1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-20 23:50:27 +00:00
hyperrogue/netgen.cpp

785 lines
20 KiB
C++

// Hyperbolic Rogue -- paper model generator
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file netgen.cpp
* \brief paper model generator
*/
#include "hyper.h"
#if CAP_MODEL
namespace hr {
EX namespace netgen {
// We need a two-dimensional vector class for this.
// (actually we could just use hyperpoint but this is very old...)
struct vec {
double x, y;
vec(double _x, double _y) : x(_x), y(_y) { }
vec() : x(0), y(0) {}
};
vec& operator += (vec& a, const vec b) { a.x += b.x; a.y += b.y; return a; }
vec& operator -= (vec& a, const vec b) { a.x -= b.x; a.y -= b.y; return a; }
// coordinatewise multiplication and division
vec& operator *= (vec& a, const vec b) { a.x *= b.x; a.y *= b.y; return a; }
vec& operator *= (vec& a, double scalar) { a.x *= scalar; a.y *= scalar; return a; }
vec& operator /= (vec& a, const vec b) { a.x /= b.x; a.y /= b.y; return a; }
vec& operator /= (vec& a, double scalar) { a.x /= scalar; a.y /= scalar; return a; }
vec operator + (vec a, const vec b) { return a+=b; }
vec operator - (vec a, const vec b) { return a-=b; }
vec operator * (vec a, const vec b) { return a*=b; }
vec operator / (vec a, const vec b) { return a/=b; }
vec operator * (vec a, double scalar) { return a*=scalar; }
vec operator * (double scalar, vec a) { return a*=scalar; }
vec operator / (vec a, double scalar) { return a/=scalar; }
vec operator / (double scalar, vec a) { return a/=scalar; }
vec ang(double f) { return vec(cos(f), sin(f)); }
double norm(vec v) { return v.x*v.x+v.y*v.y; }
// the parameters.
bool loaded;
int nscale, PX, PY, BASE, SX, SY, CELLS, fontsize, created;
double el;
#define MAXCELLS 1000
// All the datatables stored in the net files.
int ct[MAXCELLS];
double vx[MAXCELLS][16];
vec center[MAXCELLS];
double rot[MAXCELLS];
int glued[MAXCELLS];
vector<int> nei[MAXCELLS];
// auxiliary data
double raylen[MAXCELLS];
double edgist[MAXCELLS];
vector<char> patek[MAXCELLS];
// data generated by HyperRogue
vector<hyperpoint> hcenter[MAXCELLS];
// Functions handling the data.
//==============================
// Use HyperRogue to generate the data (ct, vx, nei).
EX int mode = 0;
EX void buildVertexInfo(cell *c, transmatrix V) {
if(mode == 1)
for(int ii=0; ii<CELLS; ii++) if(dcal[ii] == c) {
hcenter[ii].resize(c->type+1);
hcenter[ii][c->type] = V * C0;
if(c->type == S7) {
for(int i=0; i<c->type; i++) {
transmatrix V2 = V * ddspin(c, i, M_PI/S7) * xpush(cgi.hexf);
hcenter[ii][i] = V2 * C0;
}
}
if(c->type == S6) {
for(int i=0; i<c->type; i++) {
transmatrix V2 =
V * ddspin(c, i, 0) * xpush(cgi.crossf) * spin(M_PI+M_PI/S7) * xpush(cgi.hexf);
hcenter[ii][i] = V2 * C0;
}
}
}
}
void dataFromHR() {
mode = 1;
drawthemap();
mode = 0;
for(int i=0; i<CELLS; i++) {
ct[i] = dcal[i]->type;
for(int k=0; k<=ct[i]; k++)
vx[i][2*k] = hcenter[i][k][0],
vx[i][2*k+1] = hcenter[i][k][1];
nei[i].clear();
nei[i].resize(ct[i], -1);
for(int j=0; j<CELLS; j++) {
cell *c1 = dcal[i];
cell *c2 = dcal[j];
for(int k=0; k<c1->type; k++) if(c1->move(k) == c2)
nei[i][k] = j;
}
}
for(int i=0; i<CELLS; i++) {
center[i] = vec(SX/2, SY/2);
rot[i] = 0;
glued[i] = -1;
for(int e=0; e<ct[i]; e++)
if(nei[i][e] < i && nei[i][e] != -1 && (glued[i] == -1 || nei[i][e] < glued[i])) {
glued[i] = nei[i][e];
}
}
}
void loadData() {
fhstream f("papermodeldata.txt", "rt");
if(!f.f) return;
if(!scan(f, CELLS, SX, SY, PX, PY, nscale, BASE, el, created)) return;
loaded = true;
if(!created) return;
for(int i=0; i<CELLS; i++) scan(f, ct[i]);
for(int i=0; i<CELLS; i++) nei[i].clear(), nei[i].resize(ct[i], -1);
for(int i=0; i<CELLS; i++) for(int j=0; j<16; j++) scan(f, vx[i][j]);
while(true) {
int a, b, c;
scan(f, a, b, c);
if(a < 0) break;
else nei[a][c] = b;
}
for(int i=0; i<CELLS; i++) {
double dx, dy, dr;
int g;
scan(f, dx, dy, dr, g);
center[i] = vec(dx, dy);
rot[i] = dr;
glued[i] = g;
}
}
void saveData() {
// global parameters
fhstream f("papermodeldata2.txt", "wt");
if(!f.f) {
addMessage("Could not save the paper model data");
return;
}
println(f, spaced(CELLS, SX, SY, PX, PY, nscale, BASE, el, created), "\n");
// net parameters: cell types
println(f, spaced_of(ct, CELLS));
// net parameters: hcenters
for(int i=0; i<CELLS; i++) {
println(f, spaced_of(vx[i], 16));
}
println(f, "\n");
// create netgen
for(int i=0; i<CELLS; i++) for(int j=0; j<CELLS; j++) {
for(int k=0; k<ct[i]; k++) if(nei[i][k] == j)
print(f, spaced(i, j, k), " ");
}
println(f, "-1 -1 -1");
// graphics
for(int i=0; i<CELLS; i++)
println(f, spaced(center[i].x, center[i].y, rot[i], glued[i]));
}
// Simple graphical functions
//============================
color_t argb(color_t c) { return ((c & 0xFFFFFF) >> 8) | ((c & 0xFF) << 24); }
void blackline(vec v1, vec v2, color_t col = 0x000000FF) {
#if CAP_SDLGFX
aalineColor(srend, int(v1.x), int(v1.y), int(v2.x), int(v2.y), align(col));
#elif CAP_SDL
SDL_LockSurface(s);
int len = abs(v1.x-v2.x) + abs(v1.y-v2.y);
for(int i=0; i<=len; i++)
qpixel(s, int(v1.x + (v2.x-v1.x)*i/len), int(v1.y + (v2.y-v1.y)*i/len)) = argb(col);
SDL_UnlockSurface(s);
#endif
}
void drawtriangle(vec v1, vec v2, vec v3, color_t col) {
#if CAP_SDLGFX
polyx[0] = int(v1.x);
polyx[1] = int(v2.x);
polyx[2] = int(v3.x);
polyy[0] = int(v1.y);
polyy[1] = int(v2.y);
polyy[2] = int(v3.y);
filledPolygonColorI(srend, polyx, polyy, 3, col);
#elif CAP_SDL
SDL_LockSurface(s);
int len = abs(v1.x-v2.x) + abs(v1.y-v2.y);
for(int i=0; i<=len; i++) for(int j=0; j<=len; j++) if(i+j <= len)
qpixel(s, int(v3.x + (v2.x-v3.x)*i/len + (v1.x-v3.x)*j/len), int(v3.y + (v2.y-v3.y)*i/len + (v1.y-v3.y)*j/len)) = argb(col);
SDL_UnlockSurface(s);
#endif
}
void blackcircle(vec v, int r, color_t col = 0x000000FF) {
#if CAP_SDLGFX
aacircleColor(srend, int(v.x), int(v.y), r, col);
#endif
}
void blacktext(vec v, char c) {
char str[2]; str[0] = c; str[1] = 0;
int tsize = int(el * 12/27);
displaystr(int(v.x), int(v.y), 0, tsize, str, 0, 8);
}
hyperpoint hvec(int i, int e) {
return hpxy(vx[i][2*e], vx[i][2*e+1]);
}
bool wellspread(double d1, double d2, double d3, int &co) {
int id1 = int(d1);
int id2 = int(d2);
int id3 = int(d3);
co = min(min(id1,id2),id3);
return (id1 <= co+1 && id2 <= co+1 && id3 <= co+1);
}
SDL_Surface *net, *hqsurface;
color_t& hqpixel(hyperpoint h) {
int hx, hy, hs;
getcoord0(shiftless(h), hx, hy, hs);
return qpixel(hqsurface, hx, hy);
}
void copyhypertriangle(
vec g1, vec g2, vec g3,
hyperpoint h1, hyperpoint h2, hyperpoint h3) {
int ix, iy;
if(wellspread(g1.x,g2.x,g3.x,ix) && wellspread(g1.y,g2.y,g3.y,iy))
qpixel(net,ix,iy) = hqpixel(h1);
else {
vec g4 = (g2+g3)/2;
vec g5 = (g3+g1)/2;
vec g6 = (g1+g2)/2;
hyperpoint h4 = mid(h2,h3);
hyperpoint h5 = mid(h3,h1);
hyperpoint h6 = mid(h1,h2);
copyhypertriangle(g1,g5,g6, h1,h5,h6);
copyhypertriangle(g5,g3,g4, h5,h3,h4);
copyhypertriangle(g6,g4,g2, h6,h4,h2);
copyhypertriangle(g4,g6,g5, h4,h6,h5);
}
}
void setRaylen() {
for(int i=0; i<CELLS; i++) {
raylen[i] = el / sin(M_PI / ct[i]);
edgist[i] = raylen[i] * cos(M_PI / ct[i]);
}
}
// draw the model
void createPapermodel() {
loadData();
renderbuffer rbuf(2000, 2000, vid.usingGL);
dynamicval<videopar> dv(vid, vid);
vid.xres = vid.yres = 2000; pconf.scale = 0.99;
if(1) {
resetbuffer rb;
calcparam();
models::configure();
mode = 2;
darken = 0;
rbuf.enable();
current_display->set_viewport(0);
drawfullmap();
hqsurface = rbuf.render();
IMAGESAVE(hqsurface, "test.png");
rb.reset();
}
vid.usingGL = false;
mode = 0;
/* for(int i=0; i<CELLS; i++) {
int t = ct[i];
for(int e=0; e<t; e++)
drawline(hvec(i,e), hvec(i,(e+1)%t), 0x80808080);
for(int e=0; e<7; e++)
drawline(hvec(i,e), hvec(i,7), 0x80808080);
} */
dynamicval<SDL_Surface*> ds(s);
s = net = SDL_CreateRGBSurface(SDL_SWSURFACE,SX*nscale,SY*nscale,32,0,0,0,0);
#if CAP_SDL2
dynamicval<SDL_Renderer*> dr(srend);
srend = SDL_CreateSoftwareRenderer(s);
#endif
SDL_FillRect(net, NULL, 0xFFFFFF);
int pateks = 0;
for(int i=0; i<CELLS; i++) patek[i].resize(ct[i]);
int zeroi = nei[0][0];
int zeroe = 0;
for(int e=0; e<6; e++) if(nei[zeroi][e] == 0) zeroe = e;
el *= nscale;
setRaylen();
for(int faza=0; faza<2; faza++) for(int i=0; i<CELLS; i++) {
int t = ct[i];
printf("faza %d cell %d\n", faza, i);
for(int e=0; e<t; e++) {
vec v1 = center[i] * nscale + raylen[i] * ang(rot[i] + 2*M_PI*e/t);
vec v2 = center[i] * nscale + raylen[i] * ang(rot[i] + 2*M_PI*(e+1)/t);
vec v3 = (v1+v2)/2;
if(faza == 1) blackline(v1, v2);
int ofs = t == 7 ? 0 : 5;
// 0,2,0 ~ 2,0,0
if(0) if((i==0 && e == 0) || (i == zeroi && e == zeroe)) {
for(int ofs=0; ofs<t; ofs++) {
println(hlog, "OFS ", ofs, hvec(i, (e+ofs)%t), hvec(i, (e+1+ofs)%t));
}
}
if(faza == 0) copyhypertriangle(
center[i] * nscale, v1, v2,
hvec(i,7), hvec(i, (e+ofs)%t), hvec(i, (e+1+ofs)%t)
);
if(faza == 1)
if(nei[i][e] != -1 && nei[i][e] != glued[i] && glued[nei[i][e]] != i) {
vec vd = v2-v1;
swap(vd.x, vd.y); vd.x = -vd.x;
double factor = -sqrt(3)/6;
vd.x *= factor;
vd.y *= factor;
vec v4 = v3 + vd;
vec v5 = v3 + vd/2;
if(!patek[i][e]) {
int i2 = nei[i][e];
for(int e2=0; e2<ct[nei[i][e]]; e2++) if(nei[i2][e2] == i)
patek[i][e] = patek[i2][e2] =
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
"!@#$%^&*+=~:;<>?/|\"., [{(\\]})" [(pateks++) % 85];
}
color_t col = 0xFFFFFFFF;
int p = patek[i][e];
col -= 0x8000 * (p&1); p /= 2;
col -= 0x800000 * (p&1); p /= 2;
col -= 0x80000000 * (p&1); p /= 2;
col -= 0x4000 * (p&1); p /= 2;
col -= 0x400000 * (p&1); p /= 2;
col -= 0x40000000 * (p&1); p /= 2;
col -= 0x2000 * (p&1); p /= 2;
col -= 0x200000 * (p&1); p /= 2;
col -= 0x20000000 * (p&1); p /= 2;
drawtriangle(v1,v2,v4, col);
blacktext(v5, patek[i][e]);
blackline(v1, v4);
blackline(v2, v4);
}
}
}
println(hlog, "pateks = ", pateks);
IMAGESAVE(net, "papermodel-all" IMAGEEXT);
IMAGESAVE(hqsurface, "papermodel-source" IMAGEEXT);
int qx = SX*nscale/PX;
int qy = SY*nscale/PY;
SDL_Surface *quarter = SDL_CreateRGBSurface(SDL_SWSURFACE,qx,qy,32,0,0,0,0);
for(int iy=0; iy<PY; iy++)
for(int ix=0; ix<PX; ix++) {
for(int y=0; y<qy; y++) for(int x=0; x<qx; x++)
qpixel(quarter,x,y) = qpixel(net, x+qx*ix, y+qy*iy);
char buf[64];
sprintf(buf, "papermodel-page%d%d" IMAGEEXT, iy, ix);
IMAGESAVE(quarter, buf);
}
SDL_FreeSurface(net);
SDL_FreeSurface(quarter);
#if CAP_SDL2
SDL_DestroyRenderer(srend);
#endif
}
vec mousepos, rel;
int bei = 0, bee = 0, whichcell = 0;
double cedist;
bool dragging = false;
int glueroot(int i) {
if(glued[i] == -1) return i;
return glueroot(glued[i]);
}
void clicked(int x, int y, int b) {
mousepos = vec(x, y);
if(b == 1)
rel = center[glueroot(whichcell)] - mousepos,
dragging = true;
if(b == 17)
dragging = false;
if(b == 32 && dragging)
center[glueroot(whichcell)] = rel + mousepos;
}
void applyGlue(int i) {
int j = glued[i];
int it = ct[i];
int jt = ct[j];
int ie = 0, je = 0;
for(int e=0; e<it; e++) if(nei[i][e] == j) ie = e;
for(int e=0; e<jt; e++) if(nei[j][e] == i) je = e;
rot[i] = rot[j] + 2*M_PI*(je+.5)/jt - 2*M_PI*(ie+.5)/it + M_PI;
center[i] =
center[j] +
(edgist[i]+edgist[j]) * ang(rot[j] + 2*M_PI*(je+.5)/jt);
}
shiftpoint vec_to_p(vec v) {
return shiftless(hyperpoint(v.x - current_display->xcenter, v.y - current_display->ycenter, 0, 1));
}
void netline(vec a, vec b, color_t col) {
if(vid.usingGL)
queueline(vec_to_p(a), vec_to_p(b), col, 0);
else
blackline(a, b, col);
}
void netcircle(vec ctr, int rad, color_t col) {
if(vid.usingGL)
queuecircle(ctr.x, ctr.y, rad, col);
else
blackcircle(ctr, rad, col);
}
void displaynets() {
if(!vid.usingGL) SDL_LockSurface(s);
setRaylen();
if(vid.usingGL) {
calcparam();
setGLProjection();
glhr::set_depthtest(false);
current_display->set_all(0,0);
}
else {
for(int uy=SY-1; uy>=0; uy--)
for(int ux=SX-1; ux>=0; ux--) {
qpixel(s, ux, uy) = 0;
}
initquickqueue();
}
for(int y=1; y<PY; y++)
netline(vec(0,SY*y/PY), vec(SX,SY*y/PY), 0x404080FF);
for(int x=1; x<PX; x++)
netline(vec(SX*x/PX,0), vec(SX*x/PX,SY), 0x404080FF);
for(int i=0; i<CELLS; i++) {
if(norm(center[i]-mousepos) < norm(center[whichcell]-mousepos))
whichcell = i;
int t = ct[i];
if(i == whichcell)
netcircle(center[i], 10, 0x40FF40FF);
if(i == bei || i == nei[bei][bee])
netcircle(center[i], 5, 0x40FF40FF);
if(glued[i] == -1)
netcircle(center[i], 7, 0xFF4040FF);
if(glued[i] != -1)
applyGlue(i);
for(int e=0; e<t; e++) {
vec v1 = center[i] + raylen[i] * ang(rot[i] + 2*M_PI*e/t);
vec v2 = center[i] + raylen[i] * ang(rot[i] + 2*M_PI*(e+1)/t);
vec v3 = (v1+v2)/2;
if(nei[i][e] >= 0 && !dragging) {
if(norm(v3-mousepos) < cedist) bei = i, bee = e;
if(i == bei && e == bee) cedist = norm(v3-mousepos);
}
color_t col =
i == bei && e == bee ? 0x40FF40FF:
i == nei[bei][bee] && nei[i][e] == bei ? 0x40FF40FF :
nei[i][e] == glued[i] ? 0x303030FF :
glued[nei[i][e]] == i ? 0x303030FF :
nei[i][e] >= 0 ? 0xC0C0C0FF :
0x808080FF;
netline(v1, v2, col);
if(nei[i][e] != -1 && nei[i][e] != glued[i] && glued[nei[i][e]] != i) {
vec vd = v2-v1;
swap(vd.x, vd.y); vd.x = -vd.x;
double factor = -sqrt(3)/6;
vd.x *= factor; vd.y *= factor;
vec v4 = v3 + vd;
netline(v1, v4, 0xFFC0C0C0);
netline(v2, v4, 0xFFC0C0C0);
}
}
}
if(!vid.usingGL) SDL_UnlockSurface(s);
else quickqueue();
present_screen();
}
double rs, rz;
void addglue() {
int i = bei;
int j = nei[bei][bee];
if(glued[i] == j)
glued[i] = -1;
else if(glued[j] == i)
glued[j] = -1;
else if(glueroot(i) == glueroot(j))
;
else if(glued[j] == -1)
glued[j] = i;
}
int nti;
void smooth() {
int ti = SDL_GetTicks();
rot[whichcell] += rs * (nti - ti) / 1000.0;
el += rz * (nti - ti) / 1000.0;
nti = ti;
}
void netgen_loop() {
nti = SDL_GetTicks();
while(true) {
smooth();
displaynets();
SDL_Event event;
while(SDL_PollEvent(&event)) switch (event.type) {
case SDL_QUIT:
exit(1);
return;
case SDL_MOUSEBUTTONDOWN: {
clicked(event.button.x, event.button.y, event.button.button);
break;
}
case SDL_MOUSEBUTTONUP: {
clicked(event.button.x, event.button.y, 16+event.button.button);
break;
}
case SDL_MOUSEMOTION: {
clicked(event.motion.x, event.motion.y, 32);
break;
}
case SDL_KEYDOWN: {
int key = event.key.keysym.sym;
#if CAP_SDL2
int uni = key;
#else
int uni = event.key.keysym.unicode;
#endif
if(uni == 'q' || key == SDLK_ESCAPE || key == SDLK_F10)
return;
if(key == SDLK_PAGEUP) rs = 3;
if(key == SDLK_PAGEDOWN) rs = -3;
if(uni == 'z') rz = 1;
if(uni == 'x') rz = -1;
if(uni == 'g') addglue();
break;
}
case SDL_KEYUP: {
rs = 0;
rz = 0;
break;
}
}
}
}
void designNet() {
if(1) {
dynamicval<int> dwx(vid.window_x, SX);
dynamicval<int> dwy(vid.window_y, SY);
dynamicval<int> dfx(vid.fullscreen_x, SX);
dynamicval<int> dfy(vid.fullscreen_y, SY);
dynamicval<bool> dr(resizable, false);
dynamicval<bool> dws(vid.relative_window_size, false);
dynamicval<bool> dfs(vid.change_fullscr, true);
dynamicval<bool> dcf(vid.want_fullscreen, false);
dynamicval<eModel> m(pmodel, mdPixel);
request_resolution_change = true;
apply_screen_settings();
netgen_loop();
saveData();
setvideomode();
}
apply_screen_settings();
}
void show() {
cmode = sm::SIDE;
gamescreen();
if(true) {
initquickqueue();
for(int i=0; i<CELLS; i++) {
int t = ct[i];
int ofs = t == 7 ? 0 : 5;
for(int e=0; e<t; e++) {
color_t col =
nei[i][e] == glued[i] && glued[i] >= 0 ? 0x303030 :
nei[i][e] >= 0 && glued[nei[i][e]] == i ? 0x303030 :
nei[i][e] >= 0 ? 0x808080 :
0xC0C0C0;
queueline(shiftless(hvec(i, (e+ofs)%t)), shiftless(hvec(i, (e+1+ofs)%t)), (col << 8) + 0xFF, 3);
}
}
quickqueue();
}
if(mode != 2) {
dialog::init("paper model creator");
dialog::addItem(XLAT("synchronize net and map"), 's');
dialog::addItem(XLAT("display the scope"), 't');
dialog::addItem(XLAT("create the model"), 'c');
dialog::addItem(XLAT("design the net"), 'd');
dialog::addBreak(50);
dialog::addBack();
dialog::display();
}
keyhandler = [] (int sym, int uni) {
dialog::handleNavigation(sym, uni);
if(!loaded) {
loadData();
if(!loaded) {
addMessage(XLAT("Failed to load the file 'papermodeldata.txt'"));
popScreen();
return;
}
if(!created) {
View = Id;
playermoved = false;
dataFromHR();
designNet();
created = 1;
return;
}
}
if(mode == 2 && uni != 0) {
mode = 0;
return;
}
if(uni == 's') {
View = Id;
if(ctof(centerover)) View = spin(2 * M_PI * (rand() % 7) / 7) * View;
playermoved = false;
}
else if(uni == 'c') {
createPapermodel();
addMessage(XLAT("The paper model created as papermodel-*.bmp"));
}
else if(uni == 'd') designNet();
else if(uni == 't') mode = 2;
else if(doexiton(sym, uni))
popScreen();
};
}
EX void run() {
if(euclid)
addMessage("Useless in Euclidean geometry.");
else if(sphere)
addMessage("Not implemented for spherical geometry. Please tell me if you really want this.");
else
pushScreen(show);
}
EX }
}
#endif