mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-11-23 13:07:16 +00:00
159 lines
4.5 KiB
C++
159 lines
4.5 KiB
C++
// Hyperbolic Rogue
|
|
// Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
// heptagon here refers to underlying heptagonal tesselation
|
|
// (which you can see by changing the conditions in graph.cpp)
|
|
|
|
// automaton state
|
|
enum hstate { hsOrigin, hsA, hsB, hsError };
|
|
|
|
int fixrot(int a) { return (a+98)% 7; }
|
|
int fix42(int a) { return (a+420)% 42; }
|
|
|
|
struct heptagon;
|
|
|
|
struct cell;
|
|
cell *newCell(int type, heptagon *master);
|
|
|
|
struct heptagon {
|
|
// automaton state
|
|
hstate s : 8;
|
|
// we are spin[i]-th neighbor of move[i]
|
|
unsigned char spin[7];
|
|
// neighbors; move[0] always goes towards origin,
|
|
// and then we go clockwise
|
|
heptagon* move[7];
|
|
// distance from the origin
|
|
short distance;
|
|
// fjord/wineyard generator
|
|
short fjordval;
|
|
heptagon*& modmove(int i) { return move[fixrot(i)]; }
|
|
unsigned char& gspin(int i) { return spin[fixrot(i)]; }
|
|
cell *c7;
|
|
// associated generator of alternate structure, for Camelot and horocycles
|
|
heptagon *alt;
|
|
};
|
|
|
|
// the automaton is used to generate each heptagon in an unique way
|
|
// (you can see the tree obtained by changing the conditions in graph.cpp)
|
|
// from the origin we can go further in any direction, and from other heptagons
|
|
// we can go in directions 3 and 4 (0 is back to origin, so 3 and 4 go forward),
|
|
// and sometimes in direction 5
|
|
|
|
hstate transition(hstate s, int dir) {
|
|
if(s == hsOrigin) return hsA;
|
|
if(s == hsA && dir >= 3 && dir <= 4) return hsA;
|
|
if(s == hsA && dir == 5) return hsB;
|
|
if(s == hsB && dir == 4) return hsB;
|
|
if(s == hsB && dir == 3) return hsA;
|
|
return hsError;
|
|
}
|
|
|
|
heptagon origin;
|
|
vector<heptagon*> allAlts;
|
|
|
|
// create h->move[d] if not created yet
|
|
heptagon *createStep(heptagon *h, int d);
|
|
|
|
// create a new heptagon
|
|
heptagon *buildHeptagon(heptagon *parent, int d, hstate s, int pard = 0) {
|
|
heptagon *h = new heptagon;
|
|
h->alt = NULL;
|
|
h->s = s;
|
|
for(int i=0; i<7; i++) h->move[i] = NULL;
|
|
h->move[pard] = parent; h->spin[pard] = d;
|
|
parent->move[d] = h; parent->spin[d] = pard;
|
|
if(parent->c7) {
|
|
h->c7 = newCell(7, h);
|
|
h->fjordval = fjord_heptagon(parent->fjordval, d);
|
|
}
|
|
else {
|
|
h->c7 = NULL;
|
|
h->fjordval = 0;
|
|
}
|
|
//generateFjordval(parent);
|
|
//generateFjordval(h);
|
|
if(pard == 0) {
|
|
if(parent->s == hsOrigin) h->distance = 2;
|
|
else if(h->spin[0] == 5)
|
|
h->distance = parent->distance + 1;
|
|
else if(h->spin[0] == 4 && h->move[0]->s == hsB)
|
|
h->distance = createStep(h->move[0], (h->spin[0]+2)%7)->distance + 3;
|
|
else h->distance = parent->distance + 2;
|
|
}
|
|
else h->distance = parent->distance - 2;
|
|
return h;
|
|
}
|
|
|
|
void addSpin(heptagon *h, int d, heptagon *from, int rot, int spin) {
|
|
rot = fixrot(rot);
|
|
createStep(from, rot);
|
|
h->move[d] = from->move[rot];
|
|
h->spin[d] = fixrot(from->spin[rot] + spin);
|
|
h->move[d]->move[fixrot(from->spin[rot] + spin)] = h;
|
|
h->move[d]->spin[fixrot(from->spin[rot] + spin)] = d;
|
|
//generateFjordval(h->move[d]); generateFjordval(h);
|
|
}
|
|
|
|
heptagon *createStep(heptagon *h, int d) {
|
|
d = fixrot(d);
|
|
if(h->s != hsOrigin && !h->move[0]) {
|
|
buildHeptagon(h, 0, hsA, 4);
|
|
}
|
|
if(h->move[d]) return h->move[d];
|
|
if(h->s == hsOrigin) {
|
|
buildHeptagon(h, d, hsA);
|
|
}
|
|
else if(d == 1) {
|
|
addSpin(h, d, h->move[0], h->spin[0]-1, -1);
|
|
}
|
|
else if(d == 6) {
|
|
addSpin(h, d, h->move[0], h->spin[0]+1, +1);
|
|
}
|
|
else if(d == 2) {
|
|
createStep(h->move[0], h->spin[0]-1);
|
|
addSpin(h, d, h->move[0]->modmove(h->spin[0]-1), 5 + h->move[0]->gspin(h->spin[0]-1), -1);
|
|
}
|
|
else if(d == 5 && h->s == hsB) {
|
|
createStep(h->move[0], h->spin[0]+1);
|
|
addSpin(h, d, h->move[0]->modmove(h->spin[0]+1), 2 + h->move[0]->gspin(h->spin[0]+1), +1);
|
|
}
|
|
else
|
|
buildHeptagon(h, d, (d == 5 || (h->s == hsB && d == 4)) ? hsB : hsA);
|
|
return h->move[d];
|
|
}
|
|
|
|
// a structure used to walk on the heptagonal tesselation
|
|
// (remembers not only the heptagon, but also direction)
|
|
struct heptspin {
|
|
heptagon *h;
|
|
int spin;
|
|
};
|
|
|
|
heptspin hsstep(const heptspin &hs, int spin) {
|
|
createStep(hs.h, hs.spin);
|
|
heptspin res;
|
|
res.h = hs.h->move[hs.spin];
|
|
res.spin = fixrot(hs.h->spin[hs.spin] + spin);
|
|
return res;
|
|
}
|
|
|
|
heptspin hsspin(const heptspin &hs, int val) {
|
|
heptspin res;
|
|
res.h = hs.h;
|
|
res.spin = fixrot(hs.spin + val);
|
|
return res;
|
|
}
|
|
|
|
// display the coordinates of the heptagon
|
|
void backtrace(heptagon *pos) {
|
|
if(pos == &origin) return;
|
|
backtrace(pos->move[0]);
|
|
printf(" %d", pos->spin[0]);
|
|
}
|
|
|
|
void hsshow(const heptspin& t) {
|
|
printf("ORIGIN"); backtrace(t.h); printf(" (spin %d)\n", t.spin);
|
|
}
|
|
|