1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-03 22:10:34 +00:00
hyperrogue/heptagon.cpp

283 lines
8.9 KiB
C++

// Hyperbolic Rogue
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
// heptagon here refers to underlying heptagonal tesselation
// (which you can see by changing the conditions in graph.cpp)
namespace hr {
#define MIRR(x) x.mirrored
int heptacount = 0;
struct cell;
cell *newCell(int type, heptagon *master);
// spintable functions
// the automaton is used to generate each heptagon in an unique way
// (you can see the tree obtained by changing the conditions in graph.cpp)
// from the origin we can go further in any direction, and from other heptagons
// we can go in directions 3 and 4 (0 is back to origin, so 3 and 4 go forward),
// and sometimes in direction 5
hstate transition(hstate s, int dir) {
if(sphere) {
if(S7 == 4) {
if(s == hsOrigin) return dir == 0 ? hsB0 : hsB1;
}
if(S7 == 3) {
if(s == hsOrigin) return hsB1;
}
if(s == hsOrigin) return dir == 0 ? hsA0 : hsA1;
if(s == hsA0 && dir == 2) return hsB0;
if(s == hsA1 && dir == 2) return hsB1;
if(s == hsB0 && dir == S7-2) return hsC;
return hsError;
}
else if(S6 == 8) {
if(s == hsOrigin) return hsA;
if(s == hsA && (dir >= 2 && dir < S7-1)) return hsA;
if(s == hsA && (dir == S7-1)) return hsB;
if(s == hsB && (dir >= 2 && dir < S7-2)) return hsA;
if(s == hsB && (dir == S7-2)) return hsB;
}
else {
if(s == hsOrigin) return hsA;
if(s == hsA && dir >= 3 && dir <= S7-3) return hsA;
if(s == hsA && dir == S7-2) return hsB;
if(s == hsB && dir >= 3 && dir <= S7-4) return hsA;
if(s == hsB && dir == S7-3) return hsB;
}
return hsError;
}
/*
int indent = 0;
struct indenter {
indenter() { indent += 2; }
~indenter() { indent -= 2; }
};
template<class... T> auto iprintf(T... t) { for(int i=0; i<indent; i++) putchar(' '); return printf(t...); }
*/
#define COMPUTE -1000000
// create a new heptagon
heptagon *buildHeptagon1(heptagon *h, heptagon *parent, int d, hstate s, int pard = 0, int fixdistance = COMPUTE) {
h->alt = NULL;
h->s = s;
h->c.connect(pard, parent, d, false);
h->cdata = NULL;
return h;
}
heptagon *buildHeptagon(heptagon *parent, int d, hstate s, int pard = 0, int fixdistance = COMPUTE) {
heptagon *h = buildHeptagon1(tailored_alloc<heptagon> (S7), parent, d, s, pard, fixdistance);
if(binarytiling || archimedean) return h;
if(parent->c7) {
if(IRREGULAR)
irr::link_next(parent, d);
else
h->c7 = newCell(S7, h);
h->rval0 = h->rval1 = 0;
h->emeraldval = emerald_heptagon(parent->emeraldval, d);
h->zebraval = zebra_heptagon(parent->zebraval, d);
h->fieldval = currfp.connections[fieldpattern::btspin(parent->fieldval, d)];
if(a38)
h->fiftyval = fifty_38(parent->fiftyval, d);
else if(parent->s == hsOrigin)
h->fiftyval = firstfiftyval(d);
else
h->fiftyval = nextfiftyval(parent->fiftyval, parent->move(0)->fiftyval, d);
}
else {
h->c7 = NULL;
h->emeraldval = 0;
h->fiftyval = 0;
h->cdata = NULL;
}
//generateEmeraldval(parent);
//generateEmeraldval(h);
if(pard == 0) {
h->dm4 = parent->dm4+1;
if(fixdistance != COMPUTE) h->distance = fixdistance;
else if(S3 == 4 && BITRUNCATED) {
h->distance = parent->distance + 2;
if(h->c.spin(0) == 2 || (h->c.spin(0) == 3 && S7 <= 5))
h->distance = min<short>(h->distance, createStep(h->move(0), 0)->distance + 3);
if(h->c.spin(0) == 2 && h->move(0)) {
int d = h->c.spin(0);
int d1 = (d+S7-1)%S7;
heptagon* h1 = createStep(h->move(0), d1);
if(h1->distance <= h->move(0)->distance)
h->distance = h->move(0)->distance+1;
}
if((h->s == hsB && h->move(0)->s == hsB) || h->move(0)->s == hsA) {
int d = h->c.spin(0);
heptagon* h1 = createStep(h->move(0), (d+1)%S7);
if(h1->distance <= h->move(0)->distance)
h->distance = h->move(0)->distance+1;
}
if(h->c.spin(0) == S7-1 && h->move(0)->distance != 0)
h->distance = min(
h->move(0)->move(0)->distance + 2,
createStep(h, S7-1)->distance + 1
);
}
else if(parent->s == hsOrigin) h->distance = parent->distance + gp::dist_2();
else if(S3 == 4 && GOLDBERG && h->c.spin(0) == S7-2 && h->move(0)->c.spin(0) >= S7-2 && h->move(0)->move(0)->s != hsOrigin) {
heptspin hs(h, 0);
hs += wstep;
int d1 = hs.at->distance;
hs += 1; hs += wstep;
int dm = hs.at->distance;
hs += -1; hs += wstep;
int d0 = hs.at->distance;
h->distance = gp::solve_triangle(dm, d0, d1, gp::operator* (gp::param, gp::loc(-1,1)));
}
else if(S3 == 4 && GOLDBERG && h->c.spin(0) == S7-1 && among(h->move(0)->c.spin(0), S7-2, S7-3) && h->move(0)->move(0)->s != hsOrigin) {
heptspin hs(h, 0);
hs += wstep;
int d0 = hs.at->distance;
hs += 1; hs += wstep;
int dm = hs.at->distance;
hs += 1; hs += wstep;
int d1 = hs.at->distance;
h->distance = gp::solve_triangle(dm, d0, d1, gp::operator* (gp::param, gp::loc(1,1)));
}
else if(S3 == 4 && GOLDBERG && h->c.spin(0) >= 2 && h->c.spin(0) <= S7-2) {
h->distance = parent->distance + gp::dist_2();
}
else if(h->c.spin(0) == S7-2) {
if(!GOLDBERG)
h->distance = parent->distance + gp::dist_1();
else {
int d0 = parent->distance;
int d1 = createStep(parent, S7-1)->distance;
int dm = createStep(parent, 0)->distance;
h->distance = gp::solve_triangle(dm, d0, d1, gp::operator* (gp::param, gp::loc(1,1)));
}
}
else if(h->c.spin(0) == S7-3 && h->move(0)->s == hsB) {
if(!GOLDBERG) {
h->distance = createStep(h->move(0), (h->c.spin(0)+2)%S7)->distance + gp::dist_3();
}
else {
int d0 = parent->distance;
int d1 = createStep(parent, S7-2)->distance;
int dm = createStep(parent, S7-1)->distance;
h->distance = gp::solve_triangle(dm, d0, d1, gp::operator* (gp::param, gp::loc(1,1)));
}
}
else if(h->c.spin(0) == S7-1 && S3 == 4 && GOLDBERG) {
h->distance = parent->distance + gp::dist_1();
}
else h->distance = parent->distance + gp::dist_2();
}
else {
h->distance = parent->distance - gp::dist_2();
if(S3 == 4 && S7 == 5) {
if(h->s == hsOrigin) {
printf("had to cheat!\n");
h->distance = parent->distance - 2;
}
else {
h->distance = parent->distance - 1;
buildHeptagon(h, 2, hsA, 0, h->distance + 2);
buildHeptagon(h, 4, hsB, 0, h->distance);
}
}
h->dm4 = parent->dm4-1;
}
return h;
}
int recsteps;
void addSpin(heptagon *h, int d, heptagon *from, int rot, int spin) {
rot = h->c.fix(rot);
auto h1 = createStep(from, rot);
int fr = h1->c.fix(from->c.spin(rot) + spin);
h->c.connect(d, from->move(rot), fr, false);
}
extern int hrand(int);
// a structure used to walk on the heptagonal tesselation
// (remembers not only the heptagon, but also direction)
heptagon *createStep(heptagon *h, int d) {
d = h->c.fix(d);
if(!h->move(d) && binarytiling)
return binary::createStep(h, d);
if(!h->move(d) && archimedean) {
arcm::create_adjacent(h, d);
return h->move(d);
}
if(!h->move(0) && h->s != hsOrigin && !binarytiling) {
// cheating:
int pard=0;
if(S3 == 3)
pard = 3 + hrand(2);
else if(S3 == 4 && S7 == 5)
pard = 3; // to do: randomize
else if(S3 == 4)
pard = 3;
buildHeptagon(h, 0, h->distance < -10000 ? hsOrigin : hsA, pard);
}
if(h->move(d)) return h->move(d);
if(h->s == hsOrigin) {
buildHeptagon(h, d, hsA);
}
else if(S3 == 4) {
if(d == 1) {
heptspin hs(h, 0, false);
hs = hs + wstep - 1 + wstep - 1 + wstep - 1;
h->c.connect(d, hs);
}
else if(h->s == hsB && d == S7-1) {
heptspin hs(h, 0, false);
hs = hs + wstep + 1 + wstep + 1 + wstep + 1;
h->c.connect(d, hs);
}
else
buildHeptagon(h, d, transition(h->s, d));
}
else if(d == 1) {
addSpin(h, d, h->move(0), h->c.spin(0)-1, -1);
}
else if(d == S7-1) {
addSpin(h, d, h->move(0), h->c.spin(0)+1, +1);
}
else if(d == 2) {
createStep(h->move(0), h->c.spin(0)-1);
addSpin(h, d, h->move(0)->modmove(h->c.spin(0)-1), S7-2 + h->move(0)->c.modspin(h->c.spin(0)-1), -1);
}
else if(d == S7-2 && h->s == hsB) {
createStep(h->move(0), h->c.spin(0)+1);
addSpin(h, d, h->move(0)->modmove(h->c.spin(0)+1), 2 + h->move(0)->c.modspin(h->c.spin(0)+1), +1);
}
else
buildHeptagon(h, d, (d == S7-2 || (h->s == hsB && d == S7-3)) ? hsB : hsA);
return h->move(d);
}
// display the coordinates of the heptagon
void backtrace(heptagon *pos) {
if(pos->s == hsOrigin) return;
backtrace(pos->move(0));
printf(" %d", pos->c.spin(0));
}
void hsshow(const heptspin& t) {
printf("ORIGIN"); backtrace(t.at); printf(" (spin %d)\n", t.spin);
}
// create h->move(d) if not created yet
heptagon *createStep(heptagon *h, int d);
}