mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-25 17:40:36 +00:00
839 lines
23 KiB
C++
839 lines
23 KiB
C++
// Hyperbolic Rogue
|
|
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
|
|
// This file implements the surfaces of constant negative curvature
|
|
// See http://webmath2.unito.it/paginepersonali/sergio.console/CurveSuperfici/AG15.pdf for a nice reference
|
|
|
|
#if CAP_SURFACE
|
|
namespace hr { namespace surface {
|
|
|
|
using namespace hyperpoint_vec;
|
|
|
|
ld sech(ld d) { return 1 / cosh(d); }
|
|
|
|
string shape_name[] = { "hypersian rug", "tractricoid", "Dini's surface", "Kuen surface", "concave barrel",
|
|
"hyperboloid", "hemisphere", "crystal" };
|
|
|
|
eShape sh;
|
|
|
|
hyperpoint unit_vector[3] = {hpxyz(1,0,0), hpxyz(0,1,0), hpxyz(0,0,1)};
|
|
|
|
ld last_int_of = 0, last_int = 0;
|
|
|
|
ld dini_b = .15;
|
|
|
|
ld hyper_b = 1;
|
|
|
|
ld f(ld x) {
|
|
return sqrt(1 - pow(hyper_b * sinh(x), 2));
|
|
}
|
|
|
|
int kuen_branch(ld v, ld u);
|
|
|
|
ld integral(ld x) {
|
|
if(x == 0) {
|
|
last_int = last_int_of = 0;
|
|
}
|
|
else {
|
|
last_int += (x - last_int) * f((x + last_int)/2);
|
|
last_int_of = x;
|
|
}
|
|
return last_int;
|
|
}
|
|
|
|
hyperpoint coord(hyperpoint h) {
|
|
// return { cos(u)*sin(v), cos(u)*cos(v), sin(u) };
|
|
|
|
/*
|
|
ld t = h[0];
|
|
ld v = h[1];
|
|
ld r = 1 / cosh(t);
|
|
ld x = t - tanh(t);
|
|
return { x + v * .1, r * sin(v), r * cos(v) };
|
|
*/
|
|
|
|
switch(sh) {
|
|
case dsTractricoid: {
|
|
ld t = h[0];
|
|
ld v = h[1];
|
|
ld r = 1 / cosh(t);
|
|
ld x = t - tanh(t);
|
|
|
|
return hpxyz( r * sin(v), r * cos(v), x );
|
|
break;
|
|
}
|
|
|
|
case dsDini: {
|
|
ld t = h[0]; // atan(h[0])/2 + M_PI * 3/ 4;
|
|
ld v = h[1];
|
|
|
|
ld a = sqrt(1-dini_b*dini_b);
|
|
|
|
return hpxyz( a * sin(v) * sin(t), a * cos(v) * sin(t), a * (cos(t) + log(tan(t/2))) + dini_b * v );
|
|
break;
|
|
}
|
|
|
|
case dsKuen: {
|
|
ld v = h[0];
|
|
ld u = h[1];
|
|
|
|
ld deno = 1 / (1 + u * u * sin(v) * sin(v));
|
|
|
|
return hpxyz(
|
|
2 * (cos(u) + u * sin(u)) * sin(v) * deno,
|
|
2 * (sin(u) - u * cos(u)) * sin(v) * deno,
|
|
log(tan(v/2)) + 2 * cos(v) * deno
|
|
);
|
|
}
|
|
|
|
case dsHyperlike: {
|
|
ld u = h[0];
|
|
ld v = h[1];
|
|
|
|
ld phi = hyper_b * cosh(v);
|
|
ld psi = integral(v);
|
|
|
|
return hpxyz( phi * cos(u), phi * sin(u), psi );
|
|
}
|
|
|
|
default:
|
|
return h;
|
|
}
|
|
}
|
|
|
|
ld det(hyperpoint h1, hyperpoint h2, hyperpoint h3) {
|
|
return det(build_matrix(h1, h2, h3));
|
|
}
|
|
|
|
ld epsd = 1e-5;
|
|
|
|
hyperpoint coord_derivative(hyperpoint h, int cc) {
|
|
switch(sh) {
|
|
case dsHyperlike: {
|
|
ld u = h[0];
|
|
ld v = h[1];
|
|
if(cc == 0) {
|
|
ld phi = hyper_b * cosh(v);
|
|
return hpxyz( phi * -sin(u), phi * cos(u), 0 );
|
|
}
|
|
else {
|
|
return hpxyz( hyper_b * sinh(v) * cos(u), hyper_b * sinh(v) * sin(u), f(v) );
|
|
}
|
|
}
|
|
case dsKuen: {
|
|
ld v = h[0];
|
|
ld u = h[1];
|
|
ld denom = pow(sin(v),2)*(u*u)+1;
|
|
ld denom2 = denom * denom;
|
|
if(cc == 1)
|
|
return hpxyz (
|
|
2*sin(v)/denom*u*cos(u)+-4*(sin(u)*u+cos(u))*pow(sin(v),3)/denom2*u,
|
|
-4*pow(sin(v),3)*(sin(u)-u*cos(u))/denom2*u+2*sin(u)*sin(v)/denom*u,
|
|
-4*pow(sin(v),2)/denom2*u*cos(v)
|
|
);
|
|
else return hpxyz (
|
|
2*(sin(u)*u+cos(u))/denom*cos(v)+-4*(sin(u)*u+cos(u))*pow(sin(v),2)/denom2*(u*u)*cos(v),
|
|
2*(sin(u)-u*cos(u))/denom*cos(v)+-4*pow(sin(v),2)*(sin(u)-u*cos(u))/denom2*(u*u)*cos(v),
|
|
-4*sin(v)/denom2*(u*u)*pow(cos(v),2)+1/tan(v/2)*(pow(tan(v/2),2)+1)/2+-2*sin(v)/denom
|
|
);
|
|
break;
|
|
}
|
|
default:
|
|
// too lazy do differentiate
|
|
return (coord(h + unit_vector[cc] * epsd) - coord(h)) / epsd;
|
|
}
|
|
}
|
|
|
|
ld compute_curvature(hyperpoint at) {
|
|
hyperpoint xu = coord_derivative(at, 0);
|
|
hyperpoint xv = coord_derivative(at, 1);
|
|
hyperpoint xuu = (coord_derivative(at + unit_vector[0] * epsd, 0) - xu) / epsd;
|
|
hyperpoint xuv = (coord_derivative(at + unit_vector[1] * epsd, 0) - xu) / epsd;
|
|
hyperpoint xvv = (coord_derivative(at + unit_vector[1] * epsd, 1) - xv) / epsd;
|
|
return
|
|
(det(xuu, xu, xv) * det(xvv, xu, xv) - pow(det(xuv, xu, xv), 2)) /
|
|
pow((xu|xu) * (xv|xv) - pow((xu|xv), 2), 2);
|
|
}
|
|
|
|
hyperpoint shape_origin() {
|
|
switch(sh) {
|
|
case dsDini:
|
|
return hpxyz(M_PI * .82, 0, 0);
|
|
case dsTractricoid:
|
|
return hpxyz(1, 0, 0);
|
|
case dsKuen:
|
|
return hpxyz(M_PI * .500001, M_PI * 1, 0);
|
|
case dsHyperlike:
|
|
return hpxyz(0,0,0);
|
|
default:
|
|
return Hypc;
|
|
}
|
|
}
|
|
|
|
ld hyperlike_bound() { return asinh(1 / hyper_b); }
|
|
|
|
bool flag_clamp_min(ld& coord, ld minv) {
|
|
if(coord < minv) { coord = minv; return false; }
|
|
return true;
|
|
}
|
|
|
|
bool flag_clamp_max(ld& coord, ld maxv) {
|
|
if(coord > maxv) { coord = maxv; return false; }
|
|
return true;
|
|
}
|
|
|
|
bool flag_clamp(ld& coord, ld minv, ld maxv) {
|
|
return flag_clamp_min(coord, minv) & flag_clamp_max(coord, maxv);
|
|
};
|
|
|
|
bool flag_clamp_sym(ld& coord, ld v) {
|
|
return flag_clamp(coord, -v, v);
|
|
}
|
|
|
|
int surface_branch(hyperpoint p) {
|
|
if(sh == dsKuen) return kuen_branch(p[0], p[1]);
|
|
return 0;
|
|
}
|
|
|
|
bool inbound(ld& x, ld& y) {
|
|
switch(sh) {
|
|
case dsDini:
|
|
return flag_clamp(x, M_PI/2, M_PI);
|
|
|
|
case dsTractricoid:
|
|
return flag_clamp_min(x, 0) & flag_clamp_sym(y, M_PI);
|
|
|
|
case dsKuen:
|
|
return flag_clamp(x, 0, M_PI) & flag_clamp(y, 0, 2*M_PI);
|
|
|
|
case dsHyperlike:
|
|
return flag_clamp_sym(x, M_PI) & flag_clamp_sym(y, hyperlike_bound());
|
|
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool is_inbound(hyperpoint h) {
|
|
return inbound(h[0], h[1]);
|
|
}
|
|
|
|
int precision = 100;
|
|
|
|
using rug::dexp_data;
|
|
|
|
struct dexp_origin {
|
|
transmatrix H; // isometry of H2 moving zero to C0
|
|
transmatrix M; // local coordinates on H2 to local coordinates on surface
|
|
hyperpoint zero; // parameters of the zero point
|
|
};
|
|
|
|
dexp_data dexp(hyperpoint p, hyperpoint t) {
|
|
ld eps = 1. / precision;
|
|
int b = surface_branch(p);
|
|
|
|
for(ld u=0; u<1; u += eps) {
|
|
|
|
transmatrix T = build_matrix(coord_derivative(p, 0), coord_derivative(p, 1), Hypc);
|
|
|
|
// printf("Tt = %lf\n", hypot_d(3, T * t));
|
|
|
|
p += t * eps;
|
|
|
|
if(!is_inbound(p) || surface_branch(p) != b)
|
|
return { p - t * eps, t, hypot_d(3, t) * (1-u) / precision };
|
|
|
|
auto v0 = coord_derivative(p, 0);
|
|
auto v1 = coord_derivative(p, 1);
|
|
|
|
transmatrix T2 = build_matrix(v0, v1, v0 ^ v1);
|
|
|
|
t = inverse(T2) * T * t;
|
|
t[2] = 0;
|
|
}
|
|
return { p, t, 0 };
|
|
}
|
|
|
|
dexp_data map_to_surface(hyperpoint p, const dexp_origin& dor) {
|
|
hyperpoint h = dor.H * p;
|
|
ld rad = hypot_d(2, h);
|
|
if(rad == 0) rad = 1;
|
|
ld d = hdist0(h);
|
|
|
|
hyperpoint direction;
|
|
direction[0] = d * h[0] / rad;
|
|
direction[1] = d * h[1] / rad;
|
|
direction[2] = 0;
|
|
|
|
return dexp(dor.zero, dor.M * direction);
|
|
}
|
|
|
|
transmatrix create_M_matrix(hyperpoint zero, hyperpoint v1) {
|
|
hyperpoint Te0 = coord_derivative(zero, 0);
|
|
hyperpoint Te1 = coord_derivative(zero, 1);
|
|
|
|
transmatrix T = build_matrix(Te0, Te1, Hypc);
|
|
|
|
v1 = v1 / hypot_d(3, T*v1);
|
|
hyperpoint v2 = hpxyz(1e-3, 1e-4, 0);
|
|
v2 = v2 - v1 * ((T*v1) | (T*v2)) / hypot_d(3, T*v1);
|
|
v2 = v2 / hypot_d(3, T*v2);
|
|
|
|
if((((T*v1) ^ (T*v2)) | ((T*unit_vector[0]) ^ (T*unit_vector[1]))) < 0)
|
|
v2 = v2 * -1;
|
|
|
|
transmatrix M = build_matrix(v1, v2, Hypc);
|
|
|
|
println(hlog, M);
|
|
|
|
println(hlog, "M matrix test: ",
|
|
make_tuple(hypot_d(3, T*M*unit_vector[0]), hypot_d(3, T*M*unit_vector[1]), hypot_d(3, T*M*(unit_vector[0]+unit_vector[1])),
|
|
((T*M*unit_vector[0]) | (T*M*unit_vector[1]))));
|
|
|
|
return M;
|
|
}
|
|
|
|
dexp_origin at_zero(hyperpoint zero, transmatrix start) {
|
|
|
|
println(hlog, "zero = ", zero);
|
|
|
|
println(hlog, "curvature at zero = ", compute_curvature(zero));
|
|
println(hlog, "curvature at X1 = ", compute_curvature(zero + hpxyz(.3, 0, 0)));
|
|
println(hlog, "curvature at X2 = ", compute_curvature(zero + hpxyz(0, .3, 0)));
|
|
println(hlog, "curvature at X3 = ", compute_curvature(zero + hpxyz(.4, .3, 0)));
|
|
|
|
return {start, create_M_matrix(zero, unit_vector[0]), zero};
|
|
}
|
|
|
|
dexp_origin at_other(dexp_origin& o1, hyperpoint h) {
|
|
println(hlog, "\n\nmapping ", h, "...");
|
|
println(hlog, o1.H, o1.M);
|
|
auto dd = map_to_surface(h, o1);
|
|
|
|
hyperpoint newzero = dd.params;
|
|
println(hlog, "error = ", dd.remaining_distance);
|
|
|
|
transmatrix Spin = spintox(o1.H * h);
|
|
transmatrix T = pushxto0(Spin * o1.H * h) * Spin;
|
|
|
|
println(hlog, "h is = ", h);
|
|
println(hlog, "T*c0 is = ", T * C0);
|
|
println(hlog, "T*h is = ", T * o1.H * h);
|
|
|
|
return {T * o1.H, create_M_matrix(newzero, dd.cont), newzero};
|
|
}
|
|
|
|
void addTriangleV(rug::rugpoint *t1, rug::rugpoint *t2, rug::rugpoint *t3, ld len = 1) {
|
|
if(t1 && t2 && t3)
|
|
rug::addTriangle(t1, t2, t3, len);
|
|
}
|
|
|
|
hyperpoint kuen_cross(ld v, ld u) {
|
|
auto du = coord_derivative(hpxyz(v,u,0), 0);
|
|
auto dv = coord_derivative(hpxyz(v,u,0), 1);
|
|
return du^dv;
|
|
}
|
|
|
|
ld kuen_hypot(ld v, ld u) {
|
|
auto du = coord_derivative(hpxyz(v,u,0), 0);
|
|
auto dv = coord_derivative(hpxyz(v,u,0), 1);
|
|
auto n = hypot_d(3, du^dv);
|
|
return n;
|
|
}
|
|
|
|
int kuen_branch(ld v, ld u) {
|
|
if(v > M_PI/2)
|
|
return kuen_cross(v, u)[2] > 0 ? 1 : 2;
|
|
else
|
|
return kuen_cross(v, u)[2] < 0 ? 1 : 2;
|
|
}
|
|
|
|
int dexp_colors[16] = {
|
|
0xFF0000, 0x00FF00, 0x0000FF, 0xFFFF00 };
|
|
|
|
int dexp_comb_colors[16] = {
|
|
0x000000, 0x0000FF, 0x00FF00, 0x00FFFF,
|
|
0xFF0000, 0xFF00FF, 0xFFFF00, 0xFFFFFF,
|
|
0xFFD500,
|
|
0x123456, 0x123456, 0x123456, 0x123456, 0x123456, 0x123456, 0x123456
|
|
};
|
|
|
|
int coverage_style;
|
|
vector<pair<hyperpoint, int> > coverage;
|
|
|
|
#ifndef CAP_KUEN_MAP
|
|
#define CAP_KUEN_MAP 0
|
|
#endif
|
|
|
|
#if CAP_KUEN_MAP
|
|
void draw_kuen_map() {
|
|
SDL_Surface *kuen_map = SDL_CreateRGBSurface(SDL_SWSURFACE,512,512,32,0,0,0,0);
|
|
|
|
ld nmax = 0;
|
|
|
|
for(int i=0; i<2; i++) {
|
|
for(int r=0; r<512; r++)
|
|
for(int h=0; h<512; h++) {
|
|
ld v = M_PI * (r+.5) / 512;
|
|
ld u = 2 * M_PI * (h+.5) / 512;
|
|
auto du = coord_derivative(hpxyz(v,u,0), 0);
|
|
auto dv = coord_derivative(hpxyz(v,u,0), 1);
|
|
auto n = hypot_d(3, du^dv);
|
|
|
|
if(n > nmax) nmax = n;
|
|
if(i == 1) {
|
|
auto vv = kuen_cross(v, u);
|
|
auto& px = qpixel(kuen_map, r, h);
|
|
px |= 0xFF000000;
|
|
for(int k=0; k<3; k++)
|
|
part(px, k) = (vv[k] > 0 ? 0xFF : 0);
|
|
px = 0xFF000000 + (((int)(n*255/nmax)) * (kuen_branch(v,u) == 1 ? 0x10101 : 0x10001));
|
|
}
|
|
}
|
|
println(hlog, "nmax = ", nmax);
|
|
}
|
|
|
|
for(auto p: rug::points) {
|
|
auto hp = p->surface_point.params;
|
|
int x = int(512 * hp[0] / M_PI);
|
|
int y = int(512 * hp[1] / 2 / M_PI);
|
|
qpixel(kuen_map, x, y) = 0xFF000000 | dexp_colors[p->dexp_id];
|
|
}
|
|
|
|
IMAGESAVE(kuen_map, "kuen.png");
|
|
}
|
|
#endif
|
|
|
|
void full_mesh() {
|
|
rug::clear_model();
|
|
rug::buildRug();
|
|
rug::qvalid = 0;
|
|
for(auto p: rug::points) p->valid = true, rug::qvalid++;
|
|
while(rug::subdivide_further()) rug::subdivide();
|
|
rug::sort_rug_points();
|
|
for(auto p: rug::points) p->valid = false;
|
|
rug::good_shape = true;
|
|
}
|
|
|
|
char rchar(int id) {
|
|
return 33 + id % 94;
|
|
}
|
|
|
|
void run_hyperlike() {
|
|
if(!rug::rugged) rug::reopen();
|
|
rug::clear_model();
|
|
|
|
int lim = (int) sqrt(rug::vertex_limit);
|
|
for(int r=0; r<lim; r++)
|
|
for(int h=0; h<lim; h++)
|
|
rug::addRugpoint(xpush(2 * M_PI * hyper_b * (2*r-lim) / lim) * ypush(hyperlike_bound() * (2*h-lim) / lim) * C0, -1);
|
|
for(int r=0; r<lim-1; r++)
|
|
for(int h=0; h<lim-1; h++) {
|
|
addTriangle(rug::points[lim*r+h], rug::points[lim*r+h+1], rug::points[lim*r+h+lim]);
|
|
addTriangle(rug::points[lim*r+h+lim+1], rug::points[lim*r+h+lim], rug::points[lim*r+h+1]);
|
|
}
|
|
|
|
vector<ld> integral_table;
|
|
for(int i=0; i<=precision; i++)
|
|
integral_table.push_back(integral(hyperlike_bound() * i / precision));
|
|
|
|
int id = 0;
|
|
for(auto p: rug::points) {
|
|
auto h = p->h;
|
|
coverage.emplace_back(h, rchar(id++) + 7 * 256);
|
|
|
|
ld y = asinh(h[1]);
|
|
ld x = asinh(h[0] / cosh(y)) / hyper_b;
|
|
p->surface_point.remaining_distance = !inbound(x, y);
|
|
p->surface_point.params = hpxyz(x, y, 0);
|
|
|
|
int sgn = y > 0 ? 1 : -1;
|
|
ld phi = hyper_b * cosh(y);
|
|
int pt = y * precision * sgn / hyperlike_bound();
|
|
p->flat = hpxyz(phi * cos(x), phi * sin(x), sgn * integral_table[pt]);
|
|
p->valid = true;
|
|
}
|
|
}
|
|
|
|
void run_kuen() {
|
|
full_mesh();
|
|
|
|
auto H = Id; // spin(-M_PI / 4) * xpush(2);
|
|
auto Hi = inverse(H);
|
|
|
|
auto frontal_map = at_zero(hpxyz(M_PI * .500001, M_PI * 1, 0), Id);
|
|
auto back0 = at_zero(hpxyz(M_PI * .500001, .67, 0), H);
|
|
auto back1 = at_other(back0, Hi * spin(-M_PI/2) * hpxy(0.511, -0.5323));
|
|
auto back2 = at_other(back0, Hi * spin(-M_PI/2) * hpxy(0.511, 0.5323));
|
|
|
|
frontal_map.H = frontal_map.H * ypush(2.6);
|
|
back0.H = back0.H * ypush(.4);
|
|
back1.H = back1.H * ypush(.4);
|
|
back2.H = back2.H * ypush(.4);
|
|
|
|
int it = 0;
|
|
for(auto p: rug::points) p->dexp_id = it++;
|
|
|
|
vector<rug::rugpoint*> mesh = move(rug::points);
|
|
vector<rug::triangle> old_triangles = move(rug::triangles);
|
|
|
|
rug::clear_model();
|
|
|
|
int part = 0;
|
|
|
|
vector<int> coverages(isize(mesh), 0);
|
|
|
|
for(auto& m: { frontal_map, back0, back1, back2 } ) {
|
|
part++;
|
|
int pid[5] = {0, 8, 1, 2, 4};
|
|
string captions[5] = {"", "the upper component", "the lower center", "the lower left", "the lower right"};
|
|
|
|
vector<rug::rugpoint*> newmesh(isize(mesh), nullptr);
|
|
for(auto p: mesh) {
|
|
auto px = map_to_surface(p->h, m);
|
|
p->surface_point = px;
|
|
conformal::progress(XLAT("solving the geodesics on: %1, %2/%3", XLAT(captions[part]), its(p->dexp_id), its(isize(mesh))));
|
|
}
|
|
for(auto p: mesh) {
|
|
// make it a bit nicer by including the edges where only one endpoint is valid
|
|
|
|
auto& px = p->surface_point;
|
|
p->valid = px.remaining_distance == 0;
|
|
for(auto e: p->edges) if(e.target->surface_point.remaining_distance == 0)
|
|
p->valid = true;
|
|
if(p->valid) {
|
|
rug::rugpoint *np = new rug::rugpoint;
|
|
newmesh[p->dexp_id] = np;
|
|
rug::points.push_back(np);
|
|
np->x1 = p->x1;
|
|
np->y1 = p->y1;
|
|
np->valid = true;
|
|
np->inqueue = false;
|
|
np->dist = 0;
|
|
np->h = p->h;
|
|
np->flat = coord(px.params);
|
|
np->surface_point = px;
|
|
np->dexp_id = p->dexp_id;
|
|
coverages[p->dexp_id] |= pid[part];
|
|
}
|
|
}
|
|
for(auto& t: old_triangles) {
|
|
rug::rugpoint* r[3];
|
|
for(int i=0; i<3; i++)
|
|
r[i] = newmesh[t.m[i]->dexp_id];
|
|
bool looks_good = true;
|
|
for(int i=0; i<3; i++)
|
|
if(!r[i]) looks_good = false;
|
|
if(!looks_good) continue;
|
|
for(int i=0; i<3; i++)
|
|
if(hypot_d(3, r[i]->flat - r[(i+1)%3]->flat) > .2)
|
|
looks_good = false;
|
|
if(looks_good)
|
|
addTriangleV(r[0], r[1], r[2]);
|
|
}
|
|
}
|
|
|
|
for(auto t: mesh) {
|
|
int c = coverages[t->dexp_id];
|
|
coverage.emplace_back(t->h, rchar(t->dexp_id) + 256 * c);
|
|
}
|
|
|
|
// delete the old mesh
|
|
for(auto t: mesh) delete t;
|
|
|
|
#if CAP_KUEN_MAP
|
|
draw_kuen_map();
|
|
#endif
|
|
}
|
|
|
|
template<class T> void run_function(T f) {
|
|
full_mesh();
|
|
for(auto p: rug::points)
|
|
p->flat = f(p->h),
|
|
p->valid = true;
|
|
}
|
|
|
|
void run_other() {
|
|
full_mesh();
|
|
auto dp = at_zero(shape_origin(), spin(M_PI/2));
|
|
|
|
int it = 0;
|
|
for(auto p: rug::points) {
|
|
it++;
|
|
auto h = p->h;
|
|
|
|
p->surface_point = map_to_surface(h, dp);
|
|
p->flat = coord(p->surface_point.params);
|
|
conformal::progress(XLAT("solving the geodesics on: %1, %2/%3", XLAT(shape_name[sh]), its(it), its(isize(rug::points))));
|
|
if(p->surface_point.remaining_distance == 0)
|
|
coverage.emplace_back(h, rchar(it) + 256 * 7);
|
|
}
|
|
|
|
clearMessages();
|
|
|
|
for(auto p: rug::points) {
|
|
// make it a bit nicer by including the edges where only one endpoint is valid
|
|
p->valid = p->surface_point.remaining_distance == 0;
|
|
if(sh != dsKuen) {
|
|
for(auto e: p->edges) if(e.target->surface_point.remaining_distance == 0)
|
|
p->valid = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void run_shape(eShape s) {
|
|
coverage.clear();
|
|
need_mouseh = true;
|
|
sh = s;
|
|
transmatrix crot = rug::rugged ? rug::currentrot : Id;
|
|
rug::apply_rotation(inverse(crot));
|
|
|
|
if(rug::rugged) rug::close();
|
|
|
|
rug::init();
|
|
// if(!rug::rugged) rug::reopen();
|
|
|
|
pushScreen(conformal::progress_screen);
|
|
if(sh != dsNone) rug::good_shape = true;
|
|
|
|
switch(sh) {
|
|
case dsNone:
|
|
break;
|
|
|
|
case dsKuen:
|
|
run_kuen();
|
|
break;
|
|
|
|
case dsHyperlike:
|
|
run_hyperlike();
|
|
break;
|
|
|
|
default:
|
|
run_other();
|
|
break;
|
|
|
|
case dsHyperboloid:
|
|
run_function([] (hyperpoint h) { return h; });
|
|
break;
|
|
|
|
case dsHemisphere:
|
|
run_function([] (hyperpoint h) { h = h / h[2]; h[2] = sqrt(1 - sqhypot_d(2, h)); return h; });
|
|
break;
|
|
}
|
|
|
|
if(sh != dsNone) rug::good_shape = true;
|
|
|
|
rug::qvalid = 0;
|
|
|
|
popScreen();
|
|
|
|
if(sh != dsHyperboloid && sh != dsHemisphere && sh != dsNone) {
|
|
|
|
ld minx = 1e9, maxx = -1e9;
|
|
|
|
for(auto p: rug::points) if(p->valid) {
|
|
minx = min(p->flat[2], minx);
|
|
maxx = max(p->flat[2], maxx);
|
|
rug::qvalid++;
|
|
}
|
|
|
|
println(hlog, "minx = ", minx, " maxx = ", maxx);
|
|
|
|
ld shift = -(minx + maxx) / 2;
|
|
for(auto p: rug::points) if(p->valid)
|
|
p->flat[2] += shift;
|
|
}
|
|
|
|
rug::apply_rotation(crot);
|
|
if(rug::rug_perspective)
|
|
rug::push_all_points(2, -rug::model_distance);
|
|
}
|
|
|
|
void cancel_shape() {
|
|
if(sh) {
|
|
sh = dsNone;
|
|
rug::good_shape = false;
|
|
rug::qvalid = 0;
|
|
for(auto p: rug::points)
|
|
p->valid = p->surface_point.remaining_distance == 0;
|
|
for(auto p: rug::points)
|
|
if(p->valid)
|
|
rug::qvalid++, rug::enqueue(p);
|
|
}
|
|
}
|
|
|
|
cell *coverage_center;
|
|
transmatrix coverage_matrix;
|
|
|
|
void show_surfaces() {
|
|
cmode = sm::SIDE;
|
|
gamescreen(0);
|
|
dialog::init(XLAT("constant curvature surfaces"), iinf[itPalace].color, 150, 0);
|
|
|
|
bool b = rug::rugged || coverage_style;
|
|
|
|
dialog::addBoolItem(XLAT("tractricoid"), b && sh == dsTractricoid, '1');
|
|
dialog::addBoolItem(XLAT("concave barrel"), b && sh == dsHyperlike, '2');
|
|
dialog::addSelItem(" " + XLAT("parameter"), fts(hyper_b), '@');
|
|
dialog::addBoolItem(XLAT("Dini's surface"), b && sh == dsDini, '3');
|
|
dialog::addSelItem(" " + XLAT("parameter") + " ", fts(dini_b), '#');
|
|
dialog::addBoolItem(XLAT("Kuen surface"), b && sh == dsKuen, '4');
|
|
|
|
dialog::addBreak(50);
|
|
|
|
dialog::addTitle(XLAT("other 3D models"), iinf[itPalace].color, 150);
|
|
|
|
dialog::addBoolItem(XLAT("Hypersian Rug"), b && sh == dsNone, '5');
|
|
dialog::addBoolItem(XLAT("Minkowski hyperboloid"), b && sh == dsHyperboloid, '6');
|
|
dialog::addBoolItem(XLAT("hemisphere"), b && sh == dsHemisphere, '7');
|
|
|
|
dialog::addBreak(100);
|
|
|
|
dialog::addSelItem(XLAT("precision"), its(precision), 'p');
|
|
string cstyles[4] = { "OFF", "on surface", "on H² (static)", "on H² (dynamic)" };
|
|
if((rug::rugged && sh && sh != dsHyperboloid && sh != dsHemisphere) || coverage_style)
|
|
dialog::addSelItem(XLAT("display coverage"), cstyles[coverage_style], 'c');
|
|
else dialog::addBreak(100);
|
|
|
|
dialog::addHelp();
|
|
dialog::addBack();
|
|
|
|
dialog::display();
|
|
keyhandler = [] (int sym, int uni) {
|
|
dialog::handleNavigation(sym, uni);
|
|
|
|
if(uni == 'h' || uni == SDLK_F1)
|
|
gotoHelp(XLAT(
|
|
"In this menu you can choose from several known smooth surfaces of constant negative curvature. "
|
|
"Since the curvature of hyperbolic plane is also constant negative, these surfaces "
|
|
"are great to draw hyperbolic tesselations on. While they look great, only a small part "
|
|
"of the hyperbolic plane can be visibly represented in this way, so they are not "
|
|
"good for playing HyperRogue; however, the coverage extends far away in specific directions, "
|
|
"so first increasing sight range in graphics config and texture size in hypersian rug settings may improve the effect. "
|
|
"For convenience, you can also choose other 3D models from this menu."
|
|
));
|
|
|
|
else if(uni == '1')
|
|
run_shape(dsTractricoid);
|
|
else if(uni == '2')
|
|
run_shape(dsHyperlike);
|
|
else if(uni == '3')
|
|
run_shape(dsDini);
|
|
else if(uni == '4')
|
|
run_shape(dsKuen);
|
|
else if(uni == '5')
|
|
run_shape(dsNone);
|
|
else if(uni == '6')
|
|
run_shape(dsHyperboloid);
|
|
else if(uni == '7')
|
|
run_shape(dsHemisphere);
|
|
|
|
else if(uni == '@') {
|
|
dialog::editNumber(hyper_b, -1, 1, .05, 1, XLAT("parameter"),
|
|
XLAT("Controls the inner radius.")
|
|
);
|
|
dialog::reaction = [] () {
|
|
if(sh == dsHyperlike) run_shape(sh);
|
|
};
|
|
}
|
|
else if(uni == 'x')
|
|
for(auto p: rug::points)
|
|
p->flat = p->surface_point.params;
|
|
else if(uni == '#')
|
|
dialog::editNumber(dini_b, -1, 1, .05, .15, XLAT("parameter"),
|
|
XLAT("The larger the number, the more twisted it is.")
|
|
);
|
|
else if(uni == 'p') {
|
|
dialog::editNumber(precision, 1, 10000, 0, 100, XLAT("precision"),
|
|
XLAT("Computing these models involves integrals and differential equations, which are currently solved numerically. This controls the precision.")
|
|
);
|
|
dialog::ne.step = .1;
|
|
dialog::scaleLog();
|
|
}
|
|
else if(uni == 'c') {
|
|
coverage_style = (1 + coverage_style) % 4;
|
|
if(coverage_style == 0) {
|
|
rug::reopen();
|
|
}
|
|
if(coverage_style == 2) {
|
|
if(rug::rugged) rug::close();
|
|
}
|
|
coverage_matrix = inverse(ggmatrix(coverage_center = cwt.at));
|
|
}
|
|
else if(rug::handlekeys(sym, uni)) ;
|
|
else if(doexiton(sym, uni)) popScreen();
|
|
};
|
|
}
|
|
|
|
#if CAP_COMMANDLINE
|
|
int surface_args() {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-kuen")) {
|
|
PHASE(3);
|
|
calcparam();
|
|
run_shape(dsKuen);
|
|
}
|
|
|
|
else if(argis("-dini")) {
|
|
PHASE(3);
|
|
calcparam();
|
|
shift();
|
|
dini_b = argf();
|
|
run_shape(dsDini);
|
|
}
|
|
|
|
else if(argis("-barrel")) {
|
|
PHASE(3);
|
|
calcparam();
|
|
shift();
|
|
hyper_b = argf();
|
|
run_shape(dsHyperlike);
|
|
}
|
|
|
|
else if(argis("-tractricoid")) {
|
|
PHASE(3);
|
|
calcparam();
|
|
run_shape(dsTractricoid);
|
|
}
|
|
|
|
else if(argis("-hemi")) {
|
|
PHASE(3);
|
|
calcparam();
|
|
run_shape(dsHemisphere);
|
|
}
|
|
|
|
else if(argis("-hyperb")) {
|
|
PHASE(3);
|
|
calcparam();
|
|
run_shape(dsHyperboloid);
|
|
}
|
|
|
|
else if(argis("-d:surface"))
|
|
launch_dialog(show_surfaces);
|
|
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
auto surface_hook = addHook(hooks_args, 100, surface_args);
|
|
#endif
|
|
|
|
void display_coverage() {
|
|
|
|
transmatrix M =
|
|
coverage_style == 3 ? ggmatrix(coverage_center) * coverage_matrix
|
|
: Id;
|
|
|
|
if(coverage_style)
|
|
for(auto p : coverage)
|
|
queuechr(M * p.first, 10, char(p.second), dexp_comb_colors[(p.second >> 8) & 15]);
|
|
/* if(p->valid && p->surface_point.remaining_distance == 0)
|
|
queuechr(p->h, 10, 'x', dexp_colors[p->dexp_id]); */
|
|
}
|
|
|
|
auto surface_hook2 = addHook(hooks_frame, 0, display_coverage);
|
|
|
|
}}
|
|
#endif
|