1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-21 08:00:25 +00:00
hyperrogue/rug.cpp

1949 lines
50 KiB
C++

// Hyperbolic Rogue - Hypersian Rug mode
// Copyright (C) 2011-2016 Zeno Rogue, see 'hyper.cpp' for details
/** \file rug.cpp
* \brief Hypersian Rug mode
*
* See also surface.cpp for constant curvature surfaces.
*/
#include "hyper.h"
namespace hr {
#if CAP_RUG
#define TEXTURESIZE (texturesize)
#define HTEXTURESIZE (texturesize/2)
EX bool rug_failure = false;
EX namespace rug {
EX bool mouse_control_rug = false;
EX transmatrix rugView;
EX ld lwidth = 2;
EX bool in_crystal() { return surface::sh == surface::dsCrystal; }
bool computed = false;
#if HDR
struct edge {
struct rugpoint *target;
ld len;
};
struct dexp_data {
hyperpoint params;
hyperpoint cont;
ld remaining_distance;
};
struct rugpoint {
double x1, y1;
bool valid;
bool inqueue;
double dist;
shiftpoint h; // point in the represented space
hyperpoint native; // point in the native space
hyperpoint precompute;
vector<edge> edges;
vector<edge> anticusp_edges;
// Find-Union algorithm
rugpoint *glue;
rugpoint *getglue() {
return glue ? (glue = glue->getglue()) : this;
}
hyperpoint& gluenative() {
return glue->native;
}
rugpoint() { glue = NULL; }
void glueto(rugpoint *x) {
x = x->getglue();
auto y = getglue();
if(x != y) y->glue = x;
}
int dexp_id;
dexp_data surface_point;
};
struct triangle {
rugpoint *m[3];
triangle() { m[0] = m[1] = m[2] = nullptr; }
triangle(rugpoint *m1, rugpoint *m2, rugpoint *m3) {
m[0] = m1; m[1] = m2; m[2] = m3;
}
};
#endif
EX vector<rugpoint*> points;
EX vector<triangle> triangles;
int when_enabled;
struct rug_exception { };
EX bool fast_euclidean = true;
EX bool good_shape;
EX bool subdivide_first = false;
EX bool spatial_rug = false;
EX bool subdivide_further();
EX void subdivide();
EX ld modelscale = 1;
EX ld model_distance = 4;
#if HDR
constexpr eGeometry rgHyperbolic = gSpace534;
constexpr eGeometry rgEuclid = gCubeTiling;
constexpr eGeometry rgSphere = gCell120;
constexpr eGeometry rgElliptic = gECell120;
#endif
EX eGeometry gwhere = rgEuclid;
#if HDR
#define USING_NATIVE_GEOMETRY_IN_RUG dynamicval<eGeometry> gw(geometry, rug::rugged ? hr::rug::gwhere : geometry)
#define USING_NATIVE_GEOMETRY dynamicval<eGeometry> gw(geometry, hr::rug::gwhere)
#endif
// hypersian rug datatypes and globals
//-------------------------------------
EX bool rugged = false;
bool genrug = false;
EX int vertex_limit = 20000;
EX bool renderonce = false;
EX int renderlate = 0;
EX bool rendernogl = false;
EX int texturesize = 1024;
EX ld scale = 1;
EX ld anticusp_factor = 1;
EX ld anticusp_dist;
EX ld err_zero = 1e-3, err_zero_current, current_total_error;
EX int queueiter, qvalid, dt;
EX rugpoint *finger_center;
EX ld finger_range = .1;
EX ld finger_force = 1;
#define rconf (vid.rug_config)
EX bool perspective() { return models::is_perspective(rconf.model); }
void push_point(hyperpoint& h, int coord, ld val) {
USING_NATIVE_GEOMETRY;
if(fast_euclidean && euclid)
h[coord] += val;
else if(!val) return;
else {
h = cpush(coord, val) * h;
}
}
EX void push_all_points(int coord, ld val) {
if(!val) return;
else for(int i=0; i<isize(points); i++)
push_point(points[i]->native, coord, val);
}
// construct the graph
//---------------------
int hyprand;
bool rug_euclid() { USING_NATIVE_GEOMETRY; return euclid; }
bool rug_hyperbolic() { USING_NATIVE_GEOMETRY; return hyperbolic; }
bool rug_sphere() { USING_NATIVE_GEOMETRY; return sphere; }
bool rug_elliptic() { USING_NATIVE_GEOMETRY; return elliptic; }
EX map<cell*, rugpoint*> rug_map;
EX rugpoint *addRugpoint(shiftpoint h, double dist) {
rugpoint *m = new rugpoint;
m->h = h;
/*
ld tz = pconf.alpha+h[2];
m->x1 = (1 + h[0] / tz) / 2;
m->y1 = (1 + h[1] / tz) / 2;
*/
hyperpoint onscreen;
applymodel(m->h, onscreen);
m->x1 = (1 + onscreen[0] * pconf.scale) / 2;
m->y1 = (1 - onscreen[1] * pconf.scale) / 2;
m->valid = false;
if(euclid && quotient && !closed_manifold) {
hyperpoint h1 = iso_inverse(models::euclidean_spin) * eumove(euc::eu.user_axes[1]) * C0;
h1 /= sqhypot_d(2, h1);
if(nonorientable) h1 /= 2;
m->valid = good_shape = true;
ld d = h1[0] * h[1] - h1[1] * h[0];
ld a = h[0] * h1[0] + h[1] * h1[1];
// m->flat = modelscale * hpxyz(d * 2 * M_PI, sin(a * 2 * M_PI), cos(a * 2 * M_PI));
USING_NATIVE_GEOMETRY;
hyperpoint hpoint = ypush(modelscale) * xpush0(modelscale * d * 2 * M_PI);
ld hpdist = hdist0(hpoint);
ld z = hypot_d(2, hpoint);
if(z==0) z = 1;
hpoint = hpoint * hpdist / z;
m->native = point31(hpoint[0], hpoint[1] * sin(a*2*M_PI), hpoint[1]*cos(a*2*M_PI));
}
else if(sphere) {
m->valid = good_shape = true;
ld scale;
USING_NATIVE_GEOMETRY;
if(euclid) {
scale = modelscale;
}
else if(hyperbolic) {
// sinh(scale) = modelscale
scale = asinh(modelscale);
}
else if(sphere) {
if(modelscale >= 1)
// do as good as we can...
scale = M_PI / 2 - 1e-3, good_shape = false, m->valid = false;
else scale = asin(modelscale);
}
else
scale = 1;
m->native = unshift(h) * scale;
m->native = hpxy3(m->native[0], m->native[1], m->native[2]);
}
else if(euclid && rug_euclid()) {
m->native = unshift(h) * modelscale;
m->native[2] = 0;
#if MAXMDIM >= 4
m->native[3] = 1;
#endif
m->valid = good_shape = true;
}
else if(rug_hyperbolic() && euclid) {
m->valid = good_shape = true;
USING_NATIVE_GEOMETRY;
m->native = tC0(parabolic13(h[0]*modelscale, h[1]*modelscale));
}
else if(rug_hyperbolic() && hyperbolic && modelscale >= 1) {
m->valid = good_shape = true;
// radius of the equidistant
ld r = acosh(modelscale);
h[3] = h[2]; h[2] = 0;
USING_NATIVE_GEOMETRY;
m->native = rgpushxto0(unshift(h)) * cpush0(2, r);
}
else {
m->native = unshift(h);
ld hd = h[LDIM];
for(int d=GDIM; d<MAXMDIM-1; d++) {
m->native[d] = (hd - .99) * (rand() % 1000 - rand() % 1000) / 1000;
}
USING_NATIVE_GEOMETRY;
#if MAXMDIM >= 4
m->native[3] = 1;
m->native = normalize(m->native);
#endif
}
m->inqueue = false;
m->dist = dist;
points.push_back(m);
return m;
}
EX rugpoint *findRugpoint(shiftpoint h) {
USING_NATIVE_GEOMETRY;
for(int i=0; i<isize(points); i++)
if(geo_dist_q(points[i]->h.h, unshift(h, points[i]->h.shift)) < 1e-5) return points[i];
return NULL;
}
EX rugpoint *findOrAddRugpoint(shiftpoint h, double dist) {
rugpoint *r = findRugpoint(h);
return r ? r : addRugpoint(h, dist);
}
void addNewEdge(rugpoint *e1, rugpoint *e2, ld len = 1) {
edge e; e.len = len;
e.target = e2; e1->edges.push_back(e);
e.target = e1; e2->edges.push_back(e);
}
EX bool edge_exists(rugpoint *e1, rugpoint *e2) {
for(auto& e: e1->edges)
if(e.target == e2)
return true;
return false;
}
void addEdge(rugpoint *e1, rugpoint *e2, ld len = 1) {
if(!edge_exists(e1, e2))
addNewEdge(e1, e2, len);
}
void add_anticusp_edge(rugpoint *e1, rugpoint *e2, ld len = 1) {
for(auto& e: e1->anticusp_edges)
if(e.target == e2) return;
edge e; e.len = len;
e.target = e2; e1->anticusp_edges.push_back(e);
e.target = e1; e2->anticusp_edges.push_back(e);
}
EX void addTriangle(rugpoint *t1, rugpoint *t2, rugpoint *t3, ld len IS(1)) {
addEdge(t1->getglue(), t2->getglue(), len);
addEdge(t2->getglue(), t3->getglue(), len);
addEdge(t3->getglue(), t1->getglue(), len);
triangles.push_back(triangle(t1,t2,t3));
}
map<pair<rugpoint*, rugpoint*>, rugpoint*> halves;
rugpoint* findhalf(rugpoint *r1, rugpoint *r2) {
if(r1 > r2) swap(r1, r2);
return halves[make_pair(r1,r2)];
}
void addTriangle1(rugpoint *t1, rugpoint *t2, rugpoint *t3) {
rugpoint *t12 = findhalf(t1, t2);
rugpoint *t23 = findhalf(t2, t3);
rugpoint *t31 = findhalf(t3, t1);
addTriangle(t1, t12, t31);
addTriangle(t12, t2, t23);
addTriangle(t23, t3, t31);
addTriangle(t23, t31, t12);
}
bool psort(rugpoint *a, rugpoint *b) {
return hdist0(a->h) < hdist0(b->h);
}
EX void sort_rug_points() {
sort(points.begin(), points.end(), psort);
}
void calcLengths() {
for(auto p: points)
for(auto& edge: p->edges)
edge.len = geo_dist_q(p->h.h, unshift(edge.target->h, p->h.shift)) * modelscale;
}
EX void calcparam_rug() {
auto cd = current_display;
cd->xtop = cd->ytop = 0;
cd->xsize = cd->ysize = TEXTURESIZE;
cd->xcenter = cd->ycenter = cd->scrsize = HTEXTURESIZE;
cd->radius = cd->scrsize * pconf.scale;
}
#if HDR
struct clifford_torus {
transmatrix T;
transmatrix iT;
ld xfactor, yfactor;
bool flipped;
hyperpoint xh, yh;
hyperpoint torus_to_s4(hyperpoint t);
hyperpoint actual_to_torus(const hyperpoint& a) {
return iT * a;
}
hyperpoint torus_to_actual(const hyperpoint& t) {
return T * t;
}
clifford_torus();
ld get_modelscale() {
return hypot_d(2, xh) * xfactor * 2 * M_PI;
}
ld compute_mx();
};
#endif
struct hyperpoint clifford_torus::torus_to_s4(hyperpoint t) {
double alpha = -t[0] * 2 * M_PI;
double beta = t[1] * 2 * M_PI;
ld ax = alpha + 1.124651, bx = beta + 1.214893;
return hyperpoint(
xfactor * sin(ax),
xfactor * cos(ax),
yfactor * sin(bx),
yfactor * cos(bx)
);
}
clifford_torus::clifford_torus() {
auto p1 = to_loc(euc::eu.user_axes[0]);
auto p2 = to_loc(euc::eu.user_axes[1]);
xh = euc::eumove(p1)*C0-C0;
yh = euc::eumove(p2)*C0-C0;
if(nonorientable) yh *= 2;
flipped = false; // sqhypot_d(2, xh) < sqhypot_d(2, yh);
if(flipped) swap(xh, yh);
ld factor2 = sqhypot_d(2, xh) / sqhypot_d(2, yh);
ld factor = sqrt(factor2);
yfactor = sqrt(1/(1+factor2));
xfactor = factor * yfactor;
T = build_matrix(xh, yh, C0, C03);
iT = inverse(T);
}
ld clifford_torus::compute_mx() {
ld mx = 0;
for(int i=0; i<1000; i++)
mx = max(mx, hypot(xfactor, yfactor * sin(i)) / (1-yfactor * cos(i)));
println(hlog, "mx = ", mx);
return mx;
}
#if MAXMDIM >= 4
EX void buildTorusRug() {
calcparam_rug();
models::configure();
clifford_torus ct;
if(gwhere == gSphere)
modelscale = ct.get_modelscale();
cell *gs = currentmap->gamestart();
map<pair<int, int>, rugpoint*> glues;
ld mx = ct.compute_mx();
auto addToruspoint = [&] (hyperpoint h) {
auto r = addRugpoint(shiftless(C0), 0);
hyperpoint onscreen;
shiftpoint h1 = gmatrix[gs] * ct.torus_to_actual(h);
applymodel(h1, onscreen);
r->x1 = onscreen[0];
r->y1 = onscreen[1];
if(1) {
USING_NATIVE_GEOMETRY;
hyperpoint hp = ct.torus_to_s4(h);
/* spherical coordinates are already good, otherwise... */
if(!sphere) {
/* stereographic projection to get Euclidean conformal torus */
hp /= (hp[3]+1);
hp /= mx;
#if MAXMDIM >= 4
hp[3] = 1;
#endif
}
/* ... in H^3, use inverse Poincare to get hyperbolic conformal torus */
if(hyperbolic)
hp = perspective_to_space(hp, 1, gcHyperbolic);
r->native = hp;
}
r->valid = true;
static const int X = 100003; // a prime
auto gluefun = [] (ld z) { return int(frac(z + .5/X) * X); };
auto p = make_pair(gluefun(h[0]), gluefun(h[1]));
auto& r2 = glues[p];
if(r2) r->glueto(r2); else r2 = r;
return r;
};
int rugmax = (int) sqrt(vertex_limit / isize(currentmap->allcells()));
if(rugmax < 1) rugmax = 1;
if(rugmax > 16) rugmax = 16;
ld rmd = rugmax;
hyperpoint sx = ct.iT * (currentmap->adj(gs, 0)*C0-C0)/rmd;
hyperpoint sy = ct.iT * (currentmap->adj(gs, 1)*C0-C0)/rmd;
for(int leaf=0; leaf<(nonorientable ? 2 : 1); leaf++)
for(cell *c: currentmap->allcells()) {
hyperpoint h = ct.iT * calc_relative_matrix(c, gs, C0) * C0;
if(leaf) h[ct.flipped ? 0 : 1] += .5;
rugpoint *rugarr[32][32];
for(int yy=0; yy<=rugmax; yy++)
for(int xx=0; xx<=rugmax; xx++)
rugarr[yy][xx] = addToruspoint(h+xx*sx+yy*sy);
for(int yy=0; yy<rugmax; yy++)
for(int xx=0; xx<rugmax; xx++)
addTriangle(rugarr[yy][xx], rugarr[yy+1][xx], rugarr[yy+1][xx+1], modelscale/rugmax),
addTriangle(rugarr[yy][xx+1], rugarr[yy][xx], rugarr[yy+1][xx+1], modelscale/rugmax);
}
double maxz = 0;
for(auto p: points)
maxz = max(maxz, max(abs(p->x1), abs(p->y1)));
if(1) pconf.scale = 1 / maxz;
if(1) for(auto p: points)
p->x1 = (1 + pconf.scale * p->x1)/2,
p->y1 = (1 - pconf.scale * p->y1)/2;
qvalid = 0;
for(auto p: points) if(!p->glue) qvalid++;
println(hlog, "qvalid = ", qvalid);
return;
}
#endif
EX void verify() {
vector<ld> ratios;
for(auto m: points)
for(auto& e: m->edges) {
auto m2 = e.target;
ld l = e.len;
USING_NATIVE_GEOMETRY;
ld l0 = geo_dist_q(m->native, m2->native);
ratios.push_back(l0 / l);
}
println(hlog, "Length verification:");
sort(ratios.begin(), ratios.end());
for(int i=0; i<isize(ratios); i += isize(ratios) / 10)
println(hlog, ratios[i]);
println(hlog);
}
void comp(cell*& minimum, cell *next) {
int nc = next->cpdist, mc = minimum->cpdist;
if(tie(nc, next) < tie(mc, minimum))
minimum = next;
}
EX void buildRug() {
need_mouseh = true;
good_shape = false;
#if MAXMDIM >= 4
if(euclid && closed_manifold) {
good_shape = true;
buildTorusRug();
return;
}
#endif
celllister cl(centerover ? centerover : cwt.at, get_sightrange(), vertex_limit, NULL);
for(int i=0; i<isize(cl.lst); i++)
rug_map[cl.lst[i]] = addRugpoint(ggmatrix(cl.lst[i])*C0, cl.dists[i]);
for(auto& p: rug_map) {
cell *c = p.first;
rugpoint *v = p.second;
if(arcm::in() || arb::in() || (euclid && quotient)) {
vector<rugpoint*> p(c->type+1);
for(int j=0; j<c->type; j++) p[j] = findOrAddRugpoint(ggmatrix(c) * get_corner_position(c, j), v->dist);
for(int j=0; j<c->type; j++) addTriangle(v, p[j], p[(j+1) % c->type]);
if((euclid && quotient) && nonorientable) {
shiftmatrix T = ggmatrix(c) * eumove(euc::eu.user_axes[1]);
rugpoint *Tv = addRugpoint(T * C0, 0);
for(int j=0; j<c->type; j++) p[j] = findOrAddRugpoint(T * get_corner_position(c, j), v->dist);
for(int j=0; j<c->type; j++) addTriangle(Tv, p[j], p[(j+1) % c->type]);
}
}
else for(int j=0; j<c->type; j++) try {
cell *c2 = c->move(j);
rugpoint *w = rug_map.at(c2);
// if(v<w) addEdge(v, w);
cell *c3 = c->modmove(j+1);
rugpoint *w2 = rug_map.at(c3);
cell *c4 = (cellwalker(c,j) + wstep - 1).cpeek();
if(c4 != c3) {
cell *cm = c; comp(cm, c); comp(cm, c2); comp(cm, c3); comp(cm, c4);
if(cm == c || cm == c4)
addTriangle(v, w, w2);
}
else if(v > w && v > w2)
addTriangle(v, w, w2);
}
catch(const std::out_of_range&) {}
}
println(hlog, "vertices = ", isize(points), " triangles= ", isize(triangles));
if(subdivide_first)
for(int i=0; i<20 && subdivide_further(); i++)
subdivide();
sort_rug_points();
calcLengths();
verify();
for(auto p: points) if(p->valid) qvalid++;
}
// rug physics
queue<rugpoint*> pqueue;
EX void enqueue(rugpoint *m) {
if(m->inqueue) return;
pqueue.push(m);
m->inqueue = true;
}
bool force_euclidean(rugpoint& m1, rugpoint& m2, double rd, bool is_anticusp = false, double d1=1, double d2=1) {
if(!m1.valid || !m2.valid) return false;
USING_NATIVE_GEOMETRY;
// double rd = geo_dist_q(m1.h, m2.h) * xd;
double t = sqhypot_d(3, m1.native - m2.native);
if(is_anticusp && t > rd*rd) return false;
t = sqrt(t);
current_total_error += (t-rd) * (t-rd);
bool nonzero = abs(t-rd) > err_zero_current;
double force = (t - rd) / t / 2; // 20.0;
for(int i=0; i<3; i++) {
double di = (m2.native[i] - m1.native[i]) * force;
m1.native[i] += di * d1;
m2.native[i] -= di * d2;
if(nonzero && d2>0) enqueue(&m2);
}
return nonzero;
}
bool force(rugpoint& m1, rugpoint& m2, double rd, bool is_anticusp=false, double d1=1, double d2=1) {
if(!m1.valid || !m2.valid) return false;
if(rug_euclid() && fast_euclidean) {
return force_euclidean(m1, m2, rd, is_anticusp, d1, d2);
}
USING_NATIVE_GEOMETRY;
ld t = geo_dist_q(m1.native, m2.native);
if(is_anticusp && t > rd) return false;
current_total_error += (t-rd) * (t-rd);
bool nonzero = abs(t-rd) > err_zero_current;
double forcev = (t - rd) / 2; // 20.0;
transmatrix T = iso_inverse(rgpushxto0(m1.native));
hyperpoint ie = inverse_exp(shiftless(T * m2.native));
transmatrix iT = rgpushxto0(m1.native);
for(int i=0; i<MXDIM; i++) if(std::isnan(m1.native[i])) {
addMessage("Failed!");
println(hlog, "m1 = ", m1.native);
throw rug_exception();
}
m1.native = iT * direct_exp(ie * (d1*forcev/t));
m2.native = iT * direct_exp(ie * ((t-d2*forcev)/t));
if(nonzero && d2>0) enqueue(&m2);
return nonzero;
}
vector<pair<ld, rugpoint*> > preset_points;
EX void preset(rugpoint *m) {
if(GDIM == 3) return;
int q = 0;
USING_NATIVE_GEOMETRY;
hyperpoint h = Hypc;
preset_points.clear();
for(int j=0; j<isize(m->edges); j++)
for(int k=0; k<j; k++) {
rugpoint *a = m->edges[j].target;
rugpoint *b = m->edges[k].target;
if(!a->valid) continue;
if(!b->valid) continue;
double blen = -1;
for(int j2=0; j2<isize(a->edges); j2++)
if(a->edges[j2].target == b) blen = a->edges[j2].len;
if(blen <= 0) continue;
for(int j2=0; j2<isize(a->edges); j2++)
for(int k2=0; k2<isize(b->edges); k2++)
if(a->edges[j2].target == b->edges[k2].target && a->edges[j2].target != m) {
rugpoint *c = a->edges[j2].target;
if(!c->valid) continue;
double a1 = m->edges[j].len/blen;
double a2 = m->edges[k].len/blen;
double c1 = a->edges[j2].len/blen;
double c2 = b->edges[k2].len/blen;
double cz = (c1*c1-c2*c2+1) / 2;
double ch = sqrt(c1*c1 - cz*cz + 1e-10);
double az = (a1*a1-a2*a2+1) / 2;
double ah = sqrt(a1*a1 - az*az + 1e-10);
// c->h = a->h + (b->h-a->h) * cz + ch * ort
hyperpoint ort = (c->native - a->native - cz * (b->native-a->native)) / ch;
// m->h = a->h + (b->h-a->h) * az - ah * ort
hyperpoint res = a->native + (b->native-a->native) * az - ah * ort;
h += res;
preset_points.emplace_back(hypot(blen * (ah+ch), blen * (az-cz)), c);
q++;
}
}
#if MAXMDIM >= 4
if(q>0) m->native = normalize(h);
#else
if(q>0) m->native = h / q;
#endif
if(std::isnan(m->native[0]) || std::isnan(m->native[1]) || std::isnan(m->native[2]))
throw rug_exception();
}
ld sse(const hyperpoint& h) {
ld sse = 0;
for(auto& p: preset_points) {
ld l = p.first;
USING_NATIVE_GEOMETRY;
ld l0 = geo_dist_q(h, p.second->native);
sse += (l0-l) * (l0-l);
}
return sse;
}
EX void optimize(rugpoint *m, bool do_preset) {
if(do_preset) {
preset(m);
// int ed0 = isize(preset_points);
for(auto& e: m->edges) if(e.target->valid)
preset_points.emplace_back(e.len, e.target);
if(!rug_euclid()) {
ld cur = sse(m->native);
for(int it=0; it<500; it++) {
ld ex = exp(-it/60);
again:
hyperpoint last = m->native;
USING_NATIVE_GEOMETRY;
m->native = rgpushxto0(m->native) * cpush0((it/2)%3, (it&1)?ex:-ex);
ld now = sse(m->native);
if(now < cur) { cur = now; ex *= 1.2; goto again; }
else m->native = last;
}
}
}
for(int it=0; it<50; it++)
for(int j=0; j<isize(m->edges); j++)
force(*m, *m->edges[j].target, m->edges[j].len, false, 1, 0);
}
EX int divides;
EX int precision_increases;
bool stop = false;
EX bool subdivide_further() {
if(euclid && closed_manifold) return false;
if(GDIM == 3) return false;
return isize(points) * 4 < vertex_limit;
}
EX void subdivide() {
int N = isize(points);
// if(euclid && gwhere == gEuclid) return;
if(!subdivide_further()) {
if(euclid && !closed_manifold && gwhere == gEuclid) {
println(hlog, "Euclidean -- full precision");
stop = true;
}
else {
precision_increases++;
err_zero_current /= 2;
println(hlog, "increasing precision to ", err_zero_current);
for(auto p: points) enqueue(p);
}
return;
}
println(hlog, "subdivide ", make_pair(N, isize(triangles)));
need_mouseh = true;
divides++;
vector<triangle> otriangles = triangles;
triangles.clear();
halves.clear();
// subdivide edges
for(int i=0; i<N; i++) {
rugpoint *m = points[i];
for(int j=0; j<isize(m->edges); j++) {
rugpoint *m2 = m->edges[j].target;
if(m2 < m) continue;
rugpoint *mm = addRugpoint(mid(m->h, m2->h), (m->dist+m2->dist)/2);
halves[make_pair(m, m2)] = mm;
if(!good_shape) {
#if MAXMDIM >= 4
USING_NATIVE_GEOMETRY;
mm->native = mid(m->native, m2->native);
#else
mm->native = (m->native + m2->native) / 2;
#endif
}
mm->valid = m->valid && m2->valid;
if(mm->valid) qvalid++;
mm->inqueue = false; enqueue(mm);
}
m->edges.clear();
}
for(int i=0; i<isize(otriangles); i++)
addTriangle1(otriangles[i].m[0], otriangles[i].m[1], otriangles[i].m[2]);
calcLengths();
println(hlog, "result ", make_tuple(isize(points), isize(triangles)));
}
EX ld modeldist(const hyperpoint& h1, const hyperpoint& h2) {
USING_NATIVE_GEOMETRY;
return geo_dist_q(h1, h2);
}
typedef long long bincode;
const bincode sY = (1<<16);
const bincode sZ = sY * sY;
const bincode sT = sY * sY * sY;
bincode acd_bin(ld x) {
return (int) floor(x / anticusp_dist + .5);
}
bincode get_bincode(hyperpoint h) {
switch(ginf[gwhere].cclass) {
case gcEuclid: case gcSolNIH: case gcNil: case gcProduct: case gcSL2:
return acd_bin(h[0]) + acd_bin(h[1]) * sY + acd_bin(h[2]) * sZ;
case gcHyperbolic:
return acd_bin(hypot_d(3, h));
case gcSphere: {
return acd_bin(h[0]) + acd_bin(h[1]) * sY + acd_bin(h[2]) * sZ + acd_bin(h[3]) * sT;
}
}
return 0;
}
void generate_deltas(vector<bincode>& target, int dim, bincode offset) {
if(dim == 0) {
if(offset > 0) target.push_back(offset);
}
else {
generate_deltas(target, dim-1, offset * sY);
generate_deltas(target, dim-1, offset * sY + 1);
generate_deltas(target, dim-1, offset * sY - 1);
}
}
int detect_cusp_at(rugpoint *p, rugpoint *q) {
if(hdist(p->h, q->h) * modelscale <= anticusp_dist)
return 0;
else if(modeldist(p->native, q->native) > anticusp_dist - err_zero_current)
return 1;
else {
add_anticusp_edge(p, q);
enqueue(p);
enqueue(q);
return 2;
}
}
int detect_cusps() {
ld max_edge_length = 0;
for(auto p: points)
for(auto e: p->edges)
max_edge_length = max(max_edge_length, e.len);
anticusp_dist = anticusp_factor * max_edge_length;
array<int, 3> stats = {{0,0,0}};
map<bincode, vector<rugpoint*> > code_to_point;
for(auto p: points) if(p->valid)
code_to_point[get_bincode(p->native)].push_back(p);
vector<bincode> deltas;
generate_deltas(deltas, gwhere == gEuclid ? 3 : gwhere == gNormal ? 1 : 4, 0);
for(auto b: code_to_point) {
bincode at = b.first;
for(auto p: b.second)
for(auto q: b.second)
if(p < q) stats[detect_cusp_at(p, q)]++;
for(bincode bc: deltas)
if(code_to_point.count(at + bc))
for(auto p: b.second)
for(auto q: code_to_point[at+bc])
stats[detect_cusp_at(p, q)]++;
}
/* printf("testing\n");
int stats2[3] = {0,0,0};
for(auto p: points) if(p->valid)
for(auto q: points) if(q->valid) if(p<q) {
stats2[detect_cusp_at(p, q)]++;
}
printf("cusp stats: %d/%d/%d | %d/%d/%d\n", stats[0], stats[1], stats[2], stats2[0], stats2[1], stats2[2]); */
println(hlog, "cusp stats: ", stats);
return stats[2];
}
EX void addNewPoints() {
if(anticusp_factor && detect_cusps())
return;
if((euclid && quotient) || qvalid == isize(points)) {
subdivide();
return;
}
ld dist = hdist0(points[qvalid]->h) + .1e-6;
int oqvalid = qvalid;
for(int i=0; i<isize(points); i++) {
rugpoint& m = *points[i];
bool wasvalid = m.valid;
m.valid = wasvalid || sphere || hdist0(m.h) <= dist;
if(m.valid && !wasvalid) {
qvalid++;
need_mouseh = true;
if(!good_shape) optimize(&m, i > 7);
enqueue(&m);
}
}
if(qvalid != oqvalid) { println(hlog, "adding new points ", make_tuple(oqvalid, qvalid, isize(points), dist, dt, queueiter)); }
}
EX void physics() {
#if CAP_CRYSTAL && MAXMDIM >= 4
if(in_crystal()) {
crystal::build_rugdata();
return;
}
#endif
if(good_shape) return;
auto t = SDL_GetTicks();
current_total_error = 0;
while(SDL_GetTicks() < t + 5 && !stop)
for(int it=0; it<50 && !stop; it++)
if(pqueue.empty()) addNewPoints();
else {
queueiter++;
rugpoint *m = pqueue.front();
pqueue.pop();
m->inqueue = false;
bool moved = false;
for(auto& e: m->edges)
moved = force(*m, *e.target, e.len) || moved;
for(auto& e: m->anticusp_edges)
moved = force(*m, *e.target, anticusp_dist, true) || moved;
if(moved) enqueue(m), need_mouseh = true;
}
}
// drawing the Rug
//-----------------
bool use_precompute;
extern int besti;
#if CAP_ODS
/* these functions are for the ODS projection, used in VR videos */
bool project_ods(hyperpoint h, hyperpoint& h1, hyperpoint& h2, bool eye) {
USING_NATIVE_GEOMETRY;
return ods::project(h, h1, h2, eye);
// printf("%10.5lf %10.5lf %10.5lf ", azeq[0], azeq[1], azeq[2]);
// printf(" => %10.5lf %10.5lf %10.5lf %10.5lf", x, y, z, t);
// printf("\n");
return true;
}
#endif
vector<glhr::ct_vertex> ct_array;
vector<glhr::ct_vertex> cp_array;
EX basic_textureinfo tinf;
void drawTriangle(triangle& t) {
for(int i=0; i<3; i++) {
if(!t.m[i]) return;
if(!t.m[i]->valid) return;
}
ld col = 1;
if(true) {
hyperpoint hc = (t.m[1]->native - t.m[0]->native) ^ (t.m[2]->native - t.m[0]->native);
double hch = hypot_d(3, hc);
col = (2 + hc[0]/hch) / 3;
if(nonisotropic) col = (9+col) / 10;
}
for(int i=0; i<3; i++) {
curvepoint(t.m[i]->native);
tinf.tvertices.push_back(glhr::pointtogl(point3(t.m[i]->x1, t.m[i]->y1, col)));
}
}
EX struct renderbuffer *glbuf;
EX void prepareTexture() {
ensure_glbuf();
if(!glbuf) { rug::close(); return; }
resetbuffer rb;
dynamicval<eStereo> d(vid.stereo_mode, sOFF);
dynamicval<ld> dl(levellines, 0);
#if CAP_VR
dynamicval<int> i(vrhr::state, 0);
#endif
calcparam_rug();
models::configure();
glbuf->enable();
glbuf->clear(0);
ptds.clear();
#if CAP_QUEUE
draw_boundary(0);
draw_boundary(1);
draw_model_elements();
#endif
drawthemap();
if(finger_center) {
shiftmatrix V = rgpushxto0(finger_center->h);
queuestr(V, 0.5, "X", 0xFFFFFFFF, 2);
for(int i=0; i<72; i++)
queueline(V * xspinpush0(i*M_PI/32, finger_range), V * xspinpush0((i+1)*M_PI/32, finger_range), 0xFFFFFFFF, vid.linequality);
}
drawqueue();
calcparam();
rb.reset();
}
EX bool no_fog;
EX ld lowrug = 1e-2;
EX ld hirug = 1e3;
EX GLuint alternate_texture;
EX bool rug_control() { return rug::rugged; }
#if HDR
struct using_rugview {
using_rugview() { if(rug_control()) swap(View, rugView), swap(geometry, gwhere); }
~using_rugview() { if(rug_control()) swap(View, rugView), swap(geometry, gwhere); }
};
#endif
EX purehookset hooks_rugframe;
EX void drawRugScene() {
callhooks(hooks_rugframe);
USING_NATIVE_GEOMETRY;
tinf.texture_id = alternate_texture ? alternate_texture : glbuf->renderedTexture;
tinf.tvertices.clear();
ptds.clear();
for(auto t: triangles) drawTriangle(t);
auto& rug = queuecurve(shiftless(Id), 0, 0xFFFFFFFF, PPR::LINE);
dynamicval<transmatrix> tV(View, View);
View = Id; /* needed for vr */
if(nonisotropic) {
transmatrix T2 = eupush( tC0(view_inverse(rugView)) );
NLP = rugView * T2;
rug.V = shiftless(ortho_inverse(NLP) * rugView);
}
else {
rug.V = shiftless(rugView);
}
rug.offset_texture = 0;
rug.tinf = &tinf;
if(levellines && disable_texture) rug.tinf = nullptr;
rug.flags = POLY_TRIANGLES | POLY_FAT | POLY_PRINTABLE | POLY_ALWAYS_IN | POLY_ISSIDE | POLY_SHADE_TEXTURE;
dynamicval<projection_configuration> p(pconf, rconf);
calcparam();
drawqueue();
}
// organization
//--------------
EX transmatrix currentrot;
EX void close_glbuf() {
delete glbuf;
glbuf = nullptr;
}
EX void ensure_glbuf() {
if(glbuf) return;
glbuf = new renderbuffer(TEXTURESIZE, TEXTURESIZE, vid.usingGL && !rendernogl);
if(!glbuf->valid) {
addMessage(XLAT("Failed to enable"));
close_glbuf();
return;
}
}
EX void reopen() {
if(rugged) return;
when_enabled = 0;
GLERR("before init");
ensure_glbuf();
if(!glbuf) { rugged = false; return; }
rugged = true;
if(renderonce && !disable_texture) prepareTexture();
if(!rugged) return;
}
EX bool display_warning = true;
EX void init_model() {
clear_model();
genrug = true;
drawthemap();
genrug = false;
qvalid = 0; dt = 0; queueiter = 0;
err_zero_current = err_zero;
divides = 0;
precision_increases = 0;
#if CAP_CRYSTAL
if(cryst && surface::sh == surface::dsNone) {
surface::sh = surface::dsCrystal;
crystal::init_rotation();
good_shape = true;
return;
}
#endif
try {
buildRug();
while(good_shape && subdivide_further()) subdivide();
currentrot = Id;
bool valid = true;
for(rugpoint *r: points)
if(r->x1<0 || r->x1>1 || r->y1<0 || r->y1 > 1)
valid = false;
if(sphere && pmodel == mdDisk && pconf.alpha > 1)
valid = false;
if(display_warning && !valid)
gotoHelp(
"Note: this mode is based on what you see on the screen -- but re-rendered in another way. "
"If not everything is shown on the screen (e.g., too zoomed in), the results will be incorrect "
"(though possibly interesting). "
"Use a different projection to fix this."
);
}
catch(const rug_exception&) {
close();
clear_model();
}
}
EX void reset_view() {
rugView = Id;
if(perspective()) {
using_rugview urv;
shift_view(ztangent(model_distance));
}
}
EX void init() {
if(dual::state) return;
reopen();
if(rugged) init_model();
reset_view();
}
EX void clear_model() {
triangles.clear();
for(int i=0; i<isize(points); i++) delete points[i];
rug_map.clear();
points.clear();
pqueue = queue<rugpoint*> ();
}
EX void close() {
if(!rugged) return;
rugged = false;
close_glbuf();
finger_center = NULL;
}
int lastticks;
ld protractor = 0;
#define CAP_HOLDKEYS (CAP_SDL && !ISWEB)
EX bool handlekeys(int sym, int uni) {
USING_NATIVE_GEOMETRY;
if(NUMBERKEY == '2') {
ld bdist = 1e12;
if(finger_center)
finger_center = NULL;
else {
for(auto p: points) {
ld cdist = hdist(p->getglue()->h, mouseh);
if(cdist < bdist)
bdist = cdist, finger_center = p->getglue();
}
}
if(renderonce) renderlate+=10;
return true;
}
else if(NUMBERKEY == '3') {
#if CAP_CRYSTAL
if(in_crystal())
crystal::switch_z_coordinate();
else
#endif
rotate_view(cspin(0, 2, M_PI));
return true;
}
else if(NUMBERKEY == '4') {
#if CAP_CRYSTAL
if(in_crystal())
crystal::flip_z();
else
#endif
rotate_view(cspin(0, 2, M_PI/2));
return true;
}
#if CAP_CRYSTAL
else if(sym == SDLK_HOME && in_crystal()) {
crystal::next_home_orientation();
return true;
}
#endif
else return false;
}
EX void finger_on(int coord, ld val) {
for(auto p: points) {
ld d = hdist(finger_center->h, p->getglue()->h);
push_point(p->native, coord, val * finger_force * exp( - sqr(d / finger_range)));
}
enqueue(finger_center), good_shape = false;
}
transmatrix last_orientation;
EX ld move_on_touch = 1;
EX void actDraw() {
try {
if(!renderonce && !(levellines && disable_texture)) prepareTexture();
else if(renderlate) {
renderlate--;
prepareTexture();
}
// do not display button
else playerfound = true;
current_display->set_viewport(0);
physics();
drawRugScene();
double alpha = (ticks - lastticks) / 1000.0;
lastticks = ticks;
#if CAP_HOLDKEYS
const Uint8 *keystate = SDL12_GetKeyState(NULL);
if(keystate[SDL12(SDLK_LALT, SDL_SCANCODE_LALT)]) alpha /= 10;
#endif
#if CAP_HOLDKEYS
auto perform_finger = [=] () {
if(keystate[SDL12(SDLK_HOME, SDL_SCANCODE_HOME)]) finger_range /= exp(alpha);
if(keystate[SDL12(SDLK_END, SDL_SCANCODE_END)]) finger_range *= exp(alpha);
if(keystate[SDL12(SDLK_LEFT, SDL_SCANCODE_LEFT)]) finger_on(0, -alpha);
if(keystate[SDL12(SDLK_RIGHT, SDL_SCANCODE_RIGHT)]) finger_on(0, alpha);
if(keystate[SDL12(SDLK_UP, SDL_SCANCODE_UP)]) finger_on(1, alpha);
if(keystate[SDL12(SDLK_DOWN, SDL_SCANCODE_DOWN)]) finger_on(1, -alpha);
if(keystate[SDL12(SDLK_PAGEDOWN, SDL_SCANCODE_PAGEDOWN)]) finger_on(2, -alpha);
if(keystate[SDL12(SDLK_PAGEUP, SDL_SCANCODE_PAGEUP)]) finger_on(2, +alpha);
};
if(finger_center)
perform_finger();
#endif
}
catch(const rug_exception&) {
rug::close();
}
}
int besti;
static const ld RADAR_INF = 1e12;
ld radar_distance = RADAR_INF;
EX shiftpoint gethyper(ld x, ld y) {
projection_configuration bak = pconf;
pconf = rconf;
calcparam();
double mx = (x - current_display->xcenter)/current_display->radius;
double my = (y - current_display->ycenter)/current_display->radius/pconf.stretch;
bool vr = vrhr::active() && which_pointer;
transmatrix U;
if(1) {
USING_NATIVE_GEOMETRY;
U = ortho_inverse(NLP) * rugView;
}
#if CAP_VR
transmatrix T = Id;
if(vr) {
mx = my = 0;
E4;
vrhr::gen_mv();
T = vrhr::model_to_controller(which_pointer);
}
#endif
calcparam();
radar_distance = RADAR_INF;
double rx1=0, ry1=0;
bool found = false;
for(int i=0; i<isize(triangles); i++) {
auto r0 = triangles[i].m[0];
auto r1 = triangles[i].m[1];
auto r2 = triangles[i].m[2];
if(!r2) continue;
if(!r0->valid || !r1->valid || !r2->valid) continue;
hyperpoint p0, p1, p2;
bool error = false;
int spherepoints = 0;
if(1) {
USING_NATIVE_GEOMETRY;
// USING_RUG_PMODEL;
// dynamicval<eModel> m(pmodel, mdEquidistant);
if(elliptic && pmodel == mdDisk) {
int sp =
(r0->native[3] < 0) + (r1->native[3] < 0) + (r2->native[3] < 0);
if(sp == 1 || sp == 2) continue;
}
auto find = [&] (const hyperpoint &native, hyperpoint& res) {
if(!vr) {
applymodel(shiftless(U * native), res);
}
#if CAP_VR
else {
dynamicval<int> vi(vrhr::state, 2);
bool bad;
res = vrhr::model_location(shiftless(U * native), bad);
if(bad) error = true;
E4; res[3] = 1; res = T * res;
}
#endif
};
find(r0->native, p0);
find(r1->native, p1);
find(r2->native, p2);
}
if(error || spherepoints == 1 || spherepoints == 2) continue;
double dx1 = p1[0] - p0[0];
double dy1 = p1[1] - p0[1];
double dx2 = p2[0] - p0[0];
double dy2 = p2[1] - p0[1];
double dxm = mx - p0[0];
double dym = my - p0[1];
// A (dx1,dy1) = (1,0)
// B (dx2,dy2) = (0,1)
double det = dx1*dy2 - dy1*dx2;
double tx = dxm * dy2 - dym * dx2;
double ty = -(dxm * dy1 - dym * dx1);
tx /= det; ty /= det;
if(tx >= 0 && ty >= 0 && tx+ty <= 1) {
double rz1 = p0[2] * (1-tx-ty) + p1[2] * tx + p2[2] * ty;
rz1 = -rz1;
if(vr && rz1 < 0) { /* behind the controller, ignore */ }
else if(rz1 < radar_distance) {
radar_distance = rz1;
rx1 = r0->x1 + (r1->x1 - r0->x1) * tx + (r2->x1 - r0->x1) * ty;
ry1 = r0->y1 + (r1->y1 - r0->y1) * tx + (r2->y1 - r0->y1) * ty;
#if CAP_VR
if(vr) vrhr::pointer_distance = radar_distance;
#endif
}
found = true;
}
}
pconf = bak;
if(!found) return shiftless(Hypc);
double px = rx1 * TEXTURESIZE, py = (1-ry1) * TEXTURESIZE;
calcparam_rug();
models::configure();
shiftpoint h = hr::gethyper(px, py);
calcparam();
return h;
}
EX string makehelp() {
return
XLAT(
"In this mode, HyperRogue is played on a 3D model of a part of the hyperbolic plane, "
"similar to one you get from the 'paper model creator' or by hyperbolic crocheting.\n\n")
/*
"This requires some OpenGL extensions and may crash or not work correctly -- enabling "
"the 'render texture without OpenGL' options may be helpful in this case. Also the 'render once' option "
"will make the rendering faster, but the surface will be rendered only once, so "
"you won't be able to play a game on it.\n\n" */
;
}
void change_texturesize() {
if(rugged) {
close();
reopen();
}
}
ld old_distance;
EX void rug_geometry_choice() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init(XLAT("hypersian rug mode"), iinf[itPalace].color, 150, 100);
USING_NATIVE_GEOMETRY;
dialog::addBoolItem("Euclidean", euclid, 'a');
dialog::add_action([] { gwhere = rgEuclid; popScreen(); });
dialog::addBoolItem("hyperbolic", hyperbolic, 'b');
dialog::add_action([] { gwhere = rgHyperbolic; popScreen(); });
dialog::addBoolItem("spherical", sphere && !elliptic, 'c');
dialog::add_action([] { gwhere = rgSphere; popScreen(); });
dialog::addBoolItem("elliptic", elliptic, 'd');
dialog::add_action([] { gwhere = rgElliptic; popScreen(); });
dialog::addBoolItem("Nil", nil, 'e');
dialog::add_action([] { gwhere = gNil; popScreen(); });
dialog::addBoolItem("Solv", sol, 'e');
dialog::add_action([] { gwhere = gSol; popScreen(); });
dialog::addBack();
dialog::display();
}
EX void show() {
cmode = sm::SIDE | sm::MAYDARK | sm::PANNING;
gamescreen();
dialog::init(XLAT("hypersian rug mode"), iinf[itPalace].color, 150, 100);
dialog::addBoolItem(XLAT("enable the Hypersian Rug mode"), rug::rugged, 'u');
dialog::addBoolItem(XLAT("render the texture only once"), (renderonce), 'o');
#if CAP_SDL
dialog::addBoolItem(XLAT("render texture without OpenGL"), (rendernogl), 'g');
#else
rendernogl = false;
#endif
dialog::addSelItem(XLAT("texture size"), its(texturesize)+"x"+its(texturesize), 's');
dialog::addSelItem(XLAT("vertex limit"), its(vertex_limit), 'v');
if(rug::rugged)
dialog::lastItem().value += " (" + its(qvalid) + ")";
dialog::addSelItem(XLAT("model distance"), fts(model_distance), 'd');
if(rug::rugged) {
dialog::addSelItem(XLAT("projection"), models::get_model_name(rconf.model), 'p');
}
else dialog::addBreak(100);
if(!rug::rugged) {
dynamicval<eGeometry> g(geometry, gwhere);
dialog::addSelItem(XLAT("native geometry"), geometry_name(), 'n');
if(gwhere == rgElliptic) dialog::lastItem().value += " (e)";
}
else
dialog::addSelItem(XLAT("radar"), radar_distance == RADAR_INF ? "" : fts(radar_distance, 4), 'r');
dialog::addSelItem(XLAT("model scale factor"), fts(modelscale), 'm');
if(rug::rugged)
dialog::addSelItem(XLAT("model iterations"), its(queueiter), 0);
dialog::addItem(XLAT("stereo vision config"), 'f');
// dialog::addSelItem(XLAT("protractor"), fts(protractor * 180 / M_PI) + "°", 'f');
if(!good_shape) {
dialog::addSelItem(XLAT("maximum error"), fts(err_zero), 'e');
if(rug::rugged)
dialog::lastItem().value += " (" + fts(err_zero_current) + ")";
}
#if ISMOBILE
dialog::addSelItem(XLAT("move on touch"), fts(move_on_touch), 'G');
#endif
dialog::addSelItem(XLAT("anti-crossing"), fts(anticusp_factor), 'A');
dialog::addBoolItem(XLAT("3D monsters/walls on the surface"), spatial_rug, 'S');
dialog::add_action([] () { spatial_rug = !spatial_rug; });
edit_levellines('L');
#if CAP_SURFACE
if(hyperbolic)
dialog::addItem(XLAT("smooth surfaces"), 'c');
else
dialog::addBreak(100);
#endif
dialog::addBreak(50);
dialog::addHelp();
dialog::addBack();
dialog::display();
keyhandler = [] (int sym, int uni) {
handlePanning(sym, uni);
dialog::handleNavigation(sym, uni);
if(uni == 'h' || uni == SDLK_F1) gotoHelp(makehelp());
else if(uni == 'u') {
if(rug::rugged) rug::close();
else {
#if CAP_SURFACE
surface::sh = surface::dsNone;
#endif
rug::init();
}
}
else if(uni == 'R')
dialog::editNumber(finger_range, 0, 1, .01, .1, XLAT("finger range"),
XLAT("Press 1 to enable the finger mode.")
);
else if(uni == 'F')
dialog::editNumber(finger_force, 0, 1, .01, .1, XLAT("finger force"),
XLAT("Press 1 to enable the finger force.")
);
else if(uni == 'o')
renderonce = !renderonce;
else if(uni == 'G') {
dialog::editNumber(move_on_touch, -1, 1, .1, 0, XLAT("move on touch"), "");
dialog::extra_options = anims::rug_angle_options;
}
else if(uni == 'A') {
dialog::editNumber(anticusp_factor, 0, 1.5, .1, 0, XLAT("anti-crossing"),
XLAT("The anti-crossing algorithm prevents the model from crossing itself, "
"by preventing points which should not be close from being close. "
"The bigger number, the more sensitive it is, but the embedding is slower. Set 0 to disable.")
);
}
else if(uni == 'v') {
dialog::editNumber(vertex_limit, 0, 50000, 500, 3000, ("vertex limit"),
XLAT("The more vertices, the more accurate the Hypersian Rug model is. "
"However, a number too high might make the model slow to compute and render.")
);
dialog::reaction = [] () { err_zero_current = err_zero; };
}
else if(uni == 'r')
addMessage(XLAT("This just shows the 'z' coordinate of the selected point."));
else if(uni == 'm') {
dialog::editNumber(modelscale, 0.1, 10, rugged ? .01 : .1, 1, XLAT("model scale factor"),
XLAT("This is relevant when the native geometry is not Euclidean. "
"For example, if the native geometry is spherical, and scale < 1, a 2d sphere will be rendered as a subsphere; "
"if the native geometry is hyperbolic, and scale > 1, a hyperbolic plane will be rendered as an equidistant surface. ")
);
dialog::scaleLog();
if(rug::rugged) {
static bool adjust_points = true;
static bool camera_center = false;
static bool adjust_edges = true;
static bool adjust_distance = true;
static ld last;
last = modelscale;
dialog::extra_options = [] () {
dialog::addBoolItem_action(XLAT("adjust points"), adjust_points, 'P');
if(adjust_points)
dialog::addBoolItem_action(XLAT("center on camera"), camera_center, 'C');
else
dialog::addBreak(100);
dialog::addBoolItem_action(XLAT("adjust edges"), adjust_edges, 'E');
dialog::addBoolItem_action(XLAT("adjust distance"), adjust_distance, 'D');
};
dialog::reaction = [] () {
if(!last || !modelscale) return;
if(!camera_center) push_all_points(2, model_distance);
for(auto p:points) {
if(adjust_edges) for(auto& e: p->edges) e.len *= modelscale / last;
if(adjust_points) p->native *= modelscale / last;
enqueue(p);
}
if(adjust_distance) model_distance = model_distance * modelscale / last;
last = modelscale;
good_shape = false;
if(!camera_center) push_all_points(2, -model_distance);
};
}
}
else if(uni == 'p') {
pushScreen(models::model_menu);
}
else if(uni == 'd') {
dialog::editNumber(model_distance, -10, 10, .1, 1, XLAT("model distance"),
XLAT("In the perspective projection, this sets the distance from the camera to the center of the model. "
"In the orthogonal projection this just controls the scale.")
);
old_distance = model_distance;
dialog::reaction = [] () {
if(rug::rugged && perspective()) {
using_rugview rv;
shift_view(ztangent(old_distance - model_distance));
}
old_distance = model_distance;
};
}
else if(uni == 'e') {
dialog::editNumber(err_zero, 1e-9, 1, .1, 1e-3, XLAT("maximum error"),
XLAT("New points are added when the current error in the model is smaller than this value.")
);
dialog::scaleLog();
dialog::reaction = [] () { err_zero_current = err_zero; };
}
else if(uni == 'f')
pushScreen(showStereo);
#if MAXMDIM >= 4
else if(uni == 'n' && !rug::rugged)
pushScreen(rug_geometry_choice);
#endif
#if CAP_SDL
else if(uni == 'g' && !rug::rugged)
rendernogl = !rendernogl;
#endif
else if(uni == 's') {
texturesize *= 2;
if(texturesize == 8192) texturesize = 64;
change_texturesize();
}
#if CAP_SURFACE
else if(uni == 'c')
pushScreen(surface::show_surfaces);
#endif
else if(handlekeys(sym, uni)) ;
else if(doexiton(sym, uni)) popScreen();
};
}
EX void select() {
if(dual::state) return;
pushScreen(rug::show);
}
EX void rug_save(string fname) {
fhstream f(fname, "wb");
if(!f.f) {
addMessage(XLAT("Failed to save embedding to %1", fname));
return;
}
f.write(f.vernum);
f.write(gwhere);
USING_NATIVE_GEOMETRY;
int N = isize(points);
f.write(N);
map<rugpoint*, int> ids;
for(int i=0; i<isize(points); i++) ids[points[i]] = i;
f.write(surface::sh);
for(int i=0; i<4; i++) for(int j=0; j<4; j++)
f.write(rugView[i][j]);
auto get_id = [&] (rugpoint *r) {
if(!r) return int(-1);
return ids[r];
};
for(auto p: points) {
f.write(p->valid);
f.write(p->x1);
f.write(p->y1);
f.write(p->native);
f.write(get_id(p->glue));
}
int M = isize(triangles);
f.write(M);
for(auto t: triangles) {
f.write(get_id(t.m[0]));
f.write(get_id(t.m[1]));
f.write(get_id(t.m[2]));
}
int cp = isize(surface::coverage);
f.write(cp);
for(auto p: surface::coverage) f.write(p.first), f.write(p.second);
}
EX void rug_load(string fname) {
clear_model();
fhstream f(fname, "rb");
if(!f.f) {
addMessage(XLAT("Failed to load embedding from %1", fname));
return;
}
f.read(f.vernum);
f.read(gwhere);
USING_NATIVE_GEOMETRY;
int N = f.get<int>();
println(hlog, "N = ", N);
points.resize(N);
for(int i=0; i<N; i++)
points[i] = new rugpoint;
f.read(surface::sh);
for(int i=0; i<4; i++) for(int j=0; j<4; j++)
f.read(rugView[i][j]);
auto by_id = [&] (rugpoint *& p) {
int i = f.get<int>();
if(i == -1) p = nullptr;
else p = points[i];
};
for(auto p: points) {
f.read(p->valid);
f.read(p->x1);
f.read(p->y1);
f.read(p->native);
by_id(p->glue);
}
triangles.resize(f.get<int>());
for(auto& t: triangles) {
by_id(t.m[0]);
by_id(t.m[1]);
by_id(t.m[2]);
}
surface::coverage.resize(f.get<int>());
for(auto p: surface::coverage) f.read(p.first), f.read(p.second);
good_shape = true;
}
#if CAP_COMMANDLINE
int rugArgs() {
using namespace arg;
if(0) ;
else if(argis("-rugmodelscale")) {
shift_arg_formula(modelscale);
}
else if(argis("-ruggeo")) {
shift(); gwhere = readGeo(args());
if(gwhere == gEuclid) gwhere = rgEuclid;
if(gwhere == gSphere) gwhere = rgSphere;
if(gwhere == gNormal) gwhere = rgHyperbolic;
if(gwhere == gElliptic) gwhere = rgElliptic;
}
else if(argis("-rugpers")) {
USING_NATIVE_GEOMETRY;
rconf.model = nonisotropic ? mdGeodesic : mdPerspective;
}
else if(argis("-rugonce")) {
renderonce = true;
}
else if(argis("-rugsave")) {
shift(); rug_save(args());
}
else if(argis("-rugload")) {
PHASE(3);
start_game();
calcparam();
rug::init();
shift(); rug_load(args());
}
else if(argis("-rugdist")) {
shift_arg_formula(model_distance);
}
else if(argis("-ruglate")) {
renderonce = true;
renderlate += 10;
}
else if(argis("-rugmany")) {
renderonce = false;
}
else if(argis("-ruglwidth")) {
shift_arg_formula(lwidth);
}
else if(argis("-rugorth")) {
rconf.model = mdEquidistant;
}
else if(argis("-rugerr")) {
shift_arg_formula(err_zero);
}
else if(argis("-rugtsize")) {
shift(); rug::texturesize = argi();
change_texturesize();
}
else if(argis("-rugv")) {
shift(); vertex_limit = argi();
err_zero_current = err_zero;
}
else if(argis("-rugon")) {
PHASE(3);
start_game();
calcparam();
rug::init();
}
else if(argis("-sdfoff")) {
subdivide_first = false;
}
else if(argis("-sdfon")) {
subdivide_first = true;
}
else if(argis("-anticusp")) {
shift_arg_formula(anticusp_factor);
}
else if(argis("-d:rug"))
launch_dialog(show);
else return 1;
return 0;
}
auto rug_hook =
addHook(hooks_args, 100, rugArgs);
#endif
auto clear_rug_map = addHook(hooks_clearmemory, 40, [] () { rug_map.clear(); });
EX }
#endif
#if !CAP_RUG
// fake for mobile
EX namespace rug {
EX bool rugged = false;
EX bool renderonce = false;
EX bool rendernogl = true;
EX bool mouse_control_rug = false;
EX int texturesize = 512;
EX ld scale = 1.0f;
EX bool rug_control() { return false; }
EX bool in_crystal() { return false; }
EX void reset_view() { }
EX void close() { }
#if HDR
struct using_rugview {};
#endif
EX }
#endif
}