mirror of
				https://github.com/zenorogue/hyperrogue.git
				synced 2025-10-31 14:02:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1472 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1472 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Hyperbolic Rogue -- Euclidean geometry
 | |
| // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
 | |
| 
 | |
| /** \file euclid.cpp
 | |
|  *  \brief Euclidean geometry, including 2D, 3D, and quotient spaces
 | |
|  */
 | |
| 
 | |
| #include "hyper.h"
 | |
| namespace hr {
 | |
| 
 | |
| EX namespace euc {
 | |
| 
 | |
|   #if HDR
 | |
|   struct coord : array<int, 3> {
 | |
|     explicit coord() = default;
 | |
|     constexpr explicit coord(int x, int y, int z) : array<int,3> {{x,y,z}} {}
 | |
|     coord& operator += (coord b) { for(int i: {0,1,2}) self[i] += b[i]; return self; }
 | |
|     coord& operator -= (coord b) { for(int i: {0,1,2}) self[i] -= b[i]; return self; }
 | |
|     coord operator + (coord b) const { coord a = self; return a += b; }
 | |
|     coord operator - (coord b) const { coord a = self; return a -= b; }
 | |
|     coord operator -() const { return coord(-self[0], -self[1], -self[2]); }
 | |
|     coord& operator +() { return self; }
 | |
|     const coord& operator +() const { return self; }
 | |
|     coord operator *(int x) const { return coord(x*self[0], x*self[1], x*self[2]); }
 | |
|     friend coord operator *(int x, const coord& y) { return coord(x*y[0], x*y[1], x*y[2]); }
 | |
|     };
 | |
|   
 | |
|   typedef array<coord, 3> intmatrix;
 | |
|   #endif
 | |
| 
 | |
|   EX const coord euzero = coord(0,0,0);
 | |
|   EX const coord eutester = coord(3,7,0);
 | |
|   EX intmatrix euzeroall = make_array<coord>(euzero, euzero, euzero);
 | |
| 
 | |
|   static constexpr intmatrix main_axes = make_array<coord>(coord(1,0,0), coord(0,1,0), coord(0,0,1));
 | |
| 
 | |
|   EX int octtet_shvid(coord at) {
 | |
|     if(at[0] % 2 == 0) return 0;
 | |
|     return ((at[0] + at[1] + at[2]) & 2) ? 2 : 1;
 | |
|     }
 | |
| 
 | |
|   EX bool octtet_valid(coord at) {
 | |
|     bool b = (at[0] & 1) == (at[1] & 1) && (at[0] & 1) == (at[2] & 1);
 | |
|     if(!b) return false;
 | |
|     if((at[0] & 1) == 0) return ((at[0] + at[1] + at[2]) & 2) == 0;
 | |
|     return true;
 | |
|     }
 | |
|   
 | |
|   EX vector<coord> get_shifttable() {
 | |
|     static const coord D0 = main_axes[0];
 | |
|     static const coord D1 = main_axes[1];
 | |
|     static const coord D2 = main_axes[2];
 | |
|     vector<coord> shifttable;
 | |
|         
 | |
|     /* for portal spaces... */
 | |
|     auto g = geometry;
 | |
|     if(S7 == 6 && WDIM == 3) g = gCubeTiling;
 | |
| 
 | |
|     switch(g) {
 | |
|       case gCubeTiling:
 | |
|       case gMengerSponge:
 | |
|         shifttable = { +D0, +D1, +D2 };
 | |
|         break;
 | |
|       
 | |
|       case gRhombic3:
 | |
|       case gSierpinskiTet:
 | |
|         shifttable = { D0+D1, D0+D2, D1+D2, D1-D2, D0-D2, D0-D1 };
 | |
|         break;
 | |
|       
 | |
|       case gBitrunc3:
 | |
|         shifttable = { 2*D0, 2*D1, 2*D2, D0+D1+D2, D0+D1-D2, D0-D1-D2, D0-D1+D2 };
 | |
|         break;
 | |
|       
 | |
|       case gEuclid:
 | |
|       case gSierpinski3:
 | |
|       case gSixFlake:
 | |
|         shifttable = { D0, D1, D1-D0, -D0, -D1, D0-D1 };
 | |
|         break;
 | |
| 
 | |
|       case gEuclidSquare:
 | |
|       case gSierpinski4:
 | |
|         shifttable = { D0, D1, -D0, -D1 };
 | |
|         break;
 | |
| 
 | |
|       case gOctTet3:
 | |
|         shifttable = {
 | |
|           D0+D1+D2, D0-D1-D2, -D0+D1-D2, -D0-D1+D2,
 | |
|          -D0-D1-D2,-D0+D1+D2, +D0-D1+D2, +D0+D1-D2
 | |
|           };
 | |
|         break;
 | |
|       
 | |
|       default:
 | |
|         throw hr_exception("euc::get_shifttable() called in geometry that is not euclid3");
 | |
|       }
 | |
|     
 | |
|     // reverse everything
 | |
|     int s = isize(shifttable);
 | |
|     for(int i=0; i<s; i++) shifttable.push_back(-shifttable[i]);
 | |
|     return shifttable;
 | |
|     }
 | |
|   
 | |
|   EX coord basic_canonicalize(coord x);
 | |
|   
 | |
|   #if HDR
 | |
|   struct torus_config {
 | |
|     /** periods entered by the user */
 | |
|     intmatrix user_axes;
 | |
|     /** OR'ed flags: 1 -- flip X in 3D, 2 -- flip Y in 3D, 4 -- flip X/Y in 3D, 8 -- Klein bottle in 2D, 16 -- third turn in 3D, 32 -- Hantzsche-Wendt in 3D */
 | |
|     int twisted;
 | |
| 
 | |
|     torus_config() {}
 | |
|     torus_config(intmatrix user_axes, int twisted) : user_axes(user_axes), twisted(twisted) {}
 | |
|     };
 | |
|   
 | |
|   struct torus_config_full : torus_config {
 | |
|     /** optimal representation of the periods */
 | |
|     intmatrix optimal_axes;
 | |
|     /** regular axes (?) */
 | |
|     intmatrix regular_axes;
 | |
|     /** in 2D: the period vector which is reflected */
 | |
|     gp::loc twisted_vec;
 | |
|     /** in 2D: a vector orthogonal to twisted_vec */
 | |
|     gp::loc ortho_vec;
 | |
|     /** determinant */
 | |
|     int det;
 | |
|     /** the number of infinite dimensions */
 | |
|     int infinite_dims;
 | |
|     /** ? */  
 | |
|     intmatrix inverse_axes;
 | |
|     /** for canonicalization on tori */
 | |
|     map<coord, int> hash;
 | |
|     vector<coord> seq;
 | |
|     int index;
 | |
| 
 | |
|     void reset() { index = 0; hash.clear(); seq.clear(); }
 | |
|     
 | |
|     /** add to the tori canonicalization list */
 | |
|     void add(coord val);
 | |
|     
 | |
|     /** get the representative on the tori canonicalization list */
 | |
|     coord get(coord x);
 | |
| 
 | |
|     /** find the equivalence class of coo */
 | |
|     coord compute_cat(coord coo);
 | |
| 
 | |
|     /** canonicalize coord x; in case of twisting, adjust d, M, and mirr accordingly */
 | |
|     void canonicalize(coord& x, coord& d, transmatrix& M, bool& mirr);
 | |
|     };
 | |
|   #endif
 | |
|   EX torus_config eu_input, eu_edit;
 | |
|   EX torus_config_full eu;
 | |
| 
 | |
|   struct hrmap_euclidean : hrmap_standard {
 | |
|     vector<coord> shifttable;
 | |
|     vector<transmatrix> tmatrix;
 | |
|     map<coord, heptagon*> spacemap;
 | |
|     map<heptagon*, coord> ispacemap;
 | |
|     cell *camelot_center;
 | |
| 
 | |
|     map<gp::loc, struct cdata> eucdata;
 | |
|     
 | |
|     void compute_tmatrix() {
 | |
|       cgi.require_basics();
 | |
|       shifttable = get_shifttable();
 | |
|       tmatrix.resize(S7);
 | |
|       for(int i=0; i<S7; i++) tmatrix[i] = eumove(shifttable[i]);
 | |
|       }
 | |
|     
 | |
|     void on_dim_change() override {
 | |
|       compute_tmatrix();
 | |
|       }
 | |
| 
 | |
|     vector<cell*> toruscells;  
 | |
|     vector<cell*>& allcells() override { 
 | |
|       if(closed_manifold && !disksize) {
 | |
|         if(isize(toruscells) == 0) {
 | |
|           celllister cl(getOrigin()->c7, 1000, 1000000, NULL);
 | |
|           toruscells = cl.lst;
 | |
|           }
 | |
|         return toruscells;
 | |
|         }
 | |
|       return hrmap::allcells();
 | |
|       }
 | |
| 
 | |
|     hrmap_euclidean() {
 | |
|       compute_tmatrix();
 | |
|       camelot_center = NULL;
 | |
|       build_torus3(geometry);    
 | |
|       #if CAP_IRR
 | |
|       if(!valid_irr_torus()) { 
 | |
|         addMessage(XLAT("Error: period mismatch"));
 | |
|         eu_input = irr::base_config; 
 | |
|         build_torus3(geometry); 
 | |
|         }
 | |
|       #endif
 | |
|       }
 | |
| 
 | |
|     heptagon *getOrigin() override {
 | |
|       return get_at(euzero);
 | |
|       }
 | |
| 
 | |
|     heptagon *get_at(coord at) {
 | |
|       if(spacemap.count(at)) 
 | |
|         return spacemap[at];
 | |
|       else {
 | |
|         int type = S7;
 | |
|         if(geometry == gOctTet3 && octtet_shvid(at)) type = 4;
 | |
|         auto h = init_heptagon(type);
 | |
|         if(!IRREGULAR) 
 | |
|           h->c7 = newCell(type, h);
 | |
|         #if CAP_IRR
 | |
|         else {
 | |
|           coord m0 = shifttable[0];
 | |
|           transmatrix dummy;
 | |
|           bool mirr;
 | |
|           auto ati = at;
 | |
|           irr::base_config.canonicalize(ati, m0, dummy, mirr);
 | |
|           indenter id(2);
 | |
|           for(int spin=0; spin<S7; spin++) if(shifttable[spin] == m0) {
 | |
|             irr::link_to_base(h, heptspin(((hrmap_euclidean*)irr::base)->get_at(ati), spin, mirr));
 | |
|             break;
 | |
|             }
 | |
|           }
 | |
|         #endif
 | |
|         if(S7 != 14)
 | |
|           h->zebraval = gmod(at[0] + at[1] * 2 + at[2] * 4, 5);
 | |
|         else 
 | |
|           h->zebraval = at[0] & 1;
 | |
|         spacemap[at] = h;
 | |
|         ispacemap[h] = at;
 | |
| 
 | |
|         return h;
 | |
|         }
 | |
|       }
 | |
|     
 | |
|     heptagon *create_step(heptagon *parent, int d) override {
 | |
|       int d1 = (d+S7/2)%S7;
 | |
|       bool mirr = false;
 | |
|       transmatrix I;
 | |
|       auto dx = d;
 | |
|       auto at = ispacemap[parent];
 | |
|       auto d2 = d1;
 | |
|       if(geometry == gOctTet3) {
 | |
|         auto id = octtet_shvid(at);
 | |
|         if(id == 2) { dx += 4; d1 &= 3; }
 | |
|         if(id == 0) { d1 &= 3; }
 | |
|         }
 | |
|       auto v = at + shifttable[dx];
 | |
|       auto st = shifttable[d2];
 | |
|       eu.canonicalize(v, st, I, mirr);
 | |
|       if(eu.twisted)
 | |
|         for(int i=0; i<S7; i++) if(shifttable[i] == st) d1 = i;
 | |
| 
 | |
|       heptagon *h = get_at(v);
 | |
|       h->c.connect(d1, parent, d, mirr);
 | |
|       return h;
 | |
|       }  
 | |
| 
 | |
|     transmatrix adj(heptagon *h, int i) override {
 | |
|       if(geometry == gOctTet3 && octtet_shvid(ispacemap[h]) == 2) i += 4;
 | |
|       if(!eu.twisted) return tmatrix[i];
 | |
|       transmatrix res = tmatrix[i];
 | |
|       coord id = ispacemap[h];
 | |
|       id += shifttable[i];
 | |
|       auto dummy = euzero;
 | |
|       bool dm = false;
 | |
|       eu.canonicalize(id, dummy, res, dm);
 | |
|       
 | |
|       return res;
 | |
|       }
 | |
| 
 | |
|     transmatrix adj(cell *c, int i) override {
 | |
|       if(dont_inverse()) return adj(c->master, i);
 | |
|       if(WDIM == 3) return adj(c->master, i);
 | |
|       else return hrmap_standard::adj(c, i);
 | |
|       }
 | |
| 
 | |
|     void draw_at(cell *at, const shiftmatrix& where) override {
 | |
|       dq::clear_all();
 | |
|       dq::enqueue_by_matrix(at->master, where * master_relative(centerover, true));
 | |
|       
 | |
|       while(!dq::drawqueue.empty()) {
 | |
|         auto& p = dq::drawqueue.front();
 | |
|         heptagon *h = p.first;
 | |
|         shiftmatrix V = p.second;      
 | |
|         dq::drawqueue.pop();
 | |
|         
 | |
|         cell *c = h->c7;
 | |
| 
 | |
|         bool draw = drawcell_subs(c, V * spin(master_to_c7_angle()));
 | |
|         if(in_wallopt() && isWall3(c) && isize(dq::drawqueue) > 1000 && !hybrid::pmap) continue;
 | |
|   
 | |
|         if(draw) for(int i=0; i<h->type; i++) {
 | |
|           auto V1 = V * adj(h, i);
 | |
|           if(geom3::apply_break_cylinder && cgi.emb->break_cylinder(V, V1)) continue;
 | |
|           dq::enqueue_by_matrix(h->move(i), optimized_shift(V1));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     
 | |
|     transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
 | |
|       if(eu.twisted) {
 | |
|         if(h1 == h2) return Id;
 | |
|         for(int s=0; s<S7; s++) if(h2 == h1->move(s)) return adj(h1, s);
 | |
|         coord c1 = ispacemap[h1];
 | |
|         coord c2 = ispacemap[h2];
 | |
|         transmatrix T = eumove(c2 - c1);
 | |
| 
 | |
|         transmatrix I = Id;
 | |
|         coord cs = c1;
 | |
|         for(int s=0; s<4; s++) {
 | |
|           for(int a=-1; a<=1; a++)
 | |
|           for(int b=-1; b<=1; b++) {
 | |
|             if(b && WDIM == 2) continue;
 | |
|             transmatrix T1 = I * eumove((c2 - cs) + a*eu.user_axes[0] + b*eu.user_axes[1]);
 | |
|             if(hdist(tC0(T1), hint) < hdist(tC0(T), hint))
 | |
|               T = T1;
 | |
|             }
 | |
|           auto co = eu.user_axes[WDIM-1];
 | |
|           cs += co;
 | |
|           I = I * eumove(co);
 | |
|           auto dummy = euzero;
 | |
|           bool dm = false;
 | |
|           eu.canonicalize(cs, dummy, I, dm);
 | |
|           }
 | |
|         return T;
 | |
|         }
 | |
|       auto d = ispacemap[h2] - ispacemap[h1];
 | |
|       d = basic_canonicalize(d);
 | |
|       return eumove(d);
 | |
|       }
 | |
|     
 | |
|     subcellshape& get_cellshape(cell* c) override {
 | |
|       if(geometry != gOctTet3) return *cgi.heptshape;
 | |
|       return cgi.subshapes[shvid(c)];
 | |
|       }
 | |
| 
 | |
|     int pattern_value(cell *c) override {
 | |
|       if(WDIM == 2) {
 | |
|         auto p = euc2_coordinates(c);
 | |
|         if(closed_manifold) return p.first + p.second * (1 << 16);
 | |
|         return gmod(p.first - 22 * p.second, 3*127);
 | |
|         }
 | |
|       else {
 | |
|         auto co = ispacemap[c->master];
 | |
|         if(closed_manifold) return co[0] + (co[1] << 10) + (co[2] << 20);
 | |
|         return gmod(co[0] + 3 * co[1] + 9 * co[2], 3*127);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     int shvid(cell *c) override {
 | |
|       if(geometry == gOctTet3)
 | |
|         return octtet_shvid(ispacemap[c->master]);
 | |
|       return hrmap_standard::shvid(c);
 | |
|       }
 | |
| 
 | |
|     transmatrix ray_iadj(cell *c, int i) override {
 | |
|       if(geometry != gOctTet3) return hrmap_standard::ray_iadj(c, i);
 | |
|       auto& v = get_cellshape(c).faces_local[i];
 | |
|       hyperpoint h = project_on_triangle(v[0], v[1], v[2]);
 | |
|       transmatrix T = rspintox(h);
 | |
|       return T * xpush(-2*hdist0(h)) * spintox(h);
 | |
|       }
 | |
| 
 | |
|     };
 | |
|   
 | |
|   hrmap_euclidean* cubemap() {
 | |
|     if(fake::in()) return FPIU(cubemap());
 | |
|     return ((hrmap_euclidean*) currentmap);
 | |
|     }
 | |
| 
 | |
|   hrmap_euclidean* eucmap() { 
 | |
|     return cubemap(); 
 | |
|     }
 | |
| 
 | |
|   EX vector<coord>& get_current_shifttable() { return cubemap()->shifttable; }
 | |
|   EX map<coord, heptagon*>& get_spacemap() { return cubemap()->spacemap; }
 | |
|   EX map<heptagon*, coord>& get_ispacemap() { return cubemap()->ispacemap; }
 | |
|   EX cell *& get_camelot_center() { return cubemap()->camelot_center; }
 | |
| 
 | |
|   EX heptagon* get_at(coord co) { return cubemap()->get_at(co); }
 | |
| 
 | |
|   EX hrmap* new_map() {
 | |
|     return new hrmap_euclidean;
 | |
|     }
 | |
| 
 | |
|   EX transmatrix move_matrix(heptagon *h, int i) { 
 | |
|     return cubemap()->adj(h, i);
 | |
|     }
 | |
|   
 | |
|   EX bool pseudohept(cell *c) {
 | |
|     if(cgflags & qPORTALSPACE) return false;
 | |
|     coord co = cubemap()->ispacemap[c->master];
 | |
|     if(S7 == 12) {
 | |
|       for(int i=0; i<3; i++) if((co[i] & 1)) return false;
 | |
|       }
 | |
|     else {
 | |
|       for(int i=0; i<3; i++) if(!(co[i] & 1)) return false;
 | |
|       }
 | |
|     return true;
 | |
|     }
 | |
| 
 | |
|   EX int dist_alt(cell *c) {
 | |
|     if(WDIM == 2) {
 | |
|       auto v = full_coords2(c);
 | |
|       return euclidAlt(v.first, v.second);
 | |
|       }
 | |
|     if(specialland == laCamelot) return dist_relative(c) + roundTableRadius(c);
 | |
|     auto v = cubemap()->ispacemap[c->master];
 | |
|     if(S7 == 6) return v[2];
 | |
|     else if(S7 == 12) return (v[0] + v[1] + v[2]) / 2;
 | |
|     else return v[2]/2;
 | |
|     }
 | |
| 
 | |
|   EX bool get_emerald(cell *c) {
 | |
|     auto v = cubemap()->ispacemap[c->master];
 | |
|     int s0 = 0, s1 = 0;
 | |
|     for(int i=0; i<3; i++) {
 | |
|       v[i] = gmod(v[i], 6);
 | |
|       int d = min(v[i], 6-v[i]);;
 | |
|       s0 += min(v[i], 6-v[i]);
 | |
|       s1 += 3-d;
 | |
|       }
 | |
|     if(s0 == s1) println(hlog, "equality");
 | |
|     return s0 > s1;
 | |
|     }
 | |
|   
 | |
|   bool cellvalid(coord v) {
 | |
|     if(S7 == 6) return true;
 | |
|     if(S7 == 12) return (v[0] + v[1] + v[2]) % 2 == 0;
 | |
|     if(S7 == 14) return v[0] % 2 == v[1] % 2 && v[0] % 2 == v[2] % 2;
 | |
|     return false;
 | |
|     }
 | |
| 
 | |
|   EX int celldistance(coord v) {
 | |
|     if(S7 == 6) 
 | |
|       return abs(v[0]) + abs(v[1]) + abs(v[2]);
 | |
|     else {
 | |
|       for(int i=0; i<3; i++) v[i] = abs(v[i]);
 | |
|       sort(v.begin(), v.end());
 | |
|       int dist = 0;
 | |
|       if(S7 == 12) {
 | |
|         int d = v[1] - v[0]; v[1] -= d; v[2] -= d;
 | |
|         dist += d;
 | |
|         int m = min((v[2] - v[0]), v[0]);
 | |
|         dist += 2 * m;
 | |
|         v[0] -= m; v[1] -= m; v[2] -= m * 2;
 | |
|         if(v[0])
 | |
|           dist += (v[0] + v[1] + v[2]) / 2;
 | |
|         else
 | |
|           dist += v[2];
 | |
|         }
 | |
|       else {
 | |
|         dist = v[0] + (v[1] - v[0]) / 2 + (v[2] - v[0]) / 2;
 | |
|         }
 | |
|       return dist;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   EX int celldistance(cell *c1, cell *c2) {    
 | |
|     auto cm = cubemap();
 | |
|     if(GDIM == 2)
 | |
|       return dist(full_coords2(c1), full_coords2(c2));
 | |
|     return celldistance(basic_canonicalize(cm->ispacemap[c1->master] - cm->ispacemap[c2->master]));
 | |
|     }
 | |
| 
 | |
|   EX void set_land(cell *c) {
 | |
|     if(cgflags & qPORTALSPACE) return;
 | |
|     setland(c, specialland); 
 | |
|     auto m = cubemap();
 | |
|     auto co = m->ispacemap[c->master];
 | |
|     
 | |
|     int dv = 1;
 | |
|     if(geometry != gCubeTiling) dv = 2;
 | |
|   
 | |
|     int hash = 0;
 | |
|     for(int a=0; a<3; a++) hash = 1317 * hash + co[a] / 4;
 | |
|   
 | |
|     set_euland3(c, co[0]*120, co[1]*120, (co[1]+co[2]) / dv, hash);
 | |
|     }
 | |
|   
 | |
|   EX int dist_relative(cell *c) {
 | |
|     auto m = cubemap();
 | |
|     auto& cc = m->camelot_center;
 | |
|     int r = roundTableRadius(NULL);
 | |
|     cell *start = m->gamestart();
 | |
|     if(!cc) {
 | |
|       cc = start;
 | |
|       while(euc::celldistance(cc, start) < r + 5)
 | |
|         cc = cc->cmove(hrand(cc->type));
 | |
|       }
 | |
|     
 | |
|     return euc::celldistance(cc, c) - r;
 | |
|     }
 | |
|   
 | |
|   /* quotient spaces */
 | |
| 
 | |
|   int determinant(const intmatrix T) {
 | |
|     int det = 0;
 | |
|     for(int i=0; i<3; i++) 
 | |
|       det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3];
 | |
|     for(int i=0; i<3; i++) 
 | |
|       det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3];
 | |
|     return det;
 | |
|     }
 | |
|   
 | |
|   intmatrix scaled_inverse(const intmatrix T) {
 | |
|     intmatrix T2;
 | |
|     for(int i=0; i<3; i++) 
 | |
|     for(int j=0; j<3; j++) 
 | |
|       T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]);
 | |
|     return T2;
 | |
|     }
 | |
|   
 | |
|   EX torus_config torus3(int x, int y, int z) {
 | |
|     intmatrix T0 = euzeroall;
 | |
|     tie(T0[0][0], T0[1][1], T0[2][2]) = make_tuple(x, y, z);    
 | |
|     return {T0, 0};
 | |
|     }
 | |
| 
 | |
|   EX torus_config clear_torus3() {
 | |
|     return {euzeroall, 0};
 | |
|     }  
 | |
|   
 | |
|   coord torus_config_full::compute_cat(coord coo) {
 | |
|     coord cat = euzero;
 | |
|     auto& T2 = inverse_axes;
 | |
|     for(int i=0; i<3; i++) {
 | |
|       int val = T2[0][i] * coo[0] + T2[1][i] * coo[1] + T2[2][i] * coo[2];
 | |
|       if(i < WDIM - infinite_dims) val = gmod(val, det);
 | |
|       cat += val * main_axes[i];
 | |
|       }
 | |
|     return cat;
 | |
|     }
 | |
|     
 | |
|   EX bool valid_third_turn(const intmatrix& m) {
 | |
|     if(m[0][2] != -m[0][0]-m[0][1]) return false;
 | |
|     if(m[1][0] != m[0][1]) return false;
 | |
|     if(m[1][1] != m[0][2]) return false;
 | |
|     if(m[1][2] != m[0][0]) return false;
 | |
|     if(m[2][0] != m[2][1]) return false;
 | |
|     if(m[2][0] != m[2][2]) return false;
 | |
|     return true;
 | |
|     }
 | |
| 
 | |
|   EX torus_config make_hantzsche_wendt(int v) {
 | |
|     intmatrix im;
 | |
|     for(int i=0; i<3; i++)
 | |
|     for(int j=0; j<3; j++) im[i][j] = 0;
 | |
| 
 | |
|     for(int i=0; i<3; i++) {
 | |
|       im[i][i] = v;
 | |
|       im[i][(i+1)%3] = v;
 | |
|       }
 | |
|     
 | |
|     return {im, 32};
 | |
|     }
 | |
|   
 | |
|   EX bool valid_hantzsche_wendt(const intmatrix& m) {
 | |
|     return m[0][0] > 0 && m == make_hantzsche_wendt(m[0][0]).user_axes;
 | |
|     }
 | |
| 
 | |
|   EX torus_config make_third_turn(int a, int b, int c) {
 | |
|     intmatrix T0;
 | |
|     T0[0][0] = a;
 | |
|     T0[0][1] = b;
 | |
|     T0[2][0] = c;
 | |
|     T0[0][2] = -T0[0][0]-T0[0][1];
 | |
|     T0[1][0] = T0[0][1];
 | |
|     T0[1][1] = T0[0][2];
 | |
|     T0[1][2] = T0[0][0];
 | |
|     T0[2][1] = T0[2][2] = c;
 | |
|     return {T0, 8};
 | |
|     }
 | |
| 
 | |
|   EX torus_config make_quarter_turn(int a, int b, int c) {
 | |
|     intmatrix T0 = euzeroall;
 | |
|     T0[0][0] = a;
 | |
|     T0[0][1] = b;
 | |
|     T0[2][0] = c;
 | |
|     return {T0, 5};
 | |
|     }
 | |
| 
 | |
|   void torus_config_full::add(coord val) {
 | |
|     auto cat = compute_cat(val); if(hash.count(cat)) return; hash[cat] = isize(seq); seq.push_back(val);
 | |
|     }
 | |
| 
 | |
|   coord torus_config_full::get(coord x) {
 | |
|     auto cat = compute_cat(x);
 | |
|     auto& st = cubemap()->shifttable;
 | |
|     while(!hash.count(cat)) {
 | |
|       if(index == isize(seq)) throw hr_exception("no cat in hash");
 | |
|       auto v = seq[index++];
 | |
|       for(auto s: st) add(v + s);
 | |
|       }
 | |
|     return seq[hash[cat]];
 | |
|     }
 | |
|   
 | |
|   EX bool valid_irr_torus() {
 | |
|     #if CAP_IRR
 | |
|     if(!IRREGULAR) return true;
 | |
|     if(eu.twisted) return false;
 | |
|     for(int i=0; i<2; i++) {
 | |
|       auto x = eu.user_axes[i];
 | |
|       coord dm = eutester;
 | |
|       transmatrix dummy = Id;
 | |
|       bool mirr = false;
 | |
|       irr::base_config.canonicalize(x, dm, dummy, mirr);
 | |
|       auto x0 = eu.user_axes[i];
 | |
|       auto dm0 = eutester;
 | |
|       eu.canonicalize(x0, dm0, dummy, mirr);
 | |
|       if(x0 != euzero || dm0 != eutester) return false;
 | |
|       }
 | |
|     #endif
 | |
|     return true;
 | |
|     }
 | |
|   
 | |
|   EX void build_torus3(eGeometry g) {
 | |
|   
 | |
|     int dim = ginf[g].g.gameplay_dimension;
 | |
|     
 | |
|     eu.user_axes = eu_input.user_axes;
 | |
|     if(dim == 2) eu.user_axes[2] = euzero;
 | |
| 
 | |
|     eu.optimal_axes = eu.user_axes;
 | |
|     
 | |
|     again:
 | |
|     for(int i=0; i<dim; i++) if(eu.optimal_axes[i] < euzero) eu.optimal_axes[i] = -eu.optimal_axes[i];
 | |
|     if(eu.optimal_axes[0] < eu.optimal_axes[1]) swap(eu.optimal_axes[0], eu.optimal_axes[1]);
 | |
|     if(eu.optimal_axes[1] < eu.optimal_axes[dim-1]) swap(eu.optimal_axes[1], eu.optimal_axes[dim-1]);
 | |
|     if(eu.optimal_axes[0] < eu.optimal_axes[1]) swap(eu.optimal_axes[0], eu.optimal_axes[1]);
 | |
|     for(int i=0; i<3; i++) {
 | |
|       int i1 = (i+1) % 3;
 | |
|       int i2 = (i+2) % 3;
 | |
|       for(int a=-10; a<=10; a++)
 | |
|       for(int b=-10; b<=10; b++) {
 | |
|         coord cand = eu.optimal_axes[i] + eu.optimal_axes[i1] * a + eu.optimal_axes[i2] * b;
 | |
|         if(celldistance(cand) < celldistance(eu.optimal_axes[i])) {
 | |
|           eu.optimal_axes[i] = cand;
 | |
|           goto again; 
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   
 | |
|     eu.regular_axes = eu.optimal_axes;
 | |
|     eu.infinite_dims = dim;
 | |
|     for(int i=0; i<dim; i++) if(eu.optimal_axes[i] != euzero) eu.infinite_dims--;
 | |
|     
 | |
|     int attempt = 0;
 | |
|     next_attempt:
 | |
|     for(int i=dim-eu.infinite_dims; i<3; i++)
 | |
|       eu.regular_axes[i] = main_axes[(attempt+i)%3];
 | |
| 
 | |
|     eu.det = determinant(eu.regular_axes);
 | |
|     if(eu.det == 0) { 
 | |
|       attempt++;
 | |
|       if(attempt == 3) {
 | |
|         println(hlog, "weird singular!\n");
 | |
|         exit(1);
 | |
|         }
 | |
|       goto next_attempt;
 | |
|       }
 | |
|       
 | |
|     if(eu.det < 0) eu.det = -eu.det;
 | |
|     
 | |
|     eu.inverse_axes = scaled_inverse(eu.regular_axes);
 | |
|     eu.reset();
 | |
|     eu.add(euzero);
 | |
|     
 | |
|     eu.twisted = eu_input.twisted;
 | |
|     if(dim == 3) {
 | |
|       auto &T0 = eu.user_axes;
 | |
|       // for OctTet3 just force all divisible by 4, for simplicity
 | |
|       if(g == gOctTet3)
 | |
|         for(int a=0; a<3; a++) for(int b=0; b<3; b++)
 | |
|           if(T0[a][b] & 3)
 | |
|             eu.twisted = 0;
 | |
|       if(valid_third_turn(eu.user_axes)) {
 | |
|         eu.twisted &= 16;
 | |
|         if(g == gRhombic3 && (T0[2][2]&1)) eu.twisted = 0;
 | |
|         if(g == gBitrunc3 && (T0[0][0]&1)) eu.twisted = 0;
 | |
|         if(g == gBitrunc3 && (T0[1][1]&1)) eu.twisted = 0;
 | |
|         }
 | |
|       else if(valid_hantzsche_wendt(eu.user_axes)) {
 | |
|         eu.twisted &= 32;
 | |
|         if(g == gBitrunc3 && (T0[0][0]&1)) eu.twisted = 0;
 | |
|         }
 | |
|       else {
 | |
|         eu.twisted &= 7;
 | |
|         if(g != gCubeTiling && ((T0[0][0]+T0[2][2]) & 1)) eu.twisted &=~ 1;
 | |
|         if(g != gCubeTiling && ((T0[1][1]+T0[2][2]) & 1)) eu.twisted &=~ 2;
 | |
|         for(int i=0; i<3; i++) for(int j=0; j<3; j++)
 | |
|           if(i != j && T0[i][j]) eu.twisted = 0;
 | |
|         if(T0[2][2] == 0) eu.twisted = 0;
 | |
|         if(T0[0][0] != T0[1][1]) eu.twisted &= 3;
 | |
|         }
 | |
|       }
 | |
|     else {
 | |
|       eu.twisted &= 8;
 | |
|       eu.twisted_vec = to_loc(eu.user_axes[1]);
 | |
|       eu.ortho_vec = to_loc(eu.user_axes[0]);
 | |
|       if(eu.twisted_vec == gp::loc{0,0}) eu.twisted = 0;
 | |
|       if(chiral(eu.twisted_vec)) eu.twisted = 0;
 | |
|       if(dscalar(eu.twisted_vec, eu.ortho_vec))
 | |
|         eu.twisted = 0;
 | |
|       }
 | |
|     
 | |
|     set_flag(ginf[g].flags, qANYQ, eu.infinite_dims < dim);
 | |
|     set_flag(ginf[g].flags, qCLOSED, eu.infinite_dims == 0);
 | |
|     set_flag(ginf[g].flags, qSMALL, eu.infinite_dims == 0 && eu.det <= 4096);
 | |
|     bool nonori = false;
 | |
|     if(eu.twisted&1) nonori = !nonori;
 | |
|     if(eu.twisted&2) nonori = !nonori;
 | |
|     if(eu.twisted&4) nonori = !nonori;
 | |
|     if(eu.twisted&8) nonori = !nonori;
 | |
|     set_flag(ginf[g].flags, qNONORIENTABLE, nonori);      
 | |
|     }
 | |
| 
 | |
|   EX void build_torus3() {
 | |
|     for(eGeometry g: { gEuclid, gEuclidSquare, gCubeTiling, gRhombic3, gBitrunc3, gOctTet3})
 | |
|       build_torus3(g);
 | |
|     }
 | |
|   
 | |
|   void swap01(transmatrix& M) {
 | |
|     for(int i=0; i<4; i++) swap(M[i][0], M[i][1]);
 | |
|     }
 | |
|   
 | |
|   gp::loc ort1() { return (S3 == 3 ? gp::loc(1, -2) : gp::loc(0, 1)); }
 | |
| 
 | |
|   int diagonal_cross(const coord& a, const coord& b) {
 | |
|     return a[0]*b[1] + a[1]*b[2] + a[2]*b[0]
 | |
|          - b[0]*a[1] - b[1]*a[2] - b[2]*a[0];
 | |
|     }
 | |
|   
 | |
|   void torus_config_full::canonicalize(coord& x, coord& d, transmatrix& M, bool& mirr) {
 | |
|     if(!twisted) {
 | |
|       if(infinite_dims == WDIM) return;
 | |
|       if(infinite_dims == WDIM-1) {
 | |
|         auto& o = optimal_axes;
 | |
|         while(celldistance(x + o[0]) <= celldistance(x)) x += o[0];
 | |
|         while(celldistance(x - o[0]) <  celldistance(x)) x -= o[0];
 | |
|         return;
 | |
|         }
 | |
|       x = get(x);
 | |
|       return;
 | |
|       }
 | |
|     auto& T0 = user_axes;
 | |
|     if(twisted & 32) {    
 | |
|       int period = T0[0][0];
 | |
|       auto& coo = x;
 | |
|       
 | |
|       while(true) {
 | |
|         restart:
 | |
|         /* These coordinates cause the algorithm below to go in circles. We simply break if they are detected */
 | |
|         if(coo[0] >= 0 && coo[1] == period - coo[0] && coo[2] == -coo[1] && coo[0]*2 > period && coo[0] < period) return;
 | |
|         if(coo[0]*2 <= -period && coo[0] >= -period && coo[2] == period+coo[0] && coo[2] == -coo[1]) return;
 | |
| 
 | |
|         /* apply periods */
 | |
|         for(int i=0; i<3; i++) {
 | |
|           int j = (i+1) % 3;
 | |
|           int k = (i+2) % 3;
 | |
|           int v1 = coo[i] + coo[j];
 | |
|           int v2 = coo[i] - coo[j];
 | |
|           if(v1 >= period) {
 | |
|             coo[i] -= period; coo[j] -= period;
 | |
|             }
 | |
|           else if(v1 < -period) {
 | |
|             coo[i] += period; coo[j] += period;            
 | |
|             }
 | |
|           else if(v2 >= period) {
 | |
|             coo[i] -= period; coo[j] += period;
 | |
|             }
 | |
|           else if(v2 < -period) {
 | |
|             coo[i] += period; coo[j] -= period;
 | |
|             }
 | |
|           else continue;
 | |
|           d[j] = -d[j]; d[k] = -d[k];
 | |
|           coo[j] = -coo[j]; coo[k] = -coo[k];
 | |
|           transmatrix S = Id;
 | |
|           S[j][j] = -1; S[k][k] = -1;
 | |
|           M = M * S;
 | |
|           goto restart;
 | |
|           }
 | |
|         return;
 | |
|         }
 | |
|       }
 | |
|     #if MAXMDIM >= 4
 | |
|     if(twisted & 16) {
 | |
|       int period = T0[2][2];
 | |
|       transmatrix RotYZX = Zero;
 | |
|       RotYZX[1][0] = 1;
 | |
|       RotYZX[2][1] = 1;
 | |
|       RotYZX[0][2] = 1;
 | |
|       RotYZX[3][3] = 1;
 | |
|       auto& coo = x;
 | |
|       while(true) {
 | |
|         auto coosum = coo[0] + coo[1] + coo[2];
 | |
|         if(coosum >= 3 * period) {
 | |
|           coo[0] -= period, coo[1] -= period, coo[2] -= period;
 | |
|           tie(d[0], d[1], d[2]) = make_tuple(d[1], d[2], d[0]);
 | |
|           tie(coo[0], coo[1], coo[2]) = make_tuple(coo[1], coo[2], coo[0]);
 | |
|           M = M * RotYZX;
 | |
|           }
 | |
|         else if(coosum < 0) {
 | |
|           coo[0] += period, coo[1] += period, coo[2] += period;
 | |
|           tie(d[0], d[1], d[2]) = make_tuple(d[2], d[0], d[1]);
 | |
|           tie(coo[0], coo[1], coo[2]) = make_tuple(coo[2], coo[0], coo[1]);
 | |
|           M = M * RotYZX * RotYZX;
 | |
|           }
 | |
|         else break;
 | |
|         }
 | |
|       if(T0[0] != euzero) {
 | |
|         while(diagonal_cross(coo, T0[1]) < 0) coo -= T0[0];
 | |
|         while(diagonal_cross(coo, T0[1]) > 0) coo += T0[0];
 | |
|         while(diagonal_cross(coo, T0[0]) > 0) coo -= T0[1];
 | |
|         while(diagonal_cross(coo, T0[0]) < 0) coo += T0[1];
 | |
|         }
 | |
|       return;
 | |
|       }
 | |
|     #endif
 | |
|     if(WDIM == 3) {
 | |
|       #if MAXMDIM >= 4
 | |
|       auto& coo = x;
 | |
|       while(coo[2] >= T0[2][2]) {
 | |
|         coo[2] -= T0[2][2];
 | |
|         if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX;
 | |
|         if(twisted & 2) coo[1] *= -1, d[1] *= -1, M = M * MirrorY;
 | |
|         if(twisted & 4) swap(coo[0], coo[1]), swap01(M), swap(d[0], d[1]);
 | |
|         }
 | |
|       while(coo[2] < 0) {
 | |
|         coo[2] += T0[2][2];
 | |
|         if(twisted & 4) swap(coo[0], coo[1]), swap(d[0], d[1]), swap01(M);
 | |
|         if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX;
 | |
|         if(twisted & 2) coo[1] *= -1, d[1] *= -1, M = M * MirrorY;
 | |
|         }
 | |
|       for(int i: {0,1})
 | |
|         if(T0[i][i]) coo[i] = gmod(coo[i], T0[i][i]);
 | |
|       return;
 | |
|       #endif
 | |
|       }
 | |
|     else {
 | |
|       gp::loc coo = to_loc(x);
 | |
|       gp::loc ort = ort1() * twisted_vec;
 | |
|       int dsc = dscalar(twisted_vec, twisted_vec);
 | |
|       gp::loc d0 (d[0], d[1]);
 | |
|       hyperpoint h = eumove(to_coord(twisted_vec)) * C0;
 | |
|       while(true) {
 | |
|         int dsx = dscalar(coo, twisted_vec);
 | |
|         if(dsx >= dsc) coo = coo - twisted_vec;
 | |
|         else if (dsx < 0) coo = coo + twisted_vec;
 | |
|         else break;
 | |
|         M = M * rspintox(h) * MirrorY * spintox(h);
 | |
|         auto s = ort * dscalar(d0, ort) * 2;
 | |
|         auto v = dscalar(ort, ort);
 | |
|         s.first /= v;
 | |
|         s.second /= v;
 | |
|         d0 = d0 - s;
 | |
|         s = ort * dscalar(coo, ort) * 2;
 | |
|         s.first /= v;
 | |
|         s.second /= v;
 | |
|         coo = coo - s;
 | |
|         mirr = !mirr;
 | |
|         }
 | |
|       if(ortho_vec != gp::loc{0,0}) {
 | |
|         int osc = dscalar(ortho_vec, ortho_vec);
 | |
|         while(true) {
 | |
|           int dsx = dscalar(coo, ortho_vec);
 | |
|           if(dsx >= osc) coo = coo - ortho_vec;
 | |
|           else if(dsx < 0) coo = coo + ortho_vec;
 | |
|           else break;
 | |
|           }
 | |
|         }
 | |
|       d[0] = d0.first; d[1] = d0.second;
 | |
|       x = to_coord(coo);
 | |
|       return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   coord basic_canonicalize(coord x) {
 | |
|     transmatrix M = Id;
 | |
|     auto dummy = euzero;
 | |
|     bool dm = false;
 | |
|     eu.canonicalize(x, dummy, M, dm);
 | |
|     return x;
 | |
|     }
 | |
| 
 | |
|   EX void prepare_torus3() {
 | |
|     eu_edit = eu_input;
 | |
|     }
 | |
|   
 | |
|   EX void show_fundamental() {
 | |
|     initquickqueue();
 | |
|     shiftmatrix M = ggmatrix(cwt.at);
 | |
|     shiftpoint h0 = M*C0;
 | |
|     auto& T_edit = eu_edit.user_axes;
 | |
|     hyperpoint ha = M.T*(eumove(T_edit[0]) * C0 - C0) / 2;
 | |
|     hyperpoint hb = M.T*(eumove(T_edit[1]) * C0 - C0) / 2;
 | |
|     if(WDIM == 3) {
 | |
|       hyperpoint hc = M.T*(eumove(T_edit[2]) * C0 - C0) / 2;
 | |
|       for(int d:{-1,1}) for(int e:{-1,1}) {
 | |
|         queueline(h0+d*ha+e*hb-hc, h0+d*ha+e*hb+hc, 0xFFFFFFFF);
 | |
|         queueline(h0+d*hb+e*hc-ha, h0+d*hb+e*hc+ha, 0xFFFFFFFF);
 | |
|         queueline(h0+d*hc+e*ha-hb, h0+d*hc+e*ha+hb, 0xFFFFFFFF);
 | |
|         }
 | |
|       }
 | |
|     else {
 | |
|       queueline(h0+ha+hb, h0+ha-hb, 0xFFFFFFFF);
 | |
|       queueline(h0-ha+hb, h0-ha-hb, 0xFFFFFFFF);
 | |
|       queueline(h0+ha+hb, h0-ha+hb, 0xFFFFFFFF);
 | |
|       queueline(h0+ha-hb, h0-ha-hb, 0xFFFFFFFF);
 | |
|       }
 | |
| 
 | |
|     quickqueue();
 | |
|     }
 | |
| 
 | |
|   intmatrix on_periods(gp::loc a, gp::loc b) {
 | |
|     intmatrix res;
 | |
|     for(int i=0; i<3; i++) for(int j=0; j<3; j++) res[i][j] = 0;
 | |
|     res[0][0] = a.first;
 | |
|     res[0][1] = a.second;
 | |
|     res[1][0] = b.first;
 | |
|     res[1][1] = b.second;
 | |
|     res[2][2] = 1;
 | |
|     return res;
 | |
|     }
 | |
|   
 | |
|   torus_config single_row_torus(int qty, int dy) { 
 | |
|     return { on_periods(gp::loc{dy, -1}, gp::loc{qty, 0}), 0 };
 | |
|     }
 | |
|   
 | |
|   torus_config regular_torus(gp::loc p) { 
 | |
|     return { on_periods(p, gp::loc(0,1) * p), 0 };
 | |
|     }
 | |
|   
 | |
|   EX torus_config rectangular_torus(int x, int y, bool klein) { 
 | |
|     if(S3 == 3) y /= 2;
 | |
|     return { on_periods(ort1() * gp::loc(y,0), gp::loc(x,0)), klein?8:0 };
 | |
|     }
 | |
|   
 | |
|   void torus_config_option(string name, char key, torus_config tc) {
 | |
|     dialog::addBoolItem(name, eu_edit.user_axes == tc.user_axes && eu_edit.twisted == tc.twisted && PURE, key);
 | |
|     dialog::add_action([tc] {
 | |
|       stop_game();
 | |
|       eu_input = eu_edit = tc;
 | |
|       set_variation(eVariation::pure);
 | |
|       start_game();
 | |
|       });
 | |
|     }
 | |
|   
 | |
|   EX int quotient_size = 2;
 | |
|   
 | |
|   EX void show_torus3() {
 | |
|     int dim = WDIM;
 | |
|     auto& T_edit = eu_edit.user_axes;
 | |
|     auto& twisted_edit = eu_edit.twisted;
 | |
|     cmode = sm::SIDE | sm::MAYDARK | sm::TORUSCONFIG;
 | |
|     gamescreen();
 | |
|     dialog::init(XLAT("Euclidean quotient spaces"));
 | |
|     
 | |
|     for(int y=0; y<dim+1; y++)
 | |
|       dialog::addBreak(100);
 | |
|     
 | |
|     dialog::addInfo(XLAT("columns specify periods"));
 | |
|     dialog::addInfo(XLAT("(vectors you need to take to get back to start)"));
 | |
|     
 | |
|     dialog::addBreak(50);
 | |
| 
 | |
|     show_fundamental();
 | |
|     if(dim == 3) {
 | |
|       bool nondiag = false;
 | |
|       for(int i=0; i<dim; i++) 
 | |
|         for(int j=0; j<dim; j++) 
 | |
|           if(T_edit[i][j] && i != j) nondiag = true;
 | |
|         
 | |
|       if(valid_third_turn(T_edit)) {
 | |
|         auto g = geometry;
 | |
|         if(g == gCubeTiling ||
 | |
|           (g == gRhombic3 && T_edit[2][2] % 2 == 0) ||
 | |
|           (g == gBitrunc3 && T_edit[0][0] % 2 == 0 && T_edit[1][1] % 2 == 0))
 | |
|           dialog::addBoolItem(XLAT("third-turn space"), twisted_edit & 16, 'x');
 | |
|         else
 | |
|           dialog::addBoolItem(XLAT("make it even"), twisted_edit & 16, 'x');
 | |
|         dialog::add_action([] { eu_edit.twisted ^= 16; });
 | |
|         }
 | |
|       
 | |
|       if(valid_hantzsche_wendt(T_edit)) {
 | |
|         auto g = geometry;
 | |
|         if(g == gCubeTiling || g == gRhombic3 || (g == gBitrunc3 && T_edit[0][0] % 2 == 0))
 | |
|           dialog::addBoolItem(XLAT("Hantzsche-Wendt space"), twisted_edit & 32, 'x');
 | |
|         else
 | |
|           dialog::addBoolItem(XLAT("make it even"), twisted_edit & 32, 'x');
 | |
|         dialog::add_action([] { eu_edit.twisted ^= 32; });
 | |
|         }
 | |
|       
 | |
|       if(nondiag) {
 | |
|         dialog::addInfo(XLAT("twisting implemented only for diagonal matrices"));
 | |
|         dialog::addInfo(XLAT("or for columns : (A,B,C), (B,C,A), (D,D,D) where A+B+C=0"));
 | |
|         dialog::addBreak(200);
 | |
|         }
 | |
|       else if(T_edit[dim-1][dim-1] == 0) {
 | |
|         dialog::addInfo(XLAT("nothing to twist"));
 | |
|         dialog::addInfo(XLAT("change the bottom left corner"));
 | |
|         dialog::addBreak(100);
 | |
|         }
 | |
|       else {
 | |
|         auto g = geometry;
 | |
|         if(g == gCubeTiling || (T_edit[0][0]+T_edit[2][2]) % 2 == 0)
 | |
|           dialog::addBoolItem(XLAT("flip X coordinate"), twisted_edit & 1, 'x');
 | |
|         else
 | |
|           dialog::addBoolItem(XLAT("flipping X impossible"), twisted_edit & 1, 'x');
 | |
|         dialog::add_action([] { eu_edit.twisted ^= 1; });
 | |
|   
 | |
|         if(g == gCubeTiling || (T_edit[1][1]+T_edit[2][2]) % 2 == 0)
 | |
|           dialog::addBoolItem(XLAT("flip Y coordinate"), twisted_edit & 2, 'y');
 | |
|         else
 | |
|           dialog::addBoolItem(XLAT("flipping Y impossible"), twisted_edit & 2, 'y');
 | |
|         dialog::add_action([] { eu_edit.twisted ^= 2; });
 | |
|   
 | |
|         if(T_edit[0][0] == T_edit[1][1])
 | |
|           dialog::addBoolItem(XLAT("swap X and Y"), twisted_edit & 4, 'z');
 | |
|         else
 | |
|           dialog::addBoolItem(XLAT("swapping impossible"), twisted_edit & 4, 'z');
 | |
|         dialog::add_action([] { eu_edit.twisted ^= 4; });
 | |
|         }
 | |
|       dialog::addBreak(50);
 | |
|       dialog::addItem("special manifolds", 'S');
 | |
|       dialog::add_action([] {
 | |
|         dialog::editNumber(quotient_size, 1, 12, 1, 2, "special manifold size", "");
 | |
|         dialog::get_di().extra_options = [] {
 | |
|           auto q = quotient_size;
 | |
|           torus_config_option(XLAT("third-turn space"), 'A', make_third_turn(q,0,q));
 | |
|           torus_config_option(XLAT("quarter-turn space"), 'B', make_quarter_turn(q,0,q));
 | |
|           torus_config_option(XLAT("Hantzsche-Wendt space"), 'C', make_hantzsche_wendt(q));
 | |
|           };
 | |
|         });
 | |
|       }
 | |
|     else {
 | |
|       if(T_edit[1][0] == 0 && T_edit[1][1] == 0)
 | |
|         dialog::addInfo(XLAT("change the second column for Möbius bands and Klein bottles"));
 | |
|       else if(chiral(to_loc(T_edit[1])))
 | |
|         dialog::addInfo(XLAT("second period is chiral -- cannot be mirrored"));
 | |
|       else if(dscalar(to_loc(T_edit[1]), to_loc(T_edit[0])))
 | |
|         dialog::addInfo(XLAT("periods must be orthogonal for mirroring"));
 | |
|       else {
 | |
|         dialog::addBoolItem(XLAT("mirror flip in the second period"), twisted_edit & 8, 'x');
 | |
|         dialog::add_action([] { eu_edit.twisted ^= 8; });
 | |
|         }
 | |
|       
 | |
|       dialog::addBreak(50);
 | |
|       torus_config_option(XLAT("single-cell torus"), 'A', regular_torus(gp::loc{1,0}));
 | |
|       torus_config_option(XLAT("large regular torus"), 'B', regular_torus(gp::loc{12, 0}));
 | |
|       torus_config_option(XLAT("Klein bottle"), 'C', rectangular_torus(12, 6, true));
 | |
|       torus_config_option(XLAT("cylinder"), 'D', rectangular_torus(6, 0, false));
 | |
|       torus_config_option(XLAT("Möbius band"), 'E', rectangular_torus(6, 0, true));
 | |
|       if(S3 == 3) torus_config_option(XLAT("seven-colorable torus"), 'F', regular_torus(gp::loc{1,2}));
 | |
|       if(S3 == 3) torus_config_option(XLAT("HyperRogue classic torus"), 'G', single_row_torus(381, -22));
 | |
|       torus_config_option(XLAT("no quotient"), 'H', rectangular_torus(0, 0, false));
 | |
|       }
 | |
|       
 | |
|     dialog::addBreak(50);
 | |
|     dialog::addBoolItem(XLAT("standard rotation"), eqmatrix(models::euclidean_spin, Id), 's');
 | |
|     dialog::add_action([] { rotate_view(models::euclidean_spin); });
 | |
| 
 | |
| #if CAP_RUG
 | |
|     if(GDIM == 2) {
 | |
|       dialog::addBoolItem(XLAT("hypersian rug mode"), (rug::rugged), 'u');
 | |
|       dialog::add_action(rug::select);
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|     dialog::addBreak(50);
 | |
|     
 | |
|     char xch = 'p';
 | |
|     for(eGeometry g: {gCubeTiling, gRhombic3, gBitrunc3, gOctTet3}) {
 | |
|       if(dim == 2) g = geometry;
 | |
|       dialog::addItem(XLAT(ginf[g].menu_displayed_name), xch++);
 | |
|       dialog::add_action([g] {
 | |
|         stop_game();
 | |
|         set_geometry(g);
 | |
|         eu_input = eu_edit;
 | |
|         start_game();
 | |
|         });
 | |
|       if(dim == 2) break;
 | |
|       }
 | |
| 
 | |
|     dialog::addBreak(50);
 | |
|     dialog::addBack();
 | |
|     dialog::display();
 | |
|     
 | |
|     int i = -1;
 | |
|     for(auto& v: dialog::items) if(v.type == dialog::diBreak) {
 | |
|       if(i >= 0 && i < dim) {
 | |
|         for(int j=0; j < dim; j++) {
 | |
|           char ch = 'a' + i * 3 + j;
 | |
|           if(displayfr(dialog::dcenter + dialog::dfspace * 4 * (j-(dim-1.)/2), v.position, 2, dialog::dfsize, its(T_edit[j][i]), 0xFFFFFF, 8))
 | |
|             getcstat = ch;
 | |
|           dialog::add_key_action(ch, [i, j] {
 | |
|             auto& T_edit = eu_edit.user_axes;
 | |
|             dialog::editNumber(T_edit[j][i], -10, +10, 1, 0, "", XLAT(
 | |
|               "This matrix lets you play on the quotient spaces of three-dimensional. "
 | |
|               "Euclidean space. Every column specifies a translation vector which "
 | |
|               "takes you back to the starting point. For example, if you put "
 | |
|               "set 2, 6, 0 on the diagonal, you get back to the starting point "
 | |
|               "if you move 2 steps in the X direction, 6 steps in the Y direction "
 | |
|               "(the quotient space is infinite in the Z direction).\n\n"
 | |
|               "You can also introduce twists for diagonal matrices: after going "
 | |
|               "the given number of steps in the Z direction, the space is also "
 | |
|               "mirrored or rotated. (More general 'twisted' spaces are currently "
 | |
|               "not implemented.)"
 | |
|               )
 | |
|               );
 | |
|             dialog::get_di().extra_options = show_fundamental;
 | |
|             });
 | |
|           }
 | |
|         }
 | |
|       i++;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   #if CAP_COMMANDLINE
 | |
|   int euArgs() {
 | |
|     using namespace arg;
 | |
|              
 | |
|     if(0) ;
 | |
|     else if(argis("-t3")) {
 | |
|       PHASEFROM(2);
 | |
|       stop_game();
 | |
|       auto& T0 = eu_input.user_axes;
 | |
|       for(int i=0; i<3; i++)
 | |
|       for(int j=0; j<3; j++) {
 | |
|         shift(); T0[i][j] = argi();
 | |
|         }
 | |
|       build_torus3();
 | |
|       }
 | |
|     else if(argis("-t2")) {
 | |
|       PHASEFROM(2);
 | |
|       stop_game();
 | |
|       auto& T0 = eu_input.user_axes;
 | |
|       for(int i=0; i<2; i++)
 | |
|       for(int j=0; j<2; j++) {
 | |
|         shift(); T0[i][j] = argi();
 | |
|         }
 | |
|       shift(); eu_input.twisted = argi();
 | |
|       build_torus3();
 | |
|       }
 | |
|     else if(argis("-twistthird")) {
 | |
|       PHASEFROM(2);
 | |
|       stop_game();
 | |
|       shift(); int a = argi();
 | |
|       shift(); int b = argi();
 | |
|       shift(); int c = argi();
 | |
|       eu_input = make_third_turn(a, b, c);
 | |
|       build_torus3();
 | |
|       }
 | |
|     else if(argis("-twist3")) {
 | |
|       PHASEFROM(2);
 | |
|       stop_game();
 | |
|       auto& T0 = eu_input.user_axes;
 | |
|       for(int i=0; i<3; i++)
 | |
|       for(int j=0; j<3; j++) T0[i][j] = 0;
 | |
|       
 | |
|       for(int i=0; i<3; i++) {
 | |
|         shift(); T0[i][i] = argi();
 | |
|         }
 | |
|       shift(); eu_input.twisted = argi();
 | |
|       build_torus3();
 | |
|       }
 | |
|     else if(argis("-hw")) {
 | |
|       PHASEFROM(2);
 | |
|       stop_game();
 | |
|       shift();
 | |
|       eu_input = make_hantzsche_wendt(argi());
 | |
|       build_torus3();
 | |
|       }
 | |
|     else if(argis("-twisttest")) {
 | |
|       start_game();
 | |
|       celllister cl(cwt.at, 10000, 10000, NULL);
 | |
|       for(cell *c: cl.lst) {
 | |
|         heptagon *h = c->master;
 | |
|         for(int i=0; i<S7; i++)
 | |
|         for(int j=0; j<S7; j++)
 | |
|         for(int k=0; k<S7; k++)
 | |
|         for(int l=0; l<S7; l++)
 | |
|           if(h->move(i) && c->move(k) && h->move(i)->move(j) == h->move(k)->move(l) && h->move(i)->move(j)) {
 | |
|             transmatrix T1 = move_matrix(h, i) * move_matrix(h->move(i), j);
 | |
|             transmatrix T2 = move_matrix(h, k) * move_matrix(h->move(k), l);
 | |
|             if(!eqmatrix(T1, T2)) {
 | |
|               println(hlog, c, " @ ", cubemap()->ispacemap[c->master], " : ", i, "/", j, "/", k, "/", l, " :: ", T1, " vs ", T2);
 | |
|               exit(1);
 | |
|               }
 | |
|             }
 | |
|         }
 | |
|       }
 | |
|   
 | |
|     else return 1;
 | |
|     return 0;
 | |
|     }
 | |
|   
 | |
|   auto euhook = addHook(hooks_args, 100, euArgs);
 | |
|   #endif
 | |
| 
 | |
| EX int dscalar(gp::loc e1, gp::loc e2) {
 | |
|   return 2 * (e1.first * e2.first + e1.second*e2.second) + (S3 == 3 ? e1.first*e2.second + e2.first * e1.second : 0);
 | |
|   }
 | |
| 
 | |
| EX int dsquare(gp::loc e) { return dscalar(e, e)/2; }
 | |
|   
 | |
| EX int dcross(gp::loc e1, gp::loc e2) {
 | |
|   return e1.first * e2.second - e1.second*e2.first;
 | |
|   }
 | |
| 
 | |
| EX gp::loc full_coords2(cell *c) { 
 | |
|   if(INVERSE) {
 | |
|     cell *c1 = gp::get_mapped(c);
 | |
|     return UIU(full_coords2(c1));
 | |
|     }
 | |
|   auto ans = eucmap()->ispacemap[c->master];
 | |
|   if(S7 == 4 && BITRUNCATED) {
 | |
|     if(c == c->master->c7) return to_loc(ans) * gp::loc(1,1);
 | |
|     else {
 | |
|       auto res = full_coords2(c->cmove(0)) + full_coords2(c->cmove(4));
 | |
|       res.first /= 2;
 | |
|       res.second /= 2;
 | |
|       return res;
 | |
|       }
 | |
|     }
 | |
|   if(BITRUNCATED)
 | |
|     return to_loc(ans) * gp::loc(1,1) + (c == c->master->c7 ? gp::loc(0,0) : gp::eudir((c->c.spin(0)+4)%6));
 | |
|   if(GOLDBERG) {
 | |
|     auto li = gp::get_local_info(c);
 | |
|     gp::loc shift(0,0);
 | |
|     if(li.first_dir >= 0) shift = gp::eudir(li.last_dir) * li.relative;
 | |
|     return to_loc(ans) * gp::param + shift;
 | |
|     }
 | |
|   return to_loc(ans);
 | |
|   }
 | |
| 
 | |
| /** this is slow, but we use it only for small p's */
 | |
| EX cell* at(gp::loc p) {
 | |
|   cellwalker cw(currentmap->gamestart());
 | |
|   while(p.first--) cw += revstep;
 | |
|   cw ++;
 | |
|   while(p.second--) cw += revstep;
 | |
|   return cw.at;
 | |
|   }
 | |
|  
 | |
| EX coord to_coord(gp::loc p) { return coord(p.first, p.second, 0); }
 | |
| 
 | |
| EX gp::loc sdxy() { return to_loc(eu.user_axes[1]) * gp::univ_param(); }
 | |
| 
 | |
| EX pair<bool, string> coord_display(const shiftmatrix& V, cell *c) {
 | |
|   if(c != c->master->c7) return {false, ""};
 | |
|   hyperpoint hx = eumove(main_axes[0]) * C0;
 | |
|   hyperpoint hy = eumove(main_axes[1]) * C0;
 | |
|   hyperpoint hz = WDIM == 2 ? C0 : eumove(main_axes[2]) * C0;
 | |
|   hyperpoint h = kz(inverse(build_matrix(hx, hy, hz, C03)) * inverse_shift(ggmatrix(cwt.at->master->c7), V) * C0);
 | |
| 
 | |
|   if(WDIM == 3)  
 | |
|     return {true, fts(h[0]) + "," + fts(h[1]) + "," + fts(h[2]) };
 | |
|   else
 | |
|     return {true, fts(h[0]) + "," + fts(h[1]) };
 | |
|   }
 | |
| 
 | |
| EX gp::loc to_loc(const coord& v) { return gp::loc(v[0], v[1]); }
 | |
| 
 | |
| EX map<gp::loc, cdata>& get_cdata() { return eucmap()->eucdata; }
 | |
|   
 | |
| EX transmatrix eumove(coord co) {
 | |
|   const double q3 = sqrt(double(3));
 | |
|   if(WDIM == 3) {
 | |
|     return eupush3(co[0], co[1], co[2]);
 | |
|     }
 | |
|   transmatrix Mat = Id;
 | |
|   if(a4) {
 | |
|     Mat[0][2] += co[0] * cgi.tessf;
 | |
|     Mat[1][2] += co[1] * cgi.tessf;
 | |
|     }
 | |
|   else {
 | |
|     Mat[0][2] += (co[0] + co[1] * .5) * cgi.tessf;
 | |
|     Mat[1][2] += co[1] * q3 /2 * cgi.tessf;
 | |
|     }
 | |
|   if(embedded_plane) Mat = cgi.emb->base_to_actual(Mat);
 | |
|   return Mat;
 | |
|   }
 | |
| 
 | |
| EX transmatrix eumove(gp::loc co) { return eumove(to_coord(co)); }
 | |
| 
 | |
| EX bool chiral(gp::loc g) {
 | |
|   int x = g.first;
 | |
|   int y = g.second;
 | |
|   if(x == 0) return false;
 | |
|   if(y == 0) return false;
 | |
|   if(x+y == 0) return false;
 | |
|   if(x==y) return false;
 | |
|   if(S3 == 3 && y == -2*x) return false;
 | |
|   if(S3 == 3 && x == -2*y) return false;
 | |
|   return true;
 | |
|   }
 | |
| 
 | |
| EX void twist_once(gp::loc coo) {
 | |
|   coo = coo - eu.twisted_vec * gp::univ_param();
 | |
|   if(eu.twisted&8) {
 | |
|     gp::loc ort = ort1() * eu.twisted_vec * gp::univ_param();
 | |
|     auto s = ort * dscalar(coo, ort) * 2;
 | |
|     auto v = dscalar(ort, ort);
 | |
|     s.first /= v;
 | |
|     s.second /= v;
 | |
|     coo = coo - s;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| EX int dist(int sx, int sy, bool reduce IS(true)) {
 | |
|   int z0 = abs(sx);
 | |
|   int z1 = abs(sy);
 | |
|   if(a4 && BITRUNCATED)
 | |
|     return (z0 == z1 && z0 > 0 && !reduce) ? z0+1: max(z0, z1);
 | |
|   if(a4) return z0 + z1;
 | |
|   int z2 = abs(sx+sy);
 | |
|   return max(max(z0,z1), z2);
 | |
|   }
 | |
| 
 | |
| EX int dist(gp::loc a, gp::loc b) {
 | |
|   return dist(a.first-b.first, a.second-b.second, (a.first ^ a.second)&1);
 | |
|   }
 | |
| 
 | |
| EX int cyldist(gp::loc a, gp::loc b) {
 | |
|   a = to_loc(basic_canonicalize(to_coord(a)));
 | |
|   b = to_loc(basic_canonicalize(to_coord(b)));
 | |
|   
 | |
|   if(!quotient) return dist(a, b);
 | |
|   
 | |
|   int best = 0;
 | |
|   for(int sa=0; sa<16; sa++) {
 | |
|     auto _a = a, _b = b;
 | |
|     if(sa&1) twist_once(_a);
 | |
|     if(sa&2) twist_once(_b);
 | |
|     if(sa&4) _a = _a + eu.ortho_vec * gp::univ_param();
 | |
|     if(sa&8) _b = _b + eu.ortho_vec * gp::univ_param();
 | |
|     int val = dist(_a, _b);
 | |
|     if(sa == 0 || val < best) best = val;
 | |
|     }
 | |
|   
 | |
|   return best;
 | |
|   }
 | |
| 
 | |
| EX void generate() {
 | |
| 
 | |
|   #if MAXMDIM >= 4
 | |
|   if(fake::in()) {
 | |
|     fake::generate();
 | |
|     return;
 | |
|     }
 | |
| 
 | |
|   auto v = euc::get_shifttable();
 | |
|   
 | |
|   auto& hsh = get_hsh();
 | |
| 
 | |
|   auto& cs = hsh.faces;
 | |
| 
 | |
|   cgi.loop = 4;
 | |
|   cgi.schmid = 3;
 | |
| 
 | |
|   cs.clear();
 | |
|   cs.resize(S7);
 | |
| 
 | |
|   if(S7 == 6) {
 | |
|     cgi.adjcheck = 1;
 | |
|     cgi.face = 4;
 | |
|     for(int w=0; w<6; w++) {
 | |
|       for(int a=0; a<4; a++) {
 | |
|         int t[3];
 | |
|         t[0] = (w>=3) ? -1 : 1;
 | |
|         t[1] = among(a, 0, 3) ? -1 : 1;
 | |
|         t[2] = among(a, 2, 3) ? -1 : 1;
 | |
|         int x = w%3;
 | |
|         int y = (x+2)%3;
 | |
|         int z = (y+2)%3;
 | |
|         cs[w].push_back(hpxy3(t[x]/2., t[y]/2., t[z]/2.));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   if(S7 == 12) {
 | |
|     cgi.adjcheck = sqrt(2);
 | |
|     cgi.face = 4;
 | |
|     for(int w=0; w<12; w++) {
 | |
|       auto co = v[w];
 | |
|       vector<int> valid;
 | |
|       for(int c=0; c<3; c++) if(co[c]) valid.push_back(c);
 | |
|       int third = 3 - valid[1] - valid[0];
 | |
|       hyperpoint v0 = cpush0(valid[0], co[valid[0]] > 0 ? 1 : -1);
 | |
|       hyperpoint v1 = cpush0(valid[1], co[valid[1]] > 0 ? 1 : -1);
 | |
|       cs[w].push_back(v0);
 | |
|       cs[w].push_back(v0/2 + v1/2 + cpush0(third, .5) - C0);
 | |
|       cs[w].push_back(v1);
 | |
|       cs[w].push_back(v0/2 + v1/2 + cpush0(third, -.5) - C0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   if(S7 == 14) {
 | |
|     cgi.adjcheck = 2;
 | |
|     cgi.face = 4; /* the first face */
 | |
|     auto v = euc::get_shifttable();
 | |
|     for(int w=0; w<14; w++) {
 | |
|       if(w%7 < 3) {
 | |
|         int z = w>=7?-1:1;
 | |
|         cs[w].push_back(cpush0(w%7, z) + cpush0((w%7+1)%3, 1/2.) - C0);
 | |
|         cs[w].push_back(cpush0(w%7, z) + cpush0((w%7+2)%3, 1/2.) - C0);
 | |
|         cs[w].push_back(cpush0(w%7, z) + cpush0((w%7+1)%3,-1/2.) - C0);
 | |
|         cs[w].push_back(cpush0(w%7, z) + cpush0((w%7+2)%3,-1/2.) - C0);
 | |
|         }
 | |
|       else {
 | |
|         auto t = v[w];
 | |
|         ld x = t[0], y = t[1], z = t[2];
 | |
|         for(hyperpoint h: {
 | |
|           hpxy3(x, y/2, 0), hpxy3(x/2, y, 0), hpxy3(0, y, z/2),
 | |
|           hpxy3(0, y/2, z), hpxy3(x/2, 0, z), hpxy3(x, 0, z/2)
 | |
|           }) cs[w].push_back(h);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   
 | |
|   if(S7 == 8) {
 | |
|     cgi.subshapes.resize(3);
 | |
|     for(int id=0; id<3; id++) {
 | |
|       auto& s = cgi.subshapes[id];
 | |
|       auto& cs = s.faces;
 | |
|       cs.clear(); cs.resize(id == 0 ? 8 : 4);
 | |
|       for(int w=0; w<isize(cs); w++) for(int i=0; i<3; i++) {
 | |
|         auto t = v[w + (id == 2 ? 4 : 0)];
 | |
|         if(id == 0)
 | |
|           cs[w].push_back(hpxy3(i==0?2*t[0]:0, i==1?2*t[1]:0, i==2?2*t[2]:0));
 | |
|         else
 | |
|           cs[w].push_back(hpxy3((i==0?-1:1)*t[0], (i==1?-1:1)*t[1], (i==2?-1:1)*t[2]));
 | |
|         }
 | |
|       s.compute_sub();
 | |
|       }
 | |
|     cs = cgi.subshapes[0].faces;
 | |
|     }
 | |
| 
 | |
|   hsh.compute_hept();
 | |
| 
 | |
|   if(geometry == gCubeTiling) {
 | |
|     cgi.loop = 4;
 | |
|     reg3::build_regular_spins(1, 90._deg);
 | |
|     }
 | |
|   #endif
 | |
|   }
 | |
| 
 | |
| /** @brief returns true if the current geometry is based on this module 
 | |
|  *  (For example, Archimedean, kite, or fake with underlying non-Euclidean geometry returns false)
 | |
|  */
 | |
| EX bool in() { 
 | |
|   if(fake::in()) return FPIU(in()); 
 | |
|   if(geometry == gCubeTiling && (reg3::cubes_reg3 || !PURE)) return false;
 | |
|   if(cgflags & qEXPERIMENTAL) return false;
 | |
|   return meuclid && standard_tiling();
 | |
|   }
 | |
| 
 | |
| EX bool in(int dim) { return in() && WDIM == dim; }
 | |
| EX bool in(int dim, int s7) { return in(dim) && S7 == s7; }
 | |
| 
 | |
| EX }
 | |
| 
 | |
| EX gp::loc euc2_coordinates(cell *c) { 
 | |
|   if(euc::in()) return euc::full_coords2(c); 
 | |
|   hyperpoint h = calc_relative_matrix(c, currentmap->gamestart(), C0) * C0;
 | |
|   return gp::loc(floor(h[0]), floor(h[1]));
 | |
|   }
 | |
| 
 | |
| }
 | 
