(WDIM == 3 && reg3::in_hrmap_rule_or_subrule()) {
for(int i=0; i<S7; i++) if(h->move(i) && h->move(i)->alt && h->move(i)->alt->distance < h->alt->distance)
return i;
return -1;
}
#endif
return gmod(updir(h->alt) + altmap::relspin(h->alt), h->type);
}
#if HDR
static const int RPV_MODULO = 5;
static const int RPV_RAND = 0;
static const int RPV_ZEBRA = 1;
static const int RPV_EMERALD = 2;
static const int RPV_PALACE = 3;
static const int RPV_CYCLE = 4;
#endif
// x mod 5 = pattern type
// x mod (powers of 2) = pattern type specific
// (x/5) mod 15 = picture for drawing floors
// x mod 7 = chance of pattern-specific pic
// whole = randomization
EX bool randpattern(cell *c, int rval) {
int i, sw=0;
switch(rval%5) {
case 0:
if(rval&1) {
return hrandpos() < rval;
}
else {
int cd = getCdata(c, 0);
return !((cd/(((rval/2)&15)+1))&1);
}
case 1:
i = zebra40(c);
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
i >>= 2;
i--; i /= 3;
if(rval & (16<<i)) sw^=1;
return sw;
case 2:
i = emeraldval(c);
if(i&1) { if(rval&4) sw^=1; i &= ~1; }
if(i&2) { if(rval&8) sw^=1; i &= ~2; }
i >>= 2; i--;
if(rval & (16<<i)) sw^=1;
return sw;
case 3:
if(polara50(c)) { if(rval&4) sw^=1; }
if(polarb50(c)) { if(rval&8) sw^=1; }
i = fiftyval049(c); i += 6; i /= 7;
if(rval & (16<<i)) sw^=1;
return sw;
case 4:
i = (rval&3);
if(i == 1 && (celldist(c)&1)) sw ^= 1;
if(i == 2 && (celldist(c)&2)) sw ^= 1;
if(i == 3 && ((celldist(c)/3)&1)) sw ^= 1;
if(rval & (4<<towerval(c, celldist))) sw ^= 1;
return sw;
}
return 0;
}
EX string describeRPM(eLand l) {
int rval = randompattern[l];
switch(rval%5) {
case 0:
if(rval&1)
return "R:"+its(rval/(HRANDMAX/100))+"%";
else
return "Landscape/"+its(((rval/2)&15)+1);
case 1:
return "Z/"+its((rval>>2)&3)+"/"+its((rval>>4)&15);
case 2:
return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047);
case 3:
return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255);
case 4:
return "C/"+its(rval&3)+"/"+its((rval>>2)&65535);
}
return "?";
}
EX int randpatternCode(cell *c, int rval) {
switch(rval % RPV_MODULO) {
case 1:
return zebra40(c);
case 2:
return emeraldval(c);
case 3:
return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0);
case 4:
return towerval(c, celldist) * 6 + celldist(c) % 6;
}
return 0;
}
#if HDR
#define RANDITER 31
#endif
char rpm_memoize[3][256][RANDITER+1];
EX void clearMemoRPM() {
for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; i<RANDITER+1; i++)
rpm_memoize[a][b][i] = 2;
}
EX bool randpatternMajority(cell *c, int ival, int iterations) {
int rval = 0;
if(ival == 0) rval = randompattern[laCaves];
if(ival == 1) rval = randompattern[laLivefjord];
if(ival == 2) rval = randompattern[laEmerald];
if(rval%RPV_MODULO == RPV_RAND) return randpattern(c, rval);
int code = randpatternCode(c, rval);
char& memo(rpm_memoize[ival][code][iterations]);
if(memo < 2) return memo;
int z = 0;
if(iterations) for(int i=0; i<c->type; i++) {
if(randpatternMajority(createMov(c,i), ival, iterations-1))
z++;
else
z--;
}
if(z!=0) memo = (z>0);
else memo = randpattern(c, rval);
// printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo);
return memo;
}
#define RVAL_MASK 0x10000000
#define DATA_MASK 0x20000000
cdata orig_cdata;
EX bool geometry_supports_cdata() {
if(mhybrid) return PIU(geometry_supports_cdata());
if(embedded_plane) return IPF( geometry_supports_cdata() );
return among(geometry, gEuclid, gEuclidSquare, gNormal, gOctagon, g45, g46, g47, gBinaryTiling) || (arcm::in() && !sphere) || (currentmap && currentmap->strict_tree_rules());
}
void affect(cdata& d, short rv, signed char signum) {
if(rv&1) d.val[0]+=signum; else d.val[0]-=signum;
if(rv&2) d.val[1]+=signum; else d.val[1]-=signum;
if(rv&4) d.val[2]+=signum; else d.val[2]-=signum;
if(rv&8) d.val[3]+=signum; else d.val[3]-=signum;
int id = (rv>>4) & 63;
if(id < 32)
d.bits ^= (1 << id);
}
void setHeptagonRval(heptagon *h) {
if(!(h->rval0 || h->rval1)) {
h->rval0 = hrand(0x10000);
h->rval1 = hrand(0x10000);
}
}
EX bool dmeq(int a, int b) { return (a&3) == (b&3); }
/* kept for compatibility: Racing etc. */
cdata *getHeptagonCdata_legacy(heptagon *h) {
if(h->cdata) return h->cdata;
if(sphere || quotient) h = currentmap->gamestart()->master;
if(h == currentmap->getOrigin()) {
h->cdata = new cdata(orig_cdata);
for(int& v: h->cdata->val) v = 0;
h->cdata->bits = reptilecheat ? (1 << 21) - 1 : 0;
if(yendor::on && specialland == laVariant) h->cdata->bits |= (1 << 8) | (1 << 9) | (1 << 12);
return h->cdata;
}
cdata mydata = *getHeptagonCdata_legacy(h->move(0));
for(int di=3; di<5; di++) {
heptspin hs(h, di, false);
int signum = +1;
while(true) {
heptspin hstab[15];
hstab[7] = hs;
for(int i=8; i<12; i++) {
hstab[i] = hstab[i-1];
hstab[i] += ((i&1) ? 4 : 3);
hstab[i] += wstep;
hstab[i] += ((i&1) ? 3 : 4);
}
for(int i=6; i>=3; i--) {
hstab[i] = hstab[i+1];
hstab[i] += ((i&1) ? 3 : 4);
hstab[i] += wstep;
hstab[i] += ((i&1) ? 4 : 3);
}
if(hstab[3].at->distance < hstab[7].at->distance) {
hs = hstab[3]; continue;
}
if(hstab[11].at->distance < hstab[7].at->distance) {
hs = hstab[11]; continue;
}
int jj = 7;
for(int k=3; k<12; k++) if(hstab[k].at->distance < hstab[jj].at->distance) jj = k;
int ties = 0, tiespos = 0;
for(int k=3; k<12; k++) if(hstab[k].at->distance == hstab[jj].at->distance)
ties++, tiespos += (k-jj);
// printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj);
if(ties == 2) jj += tiespos/2;
if(jj&1) signum = -1;
hs = hstab[jj];
break;
}
hs = hs + 3 + wstep;
setHeptagonRval(hs.at);
affect(mydata, hs.spin ? hs.at->rval0 : hs.at->rval1, signum);
}
return h->cdata = new cdata(mydata);
}
cdata *getHeptagonCdata(heptagon *h) {
if(mhybrid) return PIU ( getHeptagonCdata(h) );
if(embedded_plane) return IPF( getHeptagonCdata(h) );
if(geometry == gNormal && BITRUNCATED) return getHeptagonCdata_legacy(h);
if(h->cdata) return h->cdata;
if(sphere || quotient) h = currentmap->gamestart()->master;
bool starting = h->s == hsOrigin;
#if CAP_BT
if(bt::in()) {
if(bt::mapside(h) == 0) starting = true;
for(int i=0; i<h->type; i++) if(bt::mapside(h->cmove(i)) == 0) starting = true;
}
#endif
if(currentmap->strict_tree_rules()) starting = h->distance <= 0;
if(starting) {
h->cdata = new cdata(orig_cdata);
for(int& v: h->cdata->val) v = 0;
h->cdata->bits = reptilecheat ? (1 << 21) - 1 : 0;
if(yendor::on && specialland == laVariant) h->cdata->bits |= (1 << 8) | (1 << 9) | (1 << 12);
return h->cdata;
}
int dir = updir(h);
cdata mydata = *getHeptagonCdata(h->cmove(dir));
if(S3 >= OINF) {
setHeptagonRval(h);
affect(mydata, h->rval0, 1);
}
else if(currentmap->strict_tree_rules()) {
for(eLand ws: {NOWALLSEP, NOWALLSEP_SWAP}) {
lalign(0, h->c7);
int dir = 1;
cellwalker hs(h->c7, dir, false);
eLand dummy = laNone;
vector<cell*> lpath, rpath;
while(true) {
int d = hs.at->master->distance;
general_barrier_advance(hs, dir, dummy, dummy, ws, false);
lpath.push_back(hs.at);
if(hs.at->master->distance > d) break;
}
dir = -dir;
while(true) {
int d = hs.at->master->distance;
general_barrier_advance(hs, dir, dummy, dummy, ws, false);
rpath.push_back(hs.at);
if(hs.at->master->distance > d) break;
}
setHeptagonRval(hs.at->master);
affect(mydata, ws == NOWALLSEP_SWAP ? hs.at->master->rval1 : hs.at->master->rval0, 1);
}
}
else if(S3 == 4) {
heptspin hs(h, 0);
while(dmeq((hs+1).cpeek()->dm4, (hs.at->dm4 - 1))) hs = hs + 1 + wstep + 1;
while(dmeq((hs-1).cpeek()->dm4, (hs.at->dm4 - 1))) hs = hs - 1 + wstep - 1;
setHeptagonRval(hs.at);
affect(mydata, hs.at->rval0, 1);
}
else for(int di: {0,1}) {
heptspin hs(h, dir, false);
hs -= di;
while(true) {
heptspin hs2 = hs + wstep + 1 + wstep - 1;
if(dmeq(hs2.at->dm4, hs.at->dm4 + 1)) break;
hs = hs2;
}
while(true) {
heptspin hs2 = hs + 1 + wstep - 1 + wstep;
if(dmeq(hs2.at->dm4, hs.at->dm4 + 1)) break;
hs = hs2;
}
setHeptagonRval(hs.at);
affect(mydata, hs.spin == dir ? hs.at->rval0 : hs.at->rval1, 1);
}
return h->cdata = new cdata(mydata);
}
cdata *getEuclidCdata(gp::loc h) {
int x = h.first, y = h.second;
#if CAP_ARCM
auto& data = arcm::in() ? arcm::get_cdata() : euc::get_cdata();
#else
auto& data = euc::get_cdata();
#endif
// hrmap_euclidean* euc = dynamic_cast<hrmap_euclidean*> (currentmap);
if(data.count(h)) return &(data[h]);
if(x == 0 && y == 0) {
cdata xx;
for(int i=0; i<4; i++) xx.val[i] = 0;
xx.bits = 0;
return &(data[h] = xx);
}
int ord = 1, bid = 0;
while(!((x|y)&ord)) ord <<= 1, bid++;
for(int k=0; k<3; k++) {
int x1 = x + (k<2 ? ord : 0);
int y1 = y - (k>0 ? ord : 0);
if((x1&ord) || (y1&ord)) continue;
int x2 = x - (k<2 ? ord : 0);
int y2 = y + (k>0 ? ord : 0);
cdata *d1 = getEuclidCdata({x1,y1});
cdata *d2 = getEuclidCdata({x2,y2});
cdata xx;
double disp = pow(2, bid/2.) * 6;
for(int i=0; i<4; i++) {
double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp;
xx.val[i] = floor(dv);
if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++;
}
xx.bits = 0;
for(int b=0; b<32; b++) {
bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1;
int flipchance = (1<<bid);
if(flipchance > 512) flipchance = 512;
if(hrand(1024) < flipchance) gbit = !gbit;
if(gbit) xx.bits |= (1<<b);
}
return &(data[h] = xx);
}
// impossible!
return NULL;
}
int ld_to_int(ld x) {
return int(x + 1000000.5) - 1000000;
}
#if CAP_ARCM
EX gp::loc pseudocoords(cell *c) {
transmatrix T = arcm::archimedean_gmatrix[c->master].second;
return {ld_to_int(T[0][LDIM]), ld_to_int((spin(60._deg) * T)[0][LDIM])};
}
EX cdata *arcmCdata(cell *c) {
auto &agm = arcm::archimedean_gmatrix;
if(!agm.count(c->master) || !agm[c->master].first) {
forCellEx(c1, c) if(agm.count(c->master) && agm[c->master].first) return arcmCdata(c1);
static cdata dummy;
return &dummy;
}
heptagon *h2 = agm[c->master].first;
dynamicval<eGeometry> g(geometry, gNormal);
dynamicval<hrmap*> cm(currentmap, arcm::current_altmap);
return getHeptagonCdata(h2);
}
#endif
EX int getCdata(cell *c, int j) {
if(fake::in()) return FPIU(getCdata(c, j));
if(embedded_plane) return IPF(getCdata(c, j));
if(experimental) return 0;
if(mhybrid) { c = hybrid::get_where(c).first; return PIU(getBits(c)); }
else if(INVERSE) {
cell *c1 = gp::get_mapped(c);
return UIU(getCdata(c1, j));
}
else if(euc::in()) return getEuclidCdata(euc2_coordinates(c))->val[j];
#if CAP_ARCM
else if(arcm::in() && euclid)
return getEuclidCdata(pseudocoords(c))->val[j];
else if(arcm::in() && (hyperbolic || sl2))
return arcmCdata(c)->val[j]*3;
#endif
else if(!geometry_supports_cdata()) return 0;
else if(ctof(c)) return getHeptagonCdata(c->master)->val[j]*3;
else {
int jj = 0;
auto ar = gp::get_masters(c);
for(int k=0; k<3; k++)
jj += getHeptagonCdata(ar[k])->val[j];
return jj;
}
}
EX int getBits(cell *c) {
if(fake::in()) return FPIU(getBits(c));
if(embedded_plane) return IPF(getBits(c));
if(experimental) return 0;
if(mhybrid) { c = hybrid::get_where(c).first; return PIU(getBits(c)); }
else if(INVERSE) {
cell *c1 = gp::get_mapped(c);
return UIU(getBits(c1));
}
else if(euc::in()) return getEuclidCdata(euc2_coordinates(c))->bits;
#if CAP_ARCM
else if(arcm::in() && euclid)
return getEuclidCdata(pseudocoords(c))->bits;
else if(arcm::in() && (hyperbolic || sl2))
return arcmCdata(c)->bits;
#endif
else if(!geometry_supports_cdata()) return 0;
else if(c == c->master->c7) return getHeptagonCdata(c->master)->bits;
else {
auto ar = gp::get_masters(c);
int b0 = getHeptagonCdata(ar[0])->bits;
int b1 = getHeptagonCdata(ar[1])->bits;
int b2 = getHeptagonCdata(ar[2])->bits;
return (b0 & b1) | (b1 & b2) | (b2 & b0);
}
}
EX cell *heptatdir(cell *c, int d) {
if(d&1) {
cell *c2 = createMov(c, d);
int s = c->c.spin(d);
s += 3; s %= 6;
return createMov(c2, s);
}
else return createMov(c, d);
}
EX int heptdistance(heptagon *h1, heptagon *h2) {
// very rough distance
int d = 0;
#if CAP_CRYSTAL
if(cryst) return crystal::space_distance(h1->c7, h2->c7);
#endif
#if CAP_SOLV
if(sn::in()) return sn::approx_distance(h1, h2);
#endif
while(true) {
if(h1 == h2) return d;
for(int i=0; i<S7; i++) if(h1->move(i) == h2) return d + 1;
int d1 = h1->distance, d2 = h2->distance;
if(d1 >= d2) d++, h1 = createStep(h1, bt::updir());
if(d2 > d1) d++, h2 = createStep(h2, bt::updir());
}
}
EX int heptdistance(cell *c1, cell *c2) {
#if CAP_CRYSTAL
if(cryst) return crystal::space_distance(c1, c2);
#endif
if(!hyperbolic || quotient || WDIM == 3) return celldistance(c1, c2);
else return heptdistance(c1->master, c2->master);
}
map<pair<cell*, cell*>, int> saved_distances;
EX set<cell*> keep_distances_from;
set<cell*> dists_computed;
int perma_distances;
EX void compute_saved_distances(cell *c1, int max_range, int climit) {
celllister cl(c1, max_range, climit, NULL);
for(int i=0; i<isize(cl.lst); i++)
saved_distances[make_pair(c1, cl.lst[i])] = cl.dists[i];
}
EX void permanent_long_distances(cell *c1) {
keep_distances_from.insert(c1);
if(racing::on)
compute_saved_distances(c1, 300, 1000000);
else
compute_saved_distances(c1, 120, 200000);
}
EX void erase_saved_distances() {
saved_distances.clear(); dists_computed.clear();
for(auto c: keep_distances_from) compute_saved_distances(c, 120, 200000);
perma_distances = isize(saved_distances);
}
EX int max_saved_distance(cell *c) {
int maxsd = 0;
for(auto& p: saved_distances) if(p.first.first == c) maxsd = max(maxsd, p.second);
return maxsd;
}
EX cell *random_in_distance(cell *c, int d) {
vector<cell*> choices;
for(auto& p: saved_distances) if(p.first.first == c && p.second == d) choices.push_back(p.first.second);
println(hlog, "choices = ", isize(choices));
if(choices.empty()) return NULL;
return choices[hrand(isize(choices))];
}
EX int bounded_celldistance(cell *c1, cell *c2) {
int limit = 14400;
#if CAP_SOLV
if(geometry == gArnoldCat) {
c2 = asonov::get_at(asonov::get_coord(c2->master) - asonov::get_coord(c1->master))->c7;
c1 = currentmap->gamestart();
limit = 100000000;
}
#endif
if(saved_distances.count(make_pair(c1,c2)))
return saved_distances[make_pair(c1,c2)];
celllister cl(c1, 100, limit, NULL);
for(int i=0; i<isize(cl.lst); i++)
saved_distances[make_pair(c1, cl.lst[i])] = cl.dists[i];
if(saved_distances.count(make_pair(c1,c2)))
return saved_distances[make_pair(c1,c2)];
return DISTANCE_UNKNOWN;
}
EX int clueless_celldistance(cell *c1, cell *c2) {
if(saved_distances.count(make_pair(c1,c2)))
return saved_distances[make_pair(c1,c2)];
if(dists_computed.count(c1)) return DISTANCE_UNKNOWN;
if(isize(saved_distances) > perma_distances + 1000000) erase_saved_distances();
compute_saved_distances(c1, 64, 1000);
dists_computed.insert(c1);
if(saved_distances.count(make_pair(c1,c2)))
return saved_distances[make_pair(c1,c2)];
return DISTANCE_UNKNOWN;
}
EX int celldistance(cell *c1, cell *c2) {
if(embedded_plane) return IPF(celldistance(c1, c2));
if(fake::in()) return FPIU(celldistance(c1, c2));
if(mhybrid) return hybrid::celldistance(c1, c2);
#if CAP_FIELD
if(geometry == gFieldQuotient && (PURE || BITRUNCATED)) {
int d = fieldpattern::field_celldistance(c1, c2);
if(d != DISTANCE_UNKNOWN) return d;
}
#endif
if(closed_manifold) return bounded_celldistance(c1, c2);
#if CAP_CRYSTAL
if(cryst) return crystal::precise_distance(c1, c2);
#endif
if(euc::in() && WDIM == 2) {
return euc::cyldist(euc2_coordinates(c1), euc2_coordinates(c2));
}
if(arcm::in() || quotient || sn::in() || (kite::in() && euclid) || experimental || sl2 || nil || arb::in())
return clueless_celldistance(c1, c2);
if(S3 >= OINF) return inforder::celldistance(c1, c2);
#if CAP_BT && MAXMDIM >= 4
if(bt::in() && WDIM == 3)
return bt::celldistance3(c1, c2);
#endif
#if MAXMDIM >= 4
if(euc::in())
return euc::celldistance(c1, c2);
if(hyperbolic && WDIM == 3) return reg3::celldistance(c1, c2);
#endif
if(INVERSE) {
c1 = gp::get_mapped(c1);
c2 = gp::get_mapped(c2);
return UIU(celldistance(c1, c2)) / 2;
/* TODO */
}
if(euclid) return clueless_celldistance(c1, c2);
return hyperbolic_celldistance(c1, c2);
}
EX vector<cell*> build_shortest_path(cell *c1, cell *c2) {
#if CAP_CRYSTAL
if(cryst) return crystal::build_shortest_path(c1, c2);
#endif
vector<cell*> p;
if(euclid) {
p.push_back(c1);
hyperpoint h = tC0(calc_relative_matrix(c2, c1, C0));
cell *x = c1;
transmatrix T1 = rspintox(h);
int d = celldistance(c1, c2);
int steps = d * 10;
ld step = hdist0(h) / steps;
for(int i=0; i< steps; i++) {
T1 = T1 * xpush(step);
virtualRebase(x, T1);
println(hlog, "x = ", x, "p length = ", isize(p), " dist = ", hdist0(tC0(T1)), " dist from end = ", hdist(tC0(T1), tC0(calc_relative_matrix(c2, x, C0))));
while(x != p.back()) {
forCellCM(c, p.back())
if(celldistance(x, c) < celldistance(x, p.back())) {
p.push_back(c);
break;
}
}
}
if(isize(p) != d + 1)
println(hlog, "warning: path size ", isize(p), " should be ", d+1);
}
else if(c2 == currentmap->gamestart()) {
while(c1 != c2) {
p.push_back(c1);
forCellCM(c, c1) if(celldist(c) < celldist(c1)) { c1 = c; goto next1; }
throw hr_shortest_path_exception();
next1: ;
}
p.push_back(c1);
}
else if(c1 == currentmap->gamestart()) {
p = build_shortest_path(c2, c1);
reverse(p.begin(), p.end());
}
else {
while(c1 != c2) {
p.push_back(c1);
forCellCM(c, c1) if(celldistance(c, c2) < celldistance(c1, c2)) { c1 = c; goto next; }
throw hr_shortest_path_exception();
next: ;
}
p.push_back(c1);
}
return p;
}
EX void clearCellMemory() {
#if MAXMDIM >= 4 && CAP_RAY
if(intra::in) {
intra::erase_all_maps();
return;
}
#endif
for(int i=0; i<isize(allmaps); i++)
if(allmaps[i])
delete allmaps[i];
allmaps.clear();
currentmap = nullptr;
last_cleared = NULL;
saved_distances.clear();
dists_computed.clear();
keep_distances_from.clear(); perma_distances = 0;
pd_from = NULL;
gp::gp_adj.clear();
}
auto cellhooks = addHook(hooks_clearmemory, 500, clearCellMemory);
EX bool isNeighbor(cell *c1, cell *c2) {
for(int i=0; i<c1->type; i++) if(c1->move(i) == c2) return true;
return false;
}
EX bool isNeighborCM(cell *c1, cell *c2) {
for(int i=0; i<c1->type; i++) if(createMov(c1, i) == c2) return true;
return false;
}
EX int neighborId(cell *ofWhat, cell *whichOne) {
for(int i=0; i<ofWhat->type; i++) if(ofWhat->move(i) == whichOne) return i;
return -1;
}
EX int mine_adjacency_rule = 0;
#if HDR
struct adj_data {
cell *c;
bool mirrored;
transmatrix T;
};
#endif
EX array<map<cell*, vector<adj_data>>, 2> adj_memo;
EX bool geometry_has_alt_mine_rule() {
if(S3 >= OINF) return false;
if(WDIM == 2) return valence() > 3;
if(WDIM == 3) return !among(geometry, gHoroHex, gCell5, gBitrunc3, gCell8, gECell8, gCell120, gECell120);
return true;
}
EX vector<adj_data> adj_minefield_cells_full(cell *c) {
auto& am = adj_memo[mine_adjacency_rule];
if(am.count(c)) return am[c];
if(isize(am) > 10000) am.clear();
auto& res = am[c];
if(mine_adjacency_rule == 0 || !geometry_has_alt_mine_rule()) {
forCellIdCM(c2, i, c) res.emplace_back(adj_data{c2, c->c.mirror(i), currentmap->adj(c, i)});
}
else if(WDIM == 2) {
cellwalker cw(c, 0);
transmatrix T = Id;
T = T * currentmap->adj(c, 0);
cw += wstep;
cw++;
cellwalker cw1 = cw;
do {
res.emplace_back(adj_data{cw.at, cw.mirrored, T});
T = T * currentmap->adj(cw.at, cw.spin);
cw += wstep;
cw++;
if(cw.cpeek() == c) cw++;
}
while(cw != cw1);
}
else {
auto& ss = currentmap->get_cellshape(c);
const vector<hyperpoint>& vertices = ss.vertices_only_local;
manual_celllister cl;
cl.add(c);
vector<transmatrix> M = {Id};
for(int i=0; i<isize(cl.lst); i++) {
cell *c1 = cl.lst[i];
bool shares = false;
transmatrix T = M[i];
if(c != c1) {
auto& ss1 = currentmap->get_cellshape(c1);
auto& vertices1 = ss1.vertices_only_local;
for(hyperpoint h: vertices) for(hyperpoint h2: vertices1)
if(hdist(h, T * h2) < 1e-6) shares = true;
if(shares) res.emplace_back(adj_data{c1, det(T) < 0, T});
}
if(shares || c == c1) forCellIdEx(c2, i, c1) {
if(cl.listed(c2)) continue;
cl.add(c2);
M.push_back(T * currentmap->adj(c1, i));
}
}
}
return res;
}
EX vector<cell*> adj_minefield_cells(cell *c) {
vector<cell*> res;
auto ori = adj_minefield_cells_full(c);
for(auto p: ori) res.push_back(p.c);
return res;
}
EX vector<int> reverse_directions(cell *c, int dir) {
if(PURE && !(kite::in() && WDIM == 2)) return reverse_directions(c->master, dir);
int d = c->degree();
if(d & 1)
return { gmod(dir + c->type/2, c->type), gmod(dir + (c->type+1)/2, c->type) };
else
return { gmod(dir + c->type/2, c->type) };
}
EX vector<int> reverse_directions(heptagon *c, int dir) {
int d = c->degree();
switch(geometry) {
case gBinary3:
if(dir < 4) return {8};
else if(dir >= 8) return {0, 1, 2, 3};
else return {dir ^ 1};
case gHoroTris:
if(dir < 4) return {7};
else if(dir == 4) return {5, 6};
else if(dir == 5) return {6, 4};
else if(dir == 6) return {4, 5};
else return {0, 1, 2, 3};
case gHoroRec:
if(dir < 2) return {6};
else if(dir == 6) return {0, 1};
else return {dir^1};
case gKiteDart3: {
if(dir < 4) return {dir ^ 2};
if(dir >= 6) return {4, 5};
vector<int> res;
for(int i=6; i<c->type; i++) res.push_back(i);
return res;
}
case gHoroHex: {
if(dir < 6) return {12, 13};
if(dir >= 12) return {0, 1, 2, 3, 4, 5};
const int dt[] = {0,0,0,0,0,0,10,11,9,8,6,7,0,0};
return {dt[dir]};
}
default:
if(d & 1)
return { gmod(dir + c->type/2, c->type), gmod(dir + (c->type+1)/2, c->type) };
else
return { gmod(dir + c->type/2, c->type) };
}
}
EX bool standard_tiling() {
return !arcm::in() && !kite::in() && !bt::in() && !arb::in() && (WDIM == 2 || !nonisotropic) && !mhybrid;
}
EX int valence() {
if(BITRUNCATED || IRREGULAR) return 3;
if(INVERSE) return WARPED ? 4 : max(S3, S7);
#if CAP_ARCM
if(arcm::in()) return arcm::valence();
#endif
if(arb::in()) return arb::current.min_valence;
return S3;
}
/** portalspaces are not defined outside of a boundary */
EX bool is_boundary(cell *c) {
if(c == &out_of_bounds) return true;
return ((cgflags & qPORTALSPACE) || intra::in) && isWall(c->wall);
}
/** compute the distlimit for a tessellation automatically */
EX int auto_compute_range(cell *c) {
if(sphere) {
cgi.base_distlimit = SEE_ALL;
return SEE_ALL;
}
cgi.base_distlimit = 0;
const int expected_count = 400;
celllister cl(c, 1000, expected_count, NULL);
int z = isize(cl.dists);
int d = cl.dists.back();
while(cl.dists[z-1] == d) z--;
if(true) { // if(cgflags & DF_GEOM) {
println(hlog, "last distance = ", cl.dists.back());
println(hlog, "ball size = ", isize(cl.dists));
println(hlog, "previous ball size = ", z);
}
if(isize(cl.dists) * z > expected_count * expected_count) d--;
return ginf[geometry].distlimit[0] = cgi.base_distlimit = d;
}
EX cell out_of_bounds;
EX heptagon oob;
}