mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-27 10:30:36 +00:00
2168 lines
64 KiB
C++
2168 lines
64 KiB
C++
// Hyperbolic Rogue -- Arbitrary Tilings
|
|
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
|
|
|
|
/** \file arbitrile.cpp
|
|
* \brief Arbitrary tilings
|
|
*
|
|
* Arbitrary tilings, defined in .tes files.
|
|
*/
|
|
|
|
#include "hyper.h"
|
|
namespace hr {
|
|
|
|
EX namespace arb {
|
|
|
|
EX int affine_limit = 200;
|
|
|
|
#if HDR
|
|
|
|
/** a type used to specify the connections between shapes */
|
|
struct connection_t {
|
|
/** the index of the connected shape in the 'shapes' table */
|
|
int sid;
|
|
/** the index of the edge in the 'shapes' table */
|
|
int eid;
|
|
/** 1 if this connection mirrored, 0 otherwise. do_unmirror() removes all mirrors by doubling shapes */
|
|
int mirror;
|
|
bool operator == (const arb::connection_t& b) const { return tie(sid, eid, mirror) == tie(b.sid, b.eid, b.mirror); }
|
|
bool operator < (const arb::connection_t& b) const { return tie(sid, eid, mirror) < tie(b.sid, b.eid, b.mirror); }
|
|
};
|
|
|
|
inline void print(hstream& hs, const connection_t& conn) { print(hs, tie(conn.sid, conn.eid, conn.mirror)); }
|
|
|
|
/** \brief each shape of the arb tessellation
|
|
* note: the usual HyperRogue convention is: vertex 0, edge 0, vertex 1, edge 1, ...
|
|
* note: the tesfile convention is: edge 0, vertex 0, edge 1, vertex 1, ...
|
|
*/
|
|
|
|
/** edge with infinite end on the left */
|
|
constexpr ld INFINITE_LEFT = -1;
|
|
/** edge with infinite end on the right */
|
|
constexpr ld INFINITE_RIGHT = -2;
|
|
/** edge with two infinite ends */
|
|
constexpr ld INFINITE_BOTH = -3;
|
|
|
|
struct shape {
|
|
/** index in the arbi_tiling::shapes */
|
|
int id;
|
|
/** index in the original file */
|
|
int orig_id;
|
|
/** flags such as sfLINE and sfPH */
|
|
int flags;
|
|
/** list of vertices in the usual convention */
|
|
vector<hyperpoint> vertices;
|
|
/** list of angles in the tesfile convention */
|
|
vector<ld> angles;
|
|
/** list of edge lengths */
|
|
vector<ld> edges;
|
|
/** list of input edges */
|
|
vector<ld> in_edges;
|
|
/** list of input angles */
|
|
vector<ld> in_angles;
|
|
/** (ultra)ideal markers */
|
|
vector<bool> ideal_markers;
|
|
/** list of edge connections */
|
|
vector<connection_t> connections;
|
|
int size() const { return isize(vertices); }
|
|
void build_from_angles_edges(bool is_comb);
|
|
vector<pair<int, int> > sublines;
|
|
vector<pair<ld, ld>> stretch_shear;
|
|
/** '*inf' was applied to represent an apeirogon/pseudogon */
|
|
bool apeirogonal;
|
|
/** connections repeat `repeat_value` times */
|
|
int repeat_value;
|
|
/** 0 if the no mirror symmetries are declared; otherwise, edge i is the mirror of edge gmod(symmetric_value-i, size()). Make sure symmetric_value != 0, e.g., by adding size() */
|
|
int symmetric_value;
|
|
/** if a tile/edge combination may be connected to edges j1 and j2 of this, j1-j2 must be divisible by cycle_length */
|
|
int cycle_length;
|
|
/** list of valences of vertices in the tesfile convention */
|
|
vector<int> vertex_valence;
|
|
/** list of periods of vertices in the tesfile convention */
|
|
vector<int> vertex_period;
|
|
/** list of angles at vertices in the tesfile convention */
|
|
vector<vector<ld>> vertex_angles;
|
|
/** football types */
|
|
int football_type;
|
|
/** is it a mirrored version of an original tile */
|
|
bool is_mirrored;
|
|
/** auxiliary function for symmetric_value: is the edge index reflectable? */
|
|
bool reflectable(int id) {
|
|
if(!symmetric_value) return false;
|
|
if(apeirogonal && gmod(id, size()) >= size() - 2) return false;
|
|
return true;
|
|
}
|
|
/** reflect a reflectable reflect index */
|
|
int reflect(int id) {
|
|
return gmod(symmetric_value - id, size() - (apeirogonal ? 2 : 0));
|
|
}
|
|
};
|
|
|
|
struct slider {
|
|
string name;
|
|
ld zero;
|
|
ld current;
|
|
ld min;
|
|
ld max;
|
|
};
|
|
|
|
struct intslider {
|
|
string name;
|
|
int zero;
|
|
int current;
|
|
int min;
|
|
int max;
|
|
};
|
|
|
|
struct arbi_tiling {
|
|
|
|
int order;
|
|
/* line flags have been marked for tiles */
|
|
bool have_line;
|
|
/* pseudohept flags have been marked for tiles (1), or the tiling is football-colorable (2), or neither (0) */
|
|
int have_ph;
|
|
/* is the tree structure given in the tes file */
|
|
bool have_tree;
|
|
/* is the valence data reliable */
|
|
bool have_valence;
|
|
/* use "star." if the tessellation includs star polygons */
|
|
bool is_star;
|
|
/* use "combinatorial." for combinatorial tessellations; vertex valences computed based on their angles. Currently only rulegen works for combinatorial tessellations */
|
|
bool is_combinatorial;
|
|
/* reserved for future flags */
|
|
bool res0, res1, res2, res3;
|
|
|
|
int yendor_backsteps;
|
|
|
|
vector<shape> shapes;
|
|
string name;
|
|
string comment;
|
|
|
|
vector<slider> sliders;
|
|
vector<intslider> intsliders;
|
|
|
|
ld cscale;
|
|
int range;
|
|
ld floor_scale;
|
|
ld boundary_ratio;
|
|
string filename;
|
|
int mirror_rules;
|
|
|
|
vector<string> options;
|
|
|
|
int min_valence, max_valence;
|
|
bool is_football_colorable;
|
|
bool was_unmirrored;
|
|
bool was_split_for_football;
|
|
|
|
geometryinfo1& get_geometry();
|
|
eGeometryClass get_class() { return get_geometry().kind; }
|
|
|
|
ld scale();
|
|
};
|
|
#endif
|
|
|
|
/** currently loaded tiling */
|
|
EX arbi_tiling current;
|
|
|
|
/** is the currently displayed map current or slided */
|
|
EX bool using_slided;
|
|
|
|
/** for real-valued sliders, current is the tiling used by the map, while slided is the tiling used for the display */
|
|
EX arbi_tiling slided;
|
|
|
|
EX bool in_slided() { return in() && using_slided; }
|
|
|
|
EX arbi_tiling& current_or_slided() {
|
|
return using_slided ? slided : current;
|
|
}
|
|
|
|
/** id of vertex in the arbitrary tiling */
|
|
|
|
EX short& id_of(heptagon *h) { return h->zebraval; }
|
|
|
|
#if HDR
|
|
struct hr_polygon_error : hr_exception {
|
|
vector<transmatrix> v;
|
|
eGeometryClass c;
|
|
int id;
|
|
transmatrix end;
|
|
map<string, cld> params;
|
|
hr_polygon_error(const vector<transmatrix>& _v, int _id, transmatrix _e) : v(_v), c(cgclass), id(_id), end(_e) {}
|
|
~hr_polygon_error() noexcept(true) {}
|
|
string generate_error();
|
|
};
|
|
#endif
|
|
|
|
string hr_polygon_error::generate_error() {
|
|
cld dist = (hdist0(tC0(end)) / params["distunit"]);
|
|
bool angle = abs(dist) < 1e-9;
|
|
if(angle) dist = (atan2(end * lxpush0(1)) / params["angleunit"]);
|
|
return
|
|
XLAT("Polygon number %1 did not close correctly (%2 %3). Here is the picture to help you understand the issue.\n\n", its(id),
|
|
angle ? "angle" : "distance",
|
|
lalign(0, dist)
|
|
);
|
|
}
|
|
|
|
struct connection_debug_request : hr_exception {
|
|
int id;
|
|
eGeometryClass c;
|
|
connection_debug_request(int i): id(i), c(cgclass) {}
|
|
};
|
|
|
|
void ensure_geometry(eGeometryClass c) {
|
|
stop_game();
|
|
if(c != cgclass) {
|
|
if(c == gcEuclid) set_geometry(gEuclid);
|
|
if(c == gcHyperbolic) set_geometry(gNormal);
|
|
if(c == gcSphere) set_geometry(gSphere);
|
|
}
|
|
|
|
if(specialland != laCanvas) {
|
|
canvas_default_wall = waInvisibleFloor;
|
|
patterns::whichCanvas = 'g';
|
|
patterns::canvasback = 0xFFFFFF;
|
|
enable_canvas();
|
|
}
|
|
start_game();
|
|
}
|
|
|
|
void start_poly_debugger(hr_polygon_error& err) {
|
|
#if CAP_EDIT
|
|
ensure_geometry(err.c);
|
|
|
|
drawthemap();
|
|
|
|
mapeditor::drawing_tool = true;
|
|
pushScreen(mapeditor::showDrawEditor);
|
|
mapeditor::initdraw(cwt.at);
|
|
|
|
int n = isize(err.v);
|
|
|
|
mapeditor::dtcolor = 0xFF0000FF;
|
|
mapeditor::dtwidth = 0.02;
|
|
for(int i=0; i<n-1; i++)
|
|
mapeditor::dt_add_line(shiftless(tC0(err.v[i])), shiftless(tC0(err.v[i+1])), 0);
|
|
|
|
mapeditor::dtcolor = 0xFFFFFFFF;
|
|
for(int i=0; i<n; i++)
|
|
mapeditor::dt_add_text(shiftless(tC0(err.v[i])), 0.5, its(i));
|
|
#endif
|
|
}
|
|
|
|
void shape::build_from_angles_edges(bool is_comb) {
|
|
transmatrix at = Id;
|
|
int n = isize(in_angles);
|
|
hyperpoint ctr = Hypc;
|
|
vector<transmatrix> matrices;
|
|
for(int i=0; i<n; i++) {
|
|
matrices.push_back(at);
|
|
if(debugflags & DF_GEOM) println(hlog, "at = ", at);
|
|
ctr += tC0(at);
|
|
at = at * lxpush(in_edges[i]) * spin(in_angles[i]+M_PI);
|
|
}
|
|
matrices.push_back(at);
|
|
if(is_comb) return;
|
|
if(!eqmatrix(at, Id) && !apeirogonal) {
|
|
throw hr_polygon_error(matrices, id, at);
|
|
}
|
|
if(sqhypot_d(3, ctr) < 1e-2) {
|
|
// this may happen for some spherical tilings
|
|
// try to move towards the center
|
|
if(debugflags & DF_GEOM) println(hlog, "special case encountered");
|
|
for(int i=0; i<n; i++) {
|
|
ctr += at * lxpush(in_edges[i]) * spin((in_angles[i]+M_PI)/2) * lxpush0(.01);
|
|
at = at * lxpush(in_edges[i]) * spin(in_angles[i]);
|
|
}
|
|
if(debugflags & DF_GEOM) println(hlog, "ctr = ", ctr);
|
|
}
|
|
hyperpoint inf_point;
|
|
if(apeirogonal) {
|
|
transmatrix U = at;
|
|
for(int i=0; i<3; i++) for(int j=0; j<3; j++) U[i][j] -= Id[i][j];
|
|
hyperpoint v;
|
|
ld det = U[0][1] * U[1][0] - U[1][1] * U[0][0];
|
|
v[1] = (U[1][2] * U[0][0] - U[0][2] * U[1][0]) / det;
|
|
v[0] = (U[0][2] * U[1][1] - U[1][2] * U[0][1]) / det;
|
|
v[2] = 1;
|
|
inf_point = v;
|
|
ctr = mid(C0, tC0(at));
|
|
ctr = towards_inf(ctr, inf_point);
|
|
}
|
|
ctr = normalize(ctr);
|
|
vertices.clear();
|
|
angles.clear();
|
|
for(int i=0; i<n; i++) {
|
|
edges.push_back(in_edges[i]);
|
|
if(!ideal_markers[i]) {
|
|
vertices.push_back(tC0(gpushxto0(ctr) * matrices[i]));
|
|
angles.push_back(in_angles[i]);
|
|
}
|
|
else {
|
|
angles.push_back(0);
|
|
hyperpoint a1 = tC0(matrices[i]);
|
|
hyperpoint t1 = get_column(matrices[i], 0);
|
|
hyperpoint a2 = tC0(matrices[i+2]);
|
|
hyperpoint t2 = get_column(matrices[i+2], 0);
|
|
|
|
a1 /= a1[2];
|
|
a2 /= a2[2];
|
|
|
|
t1 -= a1 * t1[2];
|
|
t2 -= a2 * t2[2];
|
|
|
|
ld c1 = a2[0] - a1[0], c2 = a2[1] - a1[1];
|
|
ld v1 = t1[0], v2 = t1[1];
|
|
ld u1 = t2[0], u2 = t2[1];
|
|
|
|
ld r = (u2 * c1 - c2 * u1) / (v1 * u2 - v2 * u1);
|
|
// ld s = (v2 * c1 - c2 * v1) / (v1 * u2 - v2 * u1);
|
|
|
|
hyperpoint v = a1 + r * t1;
|
|
// also v == a2 + s * t2;
|
|
v[2] = 1;
|
|
v = gpushxto0(ctr) * v;
|
|
v /= v[2];
|
|
vertices.push_back(v);
|
|
i++;
|
|
}
|
|
}
|
|
if(apeirogonal) {
|
|
vertices.push_back(gpushxto0(ctr) * tC0(at));
|
|
hyperpoint v = gpushxto0(ctr) * inf_point;
|
|
v /= v[2];
|
|
vertices.push_back(v);
|
|
auto b = angles.back() / 2;
|
|
angles.back() = b;
|
|
angles.push_back(0);
|
|
angles.push_back(b);
|
|
edges.push_back(0);
|
|
edges.push_back(0);
|
|
}
|
|
n = isize(angles);
|
|
for(int i=0; i<n; i++) {
|
|
bool left = angles[i] == 0;
|
|
bool right = angles[gmod(i-1, isize(vertices))] == 0;
|
|
if(left && right) edges[i] = INFINITE_BOTH;
|
|
else if(left) edges[i] = INFINITE_LEFT;
|
|
else if(right) edges[i] = INFINITE_RIGHT;
|
|
}
|
|
}
|
|
|
|
EX bool correct_index(int index, int size) { return index >= 0 && index < size; }
|
|
template<class T> bool correct_index(int index, const T& v) { return correct_index(index, isize(v)); }
|
|
|
|
template<class T> void verify_index(int index, const T& v, exp_parser& ep) { if(!correct_index(index, v)) throw hr_parse_exception("bad index: " + its(index) + " at " + ep.where()); }
|
|
|
|
string unnamed = "unnamed";
|
|
|
|
EX void load_tile(exp_parser& ep, arbi_tiling& c, bool unit) {
|
|
c.shapes.emplace_back();
|
|
auto& cc = c.shapes.back();
|
|
cc.id = isize(c.shapes) - 1;
|
|
cc.orig_id = cc.id;
|
|
cc.is_mirrored = false;
|
|
cc.symmetric_value = 0;
|
|
cc.flags = 0;
|
|
cc.repeat_value = 1;
|
|
cc.apeirogonal = false;
|
|
bool is_symmetric = false;
|
|
while(ep.next() != ')') {
|
|
cld dist = 1;
|
|
ep.skip_white();
|
|
if(ep.eat("|")) {
|
|
cc.symmetric_value = ep.iparse();
|
|
is_symmetric = true;
|
|
ep.force_eat(")");
|
|
break;
|
|
}
|
|
if(ep.eat("*")) {
|
|
ld frep = ep.rparse(0);
|
|
if(isinf(frep)) {
|
|
cc.apeirogonal = true;
|
|
set_flag(ginf[gArbitrary].flags, qIDEAL, true);
|
|
if(ep.eat(",") && ep.eat("|")) {
|
|
is_symmetric = true;
|
|
if(isize(cc.in_edges) == 1 && ep.eat(")")) break;
|
|
cc.symmetric_value = ep.iparse();
|
|
}
|
|
ep.force_eat(")");
|
|
break;
|
|
}
|
|
int rep = int(frep+.5);
|
|
int repeat_from = 0;
|
|
int repeat_to = cc.in_edges.size();
|
|
if(rep == 0) {
|
|
cc.in_edges.resize(repeat_from);
|
|
cc.in_angles.resize(repeat_from);
|
|
cc.ideal_markers.resize(repeat_from);
|
|
}
|
|
else if(rep < 0) throw hr_parse_exception("don't know how to use a negative repeat in tile definition");
|
|
for(int i=1; i<rep; i++)
|
|
for(int j=repeat_from; j<repeat_to; j++) {
|
|
cc.in_edges.push_back(cc.in_edges[j]);
|
|
cc.in_angles.push_back(cc.in_angles[j]);
|
|
cc.ideal_markers.push_back(cc.ideal_markers[j]);
|
|
}
|
|
ep.skip_white();
|
|
if(ep.eat(",")) {
|
|
ep.force_eat("|");
|
|
is_symmetric = true;
|
|
if(repeat_to == 1 && ep.eat(")")) goto skip;
|
|
cc.symmetric_value = ep.iparse();
|
|
}
|
|
if(ep.eat(")")) {
|
|
skip:
|
|
if(repeat_from == 0) cc.repeat_value = rep;
|
|
break;
|
|
}
|
|
else throw hr_parse_exception("expecting ) after repeat");
|
|
}
|
|
if(!unit) {
|
|
dist = ep.parse(0);
|
|
ep.force_eat(",");
|
|
}
|
|
cld angle;
|
|
ep.skip_white();
|
|
if(ep.eat("[")) {
|
|
cc.in_edges.push_back(ep.validate_real(dist * ep.extra_params["distunit"]));
|
|
angle = ep.parse(0); ep.force_eat(",");
|
|
cc.in_angles.push_back(ep.validate_real(angle * ep.extra_params["angleunit"]));
|
|
cc.ideal_markers.push_back(true);
|
|
dist = ep.parse(0); ep.force_eat(",");
|
|
angle = ep.parse(0); ep.force_eat("]");
|
|
set_flag(ginf[gArbitrary].flags, qIDEAL, true);
|
|
}
|
|
else
|
|
angle = ep.parse(0);
|
|
cc.in_edges.push_back(ep.validate_real(dist * ep.extra_params["distunit"]));
|
|
cc.in_angles.push_back(ep.validate_real(angle * ep.extra_params["angleunit"]));
|
|
cc.ideal_markers.push_back(false);
|
|
if(ep.eat(",")) continue;
|
|
else if(ep.eat(")")) break;
|
|
else throw hr_parse_exception("expecting , or )");
|
|
}
|
|
try {
|
|
cc.build_from_angles_edges(c.is_combinatorial);
|
|
}
|
|
catch(hr_parse_exception& ex) {
|
|
throw hr_parse_exception(ex.s + ep.where());
|
|
}
|
|
catch(hr_polygon_error& poly) {
|
|
poly.params = ep.extra_params;
|
|
throw;
|
|
}
|
|
int n = cc.size();
|
|
if(is_symmetric && !cc.symmetric_value) cc.symmetric_value += n - (cc.apeirogonal ? 2 : 0);
|
|
cc.connections.resize(n);
|
|
for(int i=0; i<isize(cc.connections); i++)
|
|
cc.connections[i] = connection_t{cc.id, i, false};
|
|
if(cc.apeirogonal) {
|
|
cc.connections[n-2].eid = n-1;
|
|
cc.connections[n-1].eid = n-2;
|
|
}
|
|
cc.stretch_shear.resize(n, make_pair(1, 0));
|
|
}
|
|
|
|
EX bool do_unmirror = true;
|
|
|
|
template<class T> void cycle(vector<T>& t) {
|
|
std::rotate(t.begin(), t.begin() + 2, t.end());
|
|
}
|
|
|
|
/** \brief for tessellations which contain mirror rules, remove them by taking the orientable double cover */
|
|
EX void unmirror(arbi_tiling& c) {
|
|
if(cgflags & qAFFINE) return;
|
|
auto& mirror_rules = c.mirror_rules;
|
|
mirror_rules = 0;
|
|
for(auto& s: c.shapes)
|
|
for(auto& t: s.connections)
|
|
if(t.mirror)
|
|
mirror_rules++;
|
|
if(!mirror_rules) return;
|
|
auto& sh = c.shapes;
|
|
int s = isize(sh);
|
|
vector<int> mirrored_id(s, -1);
|
|
for(int i=0; i<s; i++)
|
|
if(!sh[i].symmetric_value) {
|
|
mirrored_id[i] = isize(sh);
|
|
sh.push_back(sh[i]);
|
|
}
|
|
int ss = isize(sh);
|
|
for(int i=0; i<ss; i++) {
|
|
sh[i].id = i;
|
|
if(i >= s) sh[i].is_mirrored = true;
|
|
}
|
|
for(int i=s; i<ss; i++) {
|
|
for(auto& v: sh[i].vertices)
|
|
v[1] = -v[1];
|
|
reverse(sh[i].edges.begin(), sh[i].edges.end());
|
|
for(auto& e: sh[i].edges) {
|
|
if(e == INFINITE_LEFT) e = INFINITE_RIGHT;
|
|
else if(e == INFINITE_RIGHT) e = INFINITE_LEFT;
|
|
}
|
|
reverse(sh[i].vertices.begin()+1, sh[i].vertices.end());
|
|
reverse(sh[i].angles.begin(), sh[i].angles.end()-1);
|
|
reverse(sh[i].connections.begin(), sh[i].connections.end());
|
|
if(sh[i].apeirogonal) {
|
|
cycle(sh[i].edges);
|
|
cycle(sh[i].vertices);
|
|
if(debugflags & DF_GEOM) println(hlog, "angles before = ", sh[i].angles);
|
|
cycle(sh[i].angles);
|
|
if(debugflags & DF_GEOM) println(hlog, "angles now = ", sh[i].angles);
|
|
cycle(sh[i].connections);
|
|
}
|
|
}
|
|
|
|
if(true) for(int i=0; i<ss; i++) {
|
|
for(auto& co: sh[i].connections) {
|
|
bool mirr = co.mirror ^ (i >= s);
|
|
co.mirror = false;
|
|
if(mirr && mirrored_id[co.sid] == -1) {
|
|
if(sh[co.sid].reflectable(co.eid)) {
|
|
co.eid = sh[co.sid].reflect(co.eid);
|
|
}
|
|
}
|
|
else if(mirr) {
|
|
co.sid = mirrored_id[co.sid];
|
|
co.eid = isize(sh[co.sid].angles) - 1 - co.eid;
|
|
if(sh[co.sid].apeirogonal)
|
|
co.eid = gmod(co.eid - 2, isize(sh[co.sid].angles));
|
|
}
|
|
}
|
|
}
|
|
|
|
c.was_unmirrored = true;
|
|
}
|
|
|
|
static void reduce_gcd(int& a, int b) {
|
|
a = abs(gcd(a, b));
|
|
}
|
|
|
|
EX void mirror_connection(arb::arbi_tiling& ac, connection_t& co) {
|
|
if(co.mirror && ac.shapes[co.sid].reflectable(co.eid)) {
|
|
co.eid = ac.shapes[co.sid].reflect(co.eid);
|
|
co.mirror = !co.mirror;
|
|
}
|
|
}
|
|
|
|
EX void compute_vertex_valence_prepare(arb::arbi_tiling& ac) {
|
|
|
|
int tcl = -1;
|
|
|
|
while(true) {
|
|
|
|
for(auto& sh: ac.shapes) {
|
|
int i = sh.id;
|
|
int n = isize(sh.vertices);
|
|
|
|
for(int k=sh.cycle_length; k<n; k++) {
|
|
auto co = sh.connections[k];
|
|
auto co1 = sh.connections[k-sh.cycle_length];
|
|
if(co.sid != co1.sid) {
|
|
println(hlog, "ik = ", tie(i,k), " co=", co, " co1=", co1, " cl=", sh.cycle_length);
|
|
throw hr_parse_exception("connection error #2 in compute_vertex_valence");
|
|
}
|
|
mirror_connection(ac, co);
|
|
mirror_connection(ac, co1);
|
|
reduce_gcd(ac.shapes[co.sid].cycle_length, co.eid - co1.eid);
|
|
}
|
|
|
|
for(int k=0; k<n; k++) {
|
|
auto co = sh.connections[k];
|
|
auto co0 = co;
|
|
co = ac.shapes[co.sid].connections[co.eid];
|
|
if(co.sid != i) throw hr_parse_exception("connection error in compute_vertex_valence");
|
|
co.mirror ^= co0.mirror;
|
|
mirror_connection(ac, co);
|
|
reduce_gcd(sh.cycle_length, k-co.eid);
|
|
}
|
|
if(debugflags & DF_GEOM)
|
|
println(hlog, "tile ", i, " cycle_length = ", sh.cycle_length, " / ", n);
|
|
}
|
|
|
|
int new_tcl = 0;
|
|
for(auto& sh: ac.shapes) {
|
|
auto& len = sh.cycle_length;
|
|
if(len < 0) len = -len;
|
|
new_tcl += len;
|
|
}
|
|
|
|
if(new_tcl == tcl) break;
|
|
tcl = new_tcl;
|
|
}
|
|
}
|
|
|
|
/** returns true if we need to recompute */
|
|
EX bool compute_vertex_valence_flat(arb::arbi_tiling& ac) {
|
|
for(auto& sh: ac.shapes) {
|
|
int n = sh.size();
|
|
int i = sh.id;
|
|
sh.vertex_valence.resize(n);
|
|
sh.vertex_period.resize(n);
|
|
sh.vertex_angles.resize(n);
|
|
for(int k=0; k<n; k++) {
|
|
ld total = 0;
|
|
int qty = 0, pqty = 0;
|
|
connection_t at = {i, k, false};
|
|
connection_t at1 = at;
|
|
vector<ld> anglelist;
|
|
do {
|
|
if(at.sid == at1.sid && (at.eid-at1.eid) % ac.shapes[at.sid].cycle_length == 0) pqty = 0;
|
|
if(qty && pqty == 0 && !total) break;
|
|
ld a = ac.shapes[at.sid].angles[at.eid];
|
|
while(a < 0) a += TAU;
|
|
while(a > TAU) a -= TAU;
|
|
total += a;
|
|
anglelist.push_back(a);
|
|
qty++;
|
|
pqty++;
|
|
|
|
at.eid++;
|
|
if(at.eid == isize(ac.shapes[at.sid].angles)) at.eid = 0;
|
|
|
|
at = ac.shapes[at.sid].connections[at.eid];
|
|
}
|
|
while(total < TAU - 1e-6);
|
|
if(total == 0) qty = OINF;
|
|
if(total > TAU + 1e-6) throw hr_parse_exception("improper total in compute_stats");
|
|
if(at.sid != i) throw hr_parse_exception("ended at wrong type determining vertex_valence");
|
|
if((at.eid - k) % ac.shapes[i].cycle_length) {
|
|
reduce_gcd(ac.shapes[i].cycle_length, at.eid - k);
|
|
return true;
|
|
}
|
|
sh.vertex_valence[k] = qty;
|
|
sh.vertex_period[k] = pqty;
|
|
sh.vertex_angles[k] = std::move(anglelist);
|
|
}
|
|
if(debugflags & DF_GEOM)
|
|
println(hlog, "computed vertex_valence of ", i, " as ", ac.shapes[i].vertex_valence);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/** returns true if we need to recompute */
|
|
EX bool compute_vertex_valence_generic(arb::arbi_tiling& ac) {
|
|
for(auto& sh: ac.shapes) {
|
|
int n = sh.size();
|
|
int i = sh.id;
|
|
sh.vertex_valence.resize(n);
|
|
for(int k=0; k<n; k++) {
|
|
connection_t at = {i, k, false};
|
|
transmatrix T = Id;
|
|
int qty = 0;
|
|
do {
|
|
if(qty && at.sid == i) {
|
|
auto co1 = at;
|
|
bool found = find_connection(T, Id, co1);
|
|
if(found) {
|
|
mirror_connection(ac, co1);
|
|
if((co1.eid - k) % ac.shapes[i].cycle_length) {
|
|
reduce_gcd(ac.shapes[i].cycle_length, co1.eid - k);
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(at.mirror) {
|
|
if(at.eid == 0) at.eid = isize(ac.shapes[at.sid].angles);
|
|
at.eid--;
|
|
}
|
|
else {
|
|
at.eid++;
|
|
if(at.eid == isize(ac.shapes[at.sid].angles)) at.eid = 0;
|
|
}
|
|
|
|
auto at0 = at;
|
|
at = ac.shapes[at.sid].connections[at.eid];
|
|
T = T * get_adj(ac, at0.sid, at0.eid, at.sid, at.eid, at.mirror);
|
|
at.mirror ^= at0.mirror;
|
|
qty++;
|
|
}
|
|
while(qty < OINF);
|
|
sh.vertex_valence[k] = qty;
|
|
}
|
|
if(debugflags & DF_GEOM)
|
|
println(hlog, "computed vertex_valence of ", i, " as ", ac.shapes[i].vertex_valence);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
EX void compute_vertex_valence(arb::arbi_tiling& ac) {
|
|
|
|
for(auto& sh: ac.shapes)
|
|
sh.cycle_length = isize(sh.vertices) / sh.repeat_value;
|
|
|
|
bool generic = false;
|
|
|
|
if(!ac.was_unmirrored) for(auto& sh: ac.shapes) if(sh.symmetric_value) generic = true;
|
|
for(auto& sh: ac.shapes) for(auto& co: sh.connections) if(co.mirror) generic = true;
|
|
|
|
if(cgflags & qAFFINE) generic = true;
|
|
if(ac.is_star) generic = true;
|
|
|
|
recompute:
|
|
compute_vertex_valence_prepare(ac);
|
|
|
|
if(generic ? compute_vertex_valence_generic(ac) : compute_vertex_valence_flat(ac)) goto recompute;
|
|
ac.have_valence = true;
|
|
|
|
ac.min_valence = UNKNOWN; ac.max_valence = 0;
|
|
for(auto& sh: ac.shapes)
|
|
for(auto& val: sh.vertex_valence) {
|
|
if(val < ac.min_valence) ac.min_valence = val;
|
|
if(val > ac.max_valence) ac.max_valence = val;
|
|
}
|
|
}
|
|
|
|
EX bool extended_football = true;
|
|
|
|
EX void check_football_colorability(arbi_tiling& c) {
|
|
if(!c.have_valence) return;
|
|
for(auto&sh: c.shapes) for(auto v: sh.vertex_valence)
|
|
if(v % 3) return;
|
|
|
|
for(int i=0; i<3; i++) {
|
|
for(auto&sh: c.shapes) sh.football_type = 3;
|
|
|
|
vector<int> aqueue;
|
|
|
|
c.shapes[0].football_type = i;
|
|
aqueue = {0};
|
|
bool bad = false;
|
|
for(int qi=0; qi<isize(aqueue); qi++) {
|
|
int sid = aqueue[qi];
|
|
|
|
auto& sh = c.shapes[sid];
|
|
|
|
for(int j=0; j<sh.size(); j++) {
|
|
auto &co = sh.connections[j];
|
|
auto t = sh.football_type;
|
|
if(c.have_ph && ((sh.flags & arcm::sfPH) != (t==2))) bad = true;
|
|
if(sh.apeirogonal && t < 2 && (isize(sh) & 1)) bad = true;
|
|
|
|
auto assign = [&] (int tt) {
|
|
auto& t1 = c.shapes[co.sid].football_type;
|
|
if(t1 == 3) {
|
|
t1 = tt;
|
|
aqueue.push_back(co.sid);
|
|
}
|
|
else {
|
|
if(t1 != tt) bad = true;
|
|
}
|
|
};
|
|
|
|
if(t < 2) {
|
|
if((j & 1) == t) assign(2); else assign((co.eid & 1) ? 0 : 1);
|
|
}
|
|
else {
|
|
assign((co.eid & 1) ? 1 : 0);
|
|
}
|
|
}
|
|
}
|
|
if(!bad) {
|
|
c.have_ph = 2;
|
|
for(auto& sh: c.shapes) if(sh.football_type == 2) sh.flags |= arcm::sfPH;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if(extended_football && !c.have_tree) {
|
|
for(auto&sh: c.shapes)
|
|
sh.football_type = 0;
|
|
|
|
for(int i=0; i<3*isize(c.shapes); i++) {
|
|
for(auto&sh: c.shapes) {
|
|
int &res = sh.football_type;
|
|
int siz = sh.size();
|
|
if(sh.apeirogonal) siz -= 2;
|
|
else if(siz & 1) res |= 3;
|
|
if((sh.cycle_length & 1) && !sh.apeirogonal) {
|
|
if(res & 3) res |= 3;
|
|
}
|
|
if(sh.apeirogonal && (siz & 1)) {
|
|
if(res & 3) res |= 3;
|
|
}
|
|
if(sh.flags & arcm::sfPH) res |= 3;
|
|
for(int i=0; i<sh.size(); i++) {
|
|
auto co = sh.connections[i];
|
|
co.eid %= c.shapes[co.sid].cycle_length;
|
|
if(res & 1) {
|
|
if(i&1) {
|
|
if(co.eid & 1)
|
|
c.shapes[co.sid].football_type |= 1;
|
|
else
|
|
c.shapes[co.sid].football_type |= 2;
|
|
}
|
|
else
|
|
c.shapes[co.sid].football_type |= 4;
|
|
}
|
|
if(res & 2) {
|
|
if(!(i&1)) {
|
|
if(co.eid & 1)
|
|
c.shapes[co.sid].football_type |= 1;
|
|
else
|
|
c.shapes[co.sid].football_type |= 2;
|
|
}
|
|
else
|
|
c.shapes[co.sid].football_type |= 4;
|
|
}
|
|
if(res & 4) {
|
|
if(co.eid & 1)
|
|
c.shapes[co.sid].football_type |= 2;
|
|
else
|
|
c.shapes[co.sid].football_type |= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
c.is_football_colorable = true;
|
|
c.was_split_for_football = true;
|
|
for(auto&sh: c.shapes)
|
|
if(sh.football_type == 7)
|
|
c.is_football_colorable = false;
|
|
|
|
if(c.is_football_colorable) {
|
|
vector<array<int, 3> > new_indices(isize(c.shapes), make_array(-1, -1, -1));
|
|
auto oldshapes = c.shapes;
|
|
c.shapes.clear();
|
|
for(int i=0; i<isize(oldshapes); i++)
|
|
for(int t=0; t<3; t++)
|
|
if(!(oldshapes[i].football_type & (1<<t))) {
|
|
if(t == 1 && (oldshapes[i].cycle_length & 1) && !oldshapes[i].apeirogonal) continue;
|
|
new_indices[i][t] = isize(c.shapes);
|
|
c.shapes.push_back(oldshapes[i]);
|
|
c.shapes.back().football_type = t;
|
|
if(t == 2) c.shapes.back().flags |= arcm::sfPH;
|
|
}
|
|
|
|
for(int i=0; i<isize(oldshapes); i++)
|
|
for(int t=0; t<3; t++) {
|
|
int ni = new_indices[i][t];
|
|
if(ni == -1) continue;
|
|
auto& sh = c.shapes[ni];
|
|
sh.id = ni;
|
|
for(int j=0; j<isize(sh); j++) {
|
|
auto &co = sh.connections[j];
|
|
auto assign = [&] (int tt) {
|
|
auto ni1 = new_indices[co.sid][tt];
|
|
if(ni1 == -1 && tt == 1) {
|
|
ni1 = new_indices[co.sid][0];
|
|
co.eid += oldshapes[co.sid].cycle_length;
|
|
co.eid %= isize(oldshapes[co.sid]);
|
|
}
|
|
co.sid = ni1;
|
|
};
|
|
|
|
if(sh.apeirogonal && j >= isize(sh)-2) {
|
|
co.sid = ni;
|
|
if(t < 2 && (isize(sh) & 1)) co.sid = new_indices[i][t^1];
|
|
continue;
|
|
}
|
|
|
|
co.eid %= oldshapes[co.sid].cycle_length;
|
|
if(t < 2) {
|
|
if((j & 1) == t) assign(2); else assign((co.eid & 1) ? 0 : 1);
|
|
}
|
|
else {
|
|
assign((co.eid & 1) ? 1 : 0);
|
|
}
|
|
}
|
|
|
|
if((sh.cycle_length&1) && (t < 2) && !sh.apeirogonal) sh.cycle_length *= 2;
|
|
if(debugflags & DF_GEOM)
|
|
println(hlog, tie(i,t), " becomes ", ni, " with connections ", sh.connections, " and cycle length = ", sh.cycle_length);
|
|
}
|
|
|
|
c.have_ph = 2;
|
|
return;
|
|
}
|
|
}
|
|
|
|
for(auto&sh: c.shapes) sh.football_type = 3;
|
|
}
|
|
|
|
EX void add_connection_sub(arbi_tiling& c, int ai, int as, int bi, int bs, int m) {
|
|
int as0 = as, bs0 = bs;
|
|
auto& ash = c.shapes[ai];
|
|
auto& bsh = c.shapes[bi];
|
|
do {
|
|
ash.connections[as] = connection_t{bi, bs, m};
|
|
as = gmod(as + ash.size() / ash.repeat_value, ash.size());
|
|
}
|
|
while(as != as0);
|
|
do {
|
|
c.shapes[bi].connections[bs] = connection_t{ai, as, m};
|
|
bs = gmod(bs + bsh.size() / bsh.repeat_value, bsh.size());
|
|
}
|
|
while(bs != bs0);
|
|
}
|
|
|
|
EX void add_connection(arbi_tiling& c, int ai, int as, int bi, int bs, int m) {
|
|
auto& ash = c.shapes[ai];
|
|
auto& bsh = c.shapes[bi];
|
|
add_connection_sub(c, ai, as, bi, bs, m);
|
|
int as1, bs1;
|
|
if(ash.symmetric_value) {
|
|
as1 = ash.reflect(as);
|
|
add_connection_sub(c, ai, as1, bi, bs, !m);
|
|
}
|
|
if(bsh.symmetric_value) {
|
|
bs1 = bsh.reflect(bs);
|
|
add_connection_sub(c, ai, as, bi, bs1, !m);
|
|
}
|
|
if(ash.symmetric_value && bsh.symmetric_value)
|
|
add_connection_sub(c, ai, as1, bi, bs1, m);
|
|
}
|
|
|
|
EX void set_defaults(arb::arbi_tiling& c, bool keep_sliders, string fname) {
|
|
c.order++;
|
|
c.name = unnamed;
|
|
c.comment = "";
|
|
c.filename = fname;
|
|
c.cscale = 1;
|
|
c.range = 0;
|
|
c.boundary_ratio = 1;
|
|
c.floor_scale = .5;
|
|
c.have_ph = 0;
|
|
c.have_line = false;
|
|
c.is_football_colorable = false;
|
|
c.have_tree = false;
|
|
c.have_valence = false;
|
|
c.yendor_backsteps = 0;
|
|
c.is_star = false;
|
|
c.is_combinatorial = false;
|
|
c.was_unmirrored = false;
|
|
c.was_split_for_football = false;
|
|
c.shapes.clear();
|
|
if(!keep_sliders) {
|
|
c.sliders.clear();
|
|
c.intsliders.clear();
|
|
}
|
|
}
|
|
|
|
EX void load(const string& fname, bool load_as_slided IS(false), bool keep_sliders IS(false)) {
|
|
fhstream f(fname, "rt");
|
|
if(!f.f) throw hr_parse_exception("file " + fname + " does not exist");
|
|
string s;
|
|
while(true) {
|
|
int c = fgetc(f.f);
|
|
if(c < 0) break;
|
|
s += c;
|
|
}
|
|
auto& c = load_as_slided ? slided : current;
|
|
set_defaults(c, keep_sliders, fname);
|
|
int qsliders = 0, qintsliders = 0;
|
|
exp_parser ep;
|
|
ep.s = s;
|
|
ld angleunit = 1, distunit = 1;
|
|
auto addflag = [&] (int f) {
|
|
int ai;
|
|
if(ep.next() == ')') ai = isize(c.shapes)-1;
|
|
else ai = ep.iparse();
|
|
verify_index(ai, c.shapes, ep);
|
|
c.shapes[ai].flags |= f;
|
|
ep.force_eat(")");
|
|
};
|
|
while(true) {
|
|
|
|
ep.extra_params["distunit"] = distunit;
|
|
ep.extra_params["angleunit"] = angleunit;
|
|
|
|
ep.skip_white();
|
|
if(ep.next() == 0) break;
|
|
if(ep.eat("#")) {
|
|
bool doubled = ep.eat("#");
|
|
while(ep.eat(" ")) ;
|
|
string s = "";
|
|
while(ep.next() >= 32) s += ep.next(), ep.at++;
|
|
if(doubled) {
|
|
if(c.name == unnamed) c.name = s;
|
|
else {
|
|
c.comment += s;
|
|
c.comment += "\n";
|
|
}
|
|
}
|
|
}
|
|
else if(ep.eat("c2(")) {
|
|
ld curv = ep.rparse(0);
|
|
ep.force_eat(")");
|
|
ginf[gArbitrary].g = curv > 0 ? giSphere2 : curv < 0 ? giHyperb2 : giEuclid2;
|
|
ginf[gArbitrary].sides = 7;
|
|
set_flag(ginf[gArbitrary].flags, qCLOSED, curv > 0);
|
|
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
|
|
geom3::apply_always3();
|
|
}
|
|
else if(ep.eat("e2.")) {
|
|
ginf[gArbitrary].g = giEuclid2;
|
|
ginf[gArbitrary].sides = 7;
|
|
set_flag(ginf[gArbitrary].flags, qCLOSED, false);
|
|
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
|
|
geom3::apply_always3();
|
|
}
|
|
else if(ep.eat("a2.")) {
|
|
ginf[gArbitrary].g = giEuclid2;
|
|
ginf[gArbitrary].sides = 7;
|
|
set_flag(ginf[gArbitrary].flags, qCLOSED, false);
|
|
set_flag(ginf[gArbitrary].flags, qAFFINE, true);
|
|
affine_limit = 200;
|
|
geom3::apply_always3();
|
|
}
|
|
else if(ep.eat("h2.")) {
|
|
ginf[gArbitrary].g = giHyperb2;
|
|
ginf[gArbitrary].sides = 7;
|
|
set_flag(ginf[gArbitrary].flags, qCLOSED, false);
|
|
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
|
|
geom3::apply_always3();
|
|
}
|
|
else if(ep.eat("s2.")) {
|
|
ginf[gArbitrary].g = giSphere2;
|
|
ginf[gArbitrary].sides = 5;
|
|
set_flag(ginf[gArbitrary].flags, qCLOSED, true);
|
|
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
|
|
geom3::apply_always3();
|
|
}
|
|
else if(ep.eat("star.")) {
|
|
c.is_star = true;
|
|
}
|
|
else if(ep.eat("combinatorial.")) {
|
|
c.is_combinatorial = true;
|
|
}
|
|
else if(ep.eat("option(\"")) {
|
|
next:
|
|
string s = "";
|
|
while(ep.next() != '"') s += ep.eatchar();
|
|
ep.force_eat("\"");
|
|
c.options.push_back(s);
|
|
ep.skip_white();
|
|
if(ep.eat(",")) { ep.skip_white(); ep.force_eat("\""); goto next; }
|
|
ep.force_eat(")");
|
|
}
|
|
else if(ep.eat("angleunit(")) angleunit = real(ep.parsepar());
|
|
else if(ep.eat("distunit(")) distunit = real(ep.parsepar());
|
|
else if(ep.eat("line(")) {
|
|
addflag(arcm::sfLINE);
|
|
c.have_line = true;
|
|
}
|
|
else if(ep.eat("grave(")) {
|
|
addflag(arcm::sfPH);
|
|
c.have_ph = true;
|
|
}
|
|
else if(ep.eat("slider(")) {
|
|
slider sl;
|
|
sl.name = ep.next_token();
|
|
ep.force_eat(",");
|
|
sl.current = sl.zero = ep.rparse();
|
|
ep.force_eat(",");
|
|
sl.min = ep.rparse();
|
|
ep.force_eat(",");
|
|
sl.max = ep.rparse();
|
|
ep.force_eat(")");
|
|
if(load_as_slided || !keep_sliders)
|
|
c.sliders.push_back(sl);
|
|
if(load_as_slided || keep_sliders)
|
|
ep.extra_params[sl.name] = current.sliders[qsliders++].current;
|
|
else
|
|
ep.extra_params[sl.name] = sl.zero;
|
|
}
|
|
else if(ep.eat("intslider(")) {
|
|
intslider sl;
|
|
sl.name = ep.next_token();
|
|
ep.force_eat(",");
|
|
sl.current = sl.zero = ep.iparse();
|
|
ep.force_eat(",");
|
|
sl.min = ep.iparse();
|
|
ep.force_eat(",");
|
|
sl.max = ep.iparse();
|
|
ep.force_eat(")");
|
|
if(load_as_slided || !keep_sliders)
|
|
c.intsliders.push_back(sl);
|
|
if(load_as_slided || keep_sliders)
|
|
ep.extra_params[sl.name] = current.intsliders[qintsliders++].current;
|
|
else
|
|
ep.extra_params[sl.name] = sl.zero;
|
|
}
|
|
else if(ep.eat("let(")) {
|
|
string tok = ep.next_token();
|
|
ep.force_eat("=");
|
|
ep.extra_params[tok] =ep.parsepar();
|
|
if(debugflags & DF_GEOM)
|
|
println(hlog, "let ", tok, " = ", ep.extra_params[tok]);
|
|
}
|
|
else if(ep.eat("unittile(")) load_tile(ep, c, true);
|
|
else if(ep.eat("tile(")) load_tile(ep, c, false);
|
|
else if(ep.eat("affine_limit(")) {
|
|
affine_limit = ep.iparse();
|
|
ep.force_eat(")");
|
|
}
|
|
else if(ep.eat("cscale(")) {
|
|
c.cscale = ep.rparse();
|
|
ep.force_eat(")");
|
|
}
|
|
else if(ep.eat("treestate(")) {
|
|
rulegen::parse_treestate(c, ep);
|
|
}
|
|
else if(ep.eat("first_treestate(")) {
|
|
rulegen::rule_root = ep.iparse();
|
|
ep.force_eat(")");
|
|
}
|
|
else if(ep.eat("yendor_backsteps(")) {
|
|
c.yendor_backsteps = ep.iparse();
|
|
ep.force_eat(")");
|
|
}
|
|
else if(ep.eat("range(")) {
|
|
c.range = ep.iparse();
|
|
ep.force_eat(")");
|
|
}
|
|
else if(ep.eat("floor_scale(")) {
|
|
c.floor_scale = ep.rparse();
|
|
ep.force_eat(")");
|
|
}
|
|
else if(ep.eat("boundary_ratio(")) {
|
|
c.boundary_ratio = ep.rparse();
|
|
ep.force_eat(")");
|
|
}
|
|
else if(ep.eat("conway(\"")) {
|
|
string s = "";
|
|
while(true) {
|
|
int m = 0;
|
|
if(ep.eat("(")) m = 0;
|
|
else if(ep.eat("[")) m = 1;
|
|
else if(ep.eat("\"")) break;
|
|
else throw hr_parse_exception("cannot parse Conway notation, " + ep.where());
|
|
|
|
int ai = 0;
|
|
int as = ep.iparse();
|
|
while(ep.eat("'")) ai++;
|
|
if(ep.eat("@")) ai = ep.iparse();
|
|
int bi = 0, bs = 0;
|
|
if(ep.eat(")") || ep.eat("]")) bs = as, bi = ai;
|
|
else {
|
|
bs = ep.iparse();
|
|
while(ep.eat("'")) bi++;
|
|
if(ep.eat("@")) bi = ep.iparse();
|
|
}
|
|
if(ep.eat(")") || ep.eat("]")) {}
|
|
verify_index(ai, c.shapes, ep);
|
|
verify_index(as, c.shapes[ai], ep);
|
|
verify_index(bi, c.shapes, ep);
|
|
verify_index(bs, c.shapes[bi], ep);
|
|
add_connection(c, ai, as, bi, bs, m);
|
|
}
|
|
ep.force_eat(")");
|
|
}
|
|
else if(ep.eat("c(")) {
|
|
int ai = ep.iparse(); verify_index(ai, c.shapes, ep); ep.force_eat(",");
|
|
int as = ep.iparse(); verify_index(as, c.shapes[ai], ep); ep.force_eat(",");
|
|
int bi = ep.iparse(); verify_index(bi, c.shapes, ep); ep.force_eat(",");
|
|
int bs = ep.iparse(); verify_index(bs, c.shapes[bi], ep); ep.force_eat(",");
|
|
int m = ep.iparse(); ep.force_eat(")");
|
|
add_connection(c, ai, as, bi, bs, m);
|
|
}
|
|
else if(ep.eat("subline(")) {
|
|
int ai = ep.iparse(); verify_index(ai, c.shapes, ep); ep.force_eat(",");
|
|
int as = ep.iparse(); verify_index(as, c.shapes[ai], ep); ep.force_eat(",");
|
|
int bs = ep.iparse(); verify_index(bs, c.shapes[ai], ep); ep.force_eat(")");
|
|
c.shapes[ai].sublines.emplace_back(as, bs);
|
|
}
|
|
else if(ep.eat("sublines(")) {
|
|
ld d = ep.rparse() * distunit;
|
|
ld eps = 1e-4;
|
|
if(ep.eat(",")) eps = ep.rparse() * distunit;
|
|
ep.force_eat(")");
|
|
for(auto& sh: c.shapes) {
|
|
for(int i=0; i<isize(sh.vertices); i++)
|
|
for(int j=0; j<i; j++)
|
|
if(j != i+1 && i != j+1 && !(i==0 && j == isize(sh.vertices)-1) && !(j==0 && i == isize(sh.vertices)-1) && i != j) {
|
|
ld dist = hdist(sh.vertices[i], sh.vertices[j]);
|
|
if(abs(dist - d) < eps) {
|
|
sh.sublines.emplace_back(i, j);
|
|
if(debugflags & DF_GEOM) println(hlog, "add subline ", i, "-", j);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if(ep.eat("repeat(")) {
|
|
int i = ep.iparse(0);
|
|
verify_index(i, c.shapes, ep);
|
|
ep.force_eat(",");
|
|
int rep = ep.iparse(0);
|
|
ep.force_eat(")");
|
|
auto& sh = c.shapes[i];
|
|
int N = isize(sh.angles);
|
|
if(N % rep)
|
|
throw hr_parse_exception("repeat value should be a factor of the number of vertices, " + ep.where());
|
|
sh.repeat_value = rep;
|
|
|
|
int d = N / rep;
|
|
for(int i=d; i<N; i++)
|
|
sh.connections[i] = sh.connections[i-d];
|
|
}
|
|
else if(ep.eat("debug(")) {
|
|
int i = ep.iparse(0);
|
|
verify_index(i, c.shapes, ep);
|
|
ep.force_eat(")");
|
|
throw connection_debug_request(i);
|
|
}
|
|
else if(ep.eat("stretch_shear(")) {
|
|
ld stretch = ep.rparse(0);
|
|
ep.force_eat(",");
|
|
ld shear = ep.rparse(0);
|
|
ep.force_eat(",");
|
|
int i = ep.iparse(0);
|
|
verify_index(i, c.shapes, ep);
|
|
ep.force_eat(",");
|
|
int j = ep.iparse(0);
|
|
verify_index(j, c.shapes[i], ep);
|
|
ep.force_eat(")");
|
|
auto& sh = c.shapes[i];
|
|
sh.stretch_shear[j] = {stretch, shear};
|
|
auto& co = sh.connections[j];
|
|
auto& xsh = c.shapes[co.sid];
|
|
ld scale = sh.edges[j] / xsh.edges[co.eid];
|
|
println(hlog, "scale = ", scale);
|
|
xsh.stretch_shear[co.eid] = {1/stretch, shear * (co.mirror ? 1 : -1) * stretch };
|
|
}
|
|
else throw hr_parse_exception("expecting command, " + ep.where());
|
|
}
|
|
if(!(cgflags & qAFFINE)) {
|
|
for(int i=0; i<isize(c.shapes); i++) {
|
|
auto& sh = c.shapes[i];
|
|
for(int j=0; j<isize(sh.edges); j++) {
|
|
ld d1 = sh.edges[j];
|
|
auto con = sh.connections[j];
|
|
auto& xsh = c.shapes[con.sid];
|
|
ld d2 = xsh.edges[con.eid];
|
|
if(d1 == INFINITE_LEFT) d1 = INFINITE_RIGHT;
|
|
else if(d1 == INFINITE_RIGHT) d1 = INFINITE_LEFT;
|
|
if(abs(d1 - d2) > 1e-6)
|
|
throw hr_parse_exception(lalign(0, "connecting ", make_pair(i,j), " to ", con, " of different lengths only possible in a2"));
|
|
}
|
|
}
|
|
}
|
|
|
|
if(do_unmirror) {
|
|
unmirror(c);
|
|
}
|
|
if(!c.have_tree) compute_vertex_valence(c);
|
|
|
|
check_football_colorability(c);
|
|
|
|
if(c.have_tree) rulegen::verify_parsed_treestates(c);
|
|
|
|
if(!load_as_slided) slided = current;
|
|
}
|
|
|
|
arbi_tiling debugged;
|
|
vector<pair<transmatrix, int> > debug_polys;
|
|
|
|
string primes(int i) {
|
|
string res;
|
|
while(i--) res += "'";
|
|
return res;
|
|
}
|
|
|
|
void connection_debugger() {
|
|
cmode = sm::SIDE | sm::DIALOG_STRICT_X;
|
|
gamescreen();
|
|
|
|
auto& last = debug_polys.back();
|
|
|
|
initquickqueue();
|
|
for(auto& p: debug_polys) {
|
|
int id = p.second;
|
|
|
|
shiftmatrix V = gmatrix[cwt.at] * p.first;
|
|
|
|
auto& sh = debugged.shapes[id].vertices;
|
|
|
|
for(auto& v: sh)
|
|
curvepoint(v);
|
|
|
|
curvepoint(sh[0]);
|
|
|
|
color_t col = colortables['A'][id];
|
|
col = darkena(col, 0, 0xFF);
|
|
|
|
if(&p == &last) {
|
|
vid.linewidth *= 2;
|
|
queuecurve(V, 0xFFFF00FF, col, PPR::LINE);
|
|
vid.linewidth /= 2;
|
|
for(int i=0; i<isize(sh); i++)
|
|
queuestr(V * sh[i], vid.fsize, its(i), 0xFFFFFFFF);
|
|
}
|
|
else
|
|
queuecurve(V, 0xFFFFFFFF, col, PPR::LINE);
|
|
}
|
|
quickqueue();
|
|
|
|
dialog::init(XLAT("connection debugger"));
|
|
|
|
dialog::addInfo(debugged.name);
|
|
dialog::addHelp(debugged.comment);
|
|
|
|
dialog::addBreak(50);
|
|
|
|
dialog::addInfo("face index " + its(last.second));
|
|
|
|
dialog::addBreak(50);
|
|
|
|
auto& sh = debugged.shapes[last.second];
|
|
int N = isize(sh.edges);
|
|
for(int k=0; k<N; k++) {
|
|
auto con = sh.connections[k];
|
|
string cap = its(k) + primes(last.second) + " -> " + its(con.eid) + primes(con.sid) + (con.mirror ? " (m) " : "");
|
|
dialog::addSelItem(cap, "go", '0' + k);
|
|
|
|
dialog::add_action([k, last, con] {
|
|
if(euclid) cgflags |= qAFFINE;
|
|
debug_polys.emplace_back(last.first * get_adj(debugged, last.second, k), con.sid);
|
|
if(euclid) cgflags &= ~qAFFINE;
|
|
});
|
|
|
|
}
|
|
|
|
dialog::addItem("undo", 'u');
|
|
dialog::add_action([] {
|
|
if(isize(debug_polys) > 1)
|
|
debug_polys.pop_back();
|
|
});
|
|
|
|
dialog::addBack();
|
|
dialog::display();
|
|
|
|
keyhandler = [] (int sym, int uni) {
|
|
handlePanning(sym, uni);
|
|
dialog::handleNavigation(sym, uni);
|
|
if(doexiton(sym, uni)) popScreen();
|
|
};
|
|
}
|
|
|
|
geometryinfo1& arbi_tiling::get_geometry() {
|
|
return ginf[gEuclid].g;
|
|
}
|
|
|
|
map<heptagon*, vector<pair<heptagon*, transmatrix> > > altmap;
|
|
|
|
EX map<heptagon*, pair<heptagon*, transmatrix>> arbi_matrix;
|
|
|
|
EX hrmap *current_altmap;
|
|
|
|
heptagon *build_child(heptspin p, pair<int, int> adj);
|
|
|
|
/** get the midedge of lr; it takes infinite vertices into account */
|
|
EX hyperpoint get_midedge(ld len, const hyperpoint &l, const hyperpoint &r) {
|
|
if(len == INFINITE_BOTH) {
|
|
return normalize(closest_to_zero(l, r));
|
|
}
|
|
else if(len == INFINITE_RIGHT) {
|
|
return towards_inf(r, l);
|
|
}
|
|
else if(len == INFINITE_LEFT) {
|
|
return towards_inf(l, r);
|
|
}
|
|
else return mid(l, r);
|
|
}
|
|
|
|
EX bool is_apeirogonal(cell *c) {
|
|
if(!in()) return false;
|
|
return current_or_slided().shapes[id_of(c->master)].apeirogonal;
|
|
}
|
|
|
|
EX bool is_apeirogonal() {
|
|
if(!in()) return false;
|
|
for(auto& sh: current_or_slided().shapes)
|
|
if(sh.apeirogonal) return true;
|
|
return false;
|
|
}
|
|
|
|
EX bool apeirogon_consistent_coloring = true;
|
|
EX bool apeirogon_hide_grid_edges = true;
|
|
EX bool apeirogon_simplified_display = false;
|
|
|
|
/** get the adj matrix corresponding to the connection of (t,dl) to connection_t{t1, xdl, xmirror} */
|
|
EX transmatrix get_adj(arbi_tiling& c, int t, int dl, int t1, int xdl, bool xmirror) {
|
|
|
|
auto& sh = c.shapes[t];
|
|
|
|
int dr = gmod(dl+1, sh.size());
|
|
|
|
auto& xsh = c.shapes[t1];
|
|
int xdr = gmod(xdl+1, xsh.size());
|
|
|
|
hyperpoint vl = sh.vertices[dl];
|
|
hyperpoint vr = sh.vertices[dr];
|
|
hyperpoint xvl = xsh.vertices[xdl];
|
|
hyperpoint xvr = xsh.vertices[xdr];
|
|
|
|
bool emb = embedded_plane;
|
|
if(emb) {
|
|
vl = cgi.emb->actual_to_base(vl);
|
|
vr = cgi.emb->actual_to_base(vr);
|
|
xvl = cgi.emb->actual_to_base(xvl);
|
|
xvr = cgi.emb->actual_to_base(xvr);
|
|
geom3::light_flip(true);
|
|
}
|
|
|
|
hyperpoint vm = get_midedge(sh.edges[dl], vl, vr);
|
|
|
|
transmatrix rm = gpushxto0(vm);
|
|
|
|
hyperpoint xvm = get_midedge(xsh.edges[xdl], xvl, xvr);
|
|
|
|
transmatrix xrm = gpushxto0(xvm);
|
|
|
|
transmatrix Res = rgpushxto0(vm) * rspintox(rm*vr);
|
|
|
|
if(cgflags & qAFFINE) {
|
|
ld sca = hdist(vl, vr) / hdist(xvl, xvr);
|
|
transmatrix Tsca = Id;
|
|
Tsca[0][0] = Tsca[1][1] = sca;
|
|
|
|
auto& ss = sh.stretch_shear[dl];
|
|
Tsca[0][1] = ss.first * ss.second * sca;
|
|
Tsca[1][1] *= ss.first;
|
|
|
|
Res = Res * Tsca;
|
|
}
|
|
|
|
if(xmirror) Res = Res * MirrorX;
|
|
Res = Res * spintox(xrm*xvl) * xrm;
|
|
|
|
if(xmirror) swap(vl, vr);
|
|
|
|
if(hdist(vl, Res*xvr) + hdist(vr, Res*xvl) > .1 && !c.is_combinatorial) {
|
|
println(hlog, "s1 = ", kz(spintox(rm*vr)), " s2 = ", kz(rspintox(xrm*xvr)));
|
|
println(hlog, tie(t, dl), " = ", kz(Res));
|
|
println(hlog, hdist(vl, Res * xvr), " # ", hdist(vr, Res * xvl));
|
|
throw hr_exception("error in arb::get_adj");
|
|
}
|
|
|
|
if(emb) {
|
|
Res = cgi.emb->base_to_actual(Res);
|
|
geom3::light_flip(false);
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
/** get the adj matrix corresponding to the connection of (t,dl) -- note: it may be incorrect for rotated/symmetric connections */
|
|
EX transmatrix get_adj(arbi_tiling& c, int t, int dl) {
|
|
auto& sh = c.shapes[t];
|
|
auto& co = sh.connections[dl];
|
|
return get_adj(c, t, dl, co.sid, co.eid, co.mirror);
|
|
}
|
|
|
|
/** Returns if F describes the same tile as T, taking possible symmetries into account. Paramater co is the expected edge (co.sid tells us the tile type); if yes, co may be adjusted */
|
|
EX bool find_connection(const transmatrix& T, const transmatrix& F, connection_t& co) {
|
|
|
|
if(!same_point_may_warn(tC0(F), tC0(T))) return false;
|
|
|
|
auto& xsh = current.shapes[co.sid];
|
|
int n = isize(xsh.connections);
|
|
for(int oth = 0; oth < n; oth++) {
|
|
int oth1 = gmod(oth+1, n);
|
|
int eid1 = gmod(co.eid+1, n);
|
|
if(same_point_may_warn(F * xsh.vertices[oth], T * xsh.vertices[co.eid]) && same_point_may_warn(F * xsh.vertices[oth1], T * xsh.vertices[eid1])) {
|
|
co.eid = oth;
|
|
return true;
|
|
}
|
|
if(same_point_may_warn(F * xsh.vertices[oth], T * xsh.vertices[eid1]) && same_point_may_warn(F * xsh.vertices[oth1], T * xsh.vertices[co.eid])) {
|
|
co.eid = oth; co.mirror = !co.mirror;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct hrmap_arbi : hrmap {
|
|
heptagon *origin;
|
|
heptagon *getOrigin() override { return origin; }
|
|
|
|
hrmap_arbi() {
|
|
dynamicval<hrmap*> curmap(currentmap, this);
|
|
origin = init_heptagon(current.shapes[0].size());
|
|
origin->s = hsOrigin;
|
|
origin->c7 = newCell(origin->type, origin);
|
|
|
|
heptagon *alt = NULL;
|
|
|
|
if(mhyperbolic) {
|
|
dynamicval<eGeometry> g(geometry, gNormal);
|
|
alt = init_heptagon(S7);
|
|
alt->s = hsOrigin;
|
|
alt->alt = alt;
|
|
current_altmap = newAltMap(alt);
|
|
}
|
|
|
|
transmatrix T = lxpush(.01241) * spin(1.4117) * lxpush(0.1241) * Id;
|
|
arbi_matrix[origin] = make_pair(alt, T);
|
|
altmap[alt].emplace_back(origin, T);
|
|
|
|
if(!current.range)
|
|
current.range = auto_compute_range(origin->c7);
|
|
}
|
|
|
|
~hrmap_arbi() {
|
|
clearfrom(origin);
|
|
altmap.clear();
|
|
arbi_matrix.clear();
|
|
if(current_altmap) {
|
|
dynamicval<eGeometry> g(geometry, gNormal);
|
|
delete current_altmap;
|
|
current_altmap = NULL;
|
|
}
|
|
}
|
|
void verify() override { }
|
|
|
|
transmatrix adj(heptagon *h, int dl) override {
|
|
if(h->c.move(dl))
|
|
return get_adj(current_or_slided(), id_of(h), dl, id_of(h->c.move(dl)), h->c.spin(dl), h->c.mirror(dl));
|
|
else
|
|
return get_adj(current_or_slided(), id_of(h), dl);
|
|
}
|
|
|
|
heptagon *create_step(heptagon *h, int d) override {
|
|
|
|
if(geom3::flipped) return geom3::in_not_flipped([&] { return create_step(h, d); });
|
|
dynamicval<bool> sl(using_slided, false);
|
|
int t = id_of(h);
|
|
|
|
auto& sh = current.shapes[t];
|
|
|
|
auto& co = sh.connections[d];
|
|
|
|
if(cgflags & qAFFINE) {
|
|
set<heptagon*> visited;
|
|
|
|
vector<pair<heptagon*, transmatrix> > v;
|
|
|
|
visited.insert(h);
|
|
v.emplace_back(h, Id);
|
|
|
|
transmatrix goal = adj(h, d);
|
|
|
|
for(int i=0; i<affine_limit && i < isize(v); i++) {
|
|
transmatrix T = v[i].second;
|
|
heptagon *h2 = v[i].first;
|
|
if(eqmatrix(T, goal)) {
|
|
h->c.connect(d, h2, co.eid, co.mirror);
|
|
return h2;
|
|
}
|
|
for(int i=0; i<h2->type; i++) {
|
|
heptagon *h3 = h2->move(i);
|
|
if(!h3) continue;
|
|
if(visited.count(h3)) continue;
|
|
visited.insert(h3);
|
|
v.emplace_back(h3, T * adj(h2, i));
|
|
}
|
|
}
|
|
|
|
auto h1 = init_heptagon(current.shapes[co.sid].size());
|
|
h1->distance = h->distance + 1;
|
|
h1->zebraval = co.sid;
|
|
h1->c7 = newCell(h1->type, h1);
|
|
h1->emeraldval = h->emeraldval ^ co.mirror;
|
|
h->c.connect(d, h1, co.eid, co.mirror);
|
|
|
|
return h1;
|
|
}
|
|
|
|
const auto& p = arbi_matrix[h];
|
|
|
|
heptagon *alt = p.first;
|
|
|
|
transmatrix T = p.second * adj(h, d);
|
|
|
|
if(mhyperbolic) {
|
|
dynamicval<eGeometry> g(geometry, gNormal);
|
|
dynamicval<hrmap*> cm(currentmap, current_altmap);
|
|
// transmatrix U = T;
|
|
current_altmap->virtualRebase(alt, T);
|
|
// U = U * inverse(T);
|
|
}
|
|
fixmatrix(T);
|
|
|
|
if(meuclid) {
|
|
/* hash the rough coordinates as heptagon* alt */
|
|
size_t s = size_t(T[0][LDIM]+.261) * 124101 + size_t(T[1][LDIM]+.261) * 82143;
|
|
alt = (heptagon*) s;
|
|
}
|
|
|
|
for(auto& p2: altmap[alt]) if(id_of(p2.first) == co.sid) {
|
|
connection_t co1 = co;
|
|
if(find_connection(T, p2.second, co1)) {
|
|
if(p2.first->move(co1.eid)) {
|
|
throw hr_exception("already connected!");
|
|
}
|
|
h->c.connect(d, p2.first, co1.eid, co1.mirror);
|
|
return p2.first;
|
|
}
|
|
}
|
|
|
|
auto h1 = init_heptagon(current.shapes[co.sid].size());
|
|
h1->distance = h->distance + 1;
|
|
h1->zebraval = co.sid;
|
|
h1->c7 = newCell(h1->type, h1);
|
|
h1->emeraldval = h->emeraldval ^ co.mirror;
|
|
h->c.connect(d, h1, co.eid, co.mirror);
|
|
|
|
arbi_matrix[h1] = make_pair(alt, T);
|
|
altmap[alt].emplace_back(h1, T);
|
|
return h1;
|
|
}
|
|
|
|
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
|
|
return relative_matrix_recursive(h2, h1);
|
|
}
|
|
|
|
transmatrix adj(cell *c, int dir) override { return adj(c->master, dir); }
|
|
|
|
ld spin_angle(cell *c, int d) override { return SPIN_NOT_AVAILABLE; }
|
|
|
|
int shvid(cell *c) override {
|
|
return id_of(c->master);
|
|
}
|
|
|
|
hyperpoint get_corner(cell *c, int cid, ld cf) override {
|
|
auto& sh = arb::current_or_slided().shapes[arb::id_of(c->master)];
|
|
int id = gmod(cid, c->type);
|
|
if(sh.angles[gmod(id-1, c->type)] <= 0)
|
|
return sh.vertices[id];
|
|
return normalize(C0 + (sh.vertices[id] - C0) * 3 / cf);
|
|
}
|
|
|
|
};
|
|
|
|
EX hrmap *new_map() { return new hrmap_arbi; }
|
|
|
|
EX void run(string fname) {
|
|
stop_game();
|
|
eGeometry g = geometry;
|
|
arbi_tiling t = current;
|
|
auto v = variation;
|
|
set_geometry(gArbitrary);
|
|
try {
|
|
load(fname);
|
|
ginf[gArbitrary].tiling_name = current.name;
|
|
tes = fname;
|
|
}
|
|
catch(hr_polygon_error& poly) {
|
|
set_geometry(g);
|
|
set_variation(v);
|
|
current = t;
|
|
start_poly_debugger(poly);
|
|
string help = poly.generate_error();
|
|
showstartmenu = false;
|
|
for(auto& p: poly.params)
|
|
help += lalign(-1, p.first, " = ", p.second, "\n");
|
|
gotoHelp(help);
|
|
}
|
|
catch(hr_parse_exception& ex) {
|
|
println(hlog, "failed: ", ex.s);
|
|
set_geometry(g);
|
|
current = t;
|
|
start_game();
|
|
addMessage("failed: " + ex.s);
|
|
}
|
|
catch(connection_debug_request& cr) {
|
|
set_geometry(g);
|
|
debugged = current;
|
|
current = t;
|
|
ensure_geometry(cr.c);
|
|
debug_polys.clear();
|
|
debug_polys.emplace_back(Id, cr.id);
|
|
pushScreen(connection_debugger);
|
|
}
|
|
start_game();
|
|
}
|
|
|
|
string slider_error;
|
|
|
|
EX void sliders_changed(bool need_restart, bool need_start) {
|
|
if(need_restart) stop_game();
|
|
auto& c = current_or_slided();
|
|
arbi_tiling backup = c;
|
|
try {
|
|
load(current.filename, !need_restart, need_restart);
|
|
using_slided = !need_restart;
|
|
slider_error = "OK";
|
|
#if CAP_TEXTURE
|
|
texture::config.remap();
|
|
#endif
|
|
}
|
|
catch(hr_parse_exception& ex) {
|
|
c = backup;
|
|
slider_error = ex.s;
|
|
}
|
|
catch(hr_polygon_error& poly) {
|
|
c = backup;
|
|
slider_error = poly.generate_error();
|
|
}
|
|
if(need_restart && need_start) start_game();
|
|
}
|
|
|
|
EX void set_sliders() {
|
|
cmode = sm::SIDE | sm::MAYDARK;
|
|
gamescreen();
|
|
dialog::init(XLAT("tessellation sliders"));
|
|
dialog::addHelp(current.comment);
|
|
char ch = 'A';
|
|
for(auto& sl: current.sliders) {
|
|
dialog::addSelItem(sl.name, fts(sl.current), ch++);
|
|
dialog::add_action([&] {
|
|
dialog::editNumber(sl.current, sl.min, sl.max, 1, sl.zero, sl.name, sl.name);
|
|
dialog::reaction = [] { sliders_changed(false, false); };
|
|
});
|
|
}
|
|
if(isize(current.intsliders))
|
|
dialog::addInfo(XLAT("the following sliders will restart the game"));
|
|
for(auto& sl: current.intsliders) {
|
|
dialog::addSelItem(sl.name, its(sl.current), ch++);
|
|
dialog::add_action([&] {
|
|
dialog::editNumber(sl.current, sl.min, sl.max, 1, sl.zero, sl.name, sl.name);
|
|
dialog::reaction = [] { sliders_changed(true, true); };
|
|
});
|
|
}
|
|
dialog::addInfo(slider_error);
|
|
dialog::addBack();
|
|
dialog::display();
|
|
}
|
|
|
|
/** convert a tessellation (e.g. Archimedean, regular, etc.) to the arb::current internal representation */
|
|
EX namespace convert {
|
|
|
|
EX eGeometry base_geometry;
|
|
EX eVariation base_variation;
|
|
|
|
struct id_record {
|
|
int target; /* master of this id type */
|
|
int shift; /* sample direction 0 == our direction shift */
|
|
int modval; /* this master type is the same as itself rotated by modval */
|
|
cell *sample; /* sample of the master type */
|
|
};
|
|
|
|
inline void print(hstream& hs, const id_record& i) { print(hs, "[", i.target, " shift=", i.shift, " mod=", i.modval, "]"); }
|
|
|
|
map<int, id_record> identification;
|
|
|
|
id_record& get_identification(int s, cell *c) {
|
|
if(!identification.count(s)) {
|
|
auto &id = identification[s];
|
|
id.target = s;
|
|
id.shift = 0;
|
|
id.modval = c->type;
|
|
id.sample = c;
|
|
}
|
|
return identification[s];
|
|
}
|
|
|
|
id_record& get_identification(cell *c) {
|
|
auto id = currentmap->full_shvid(c);
|
|
return get_identification(id, c);
|
|
}
|
|
|
|
int changes;
|
|
|
|
void be_identified(cellwalker cw1, cellwalker cw2) {
|
|
auto& id1 = get_identification(cw1.at);
|
|
auto& id2 = get_identification(cw2.at);
|
|
|
|
indenter ind(2);
|
|
|
|
int t = cw2.at->type;
|
|
|
|
if(cw1.at->type != t) {
|
|
println(hlog, cw1.at->type, " vs ", t);
|
|
throw hr_exception("numbers disagree");
|
|
}
|
|
|
|
int d2 = gmod(-cw2.to_spin(id2.shift), id2.modval);
|
|
int d1 = gmod(-cw1.to_spin(id1.shift), id1.modval);
|
|
|
|
indenter ind1(2);
|
|
|
|
if(id2.target != id1.target) {
|
|
auto oid2 = id2;
|
|
id1.modval = gcd(id1.modval, id2.modval);
|
|
for(auto& p: identification) {
|
|
auto& idr = p.second;
|
|
if(idr.target == oid2.target) {
|
|
idr.target = id1.target;
|
|
idr.modval = id1.modval;
|
|
idr.shift = gmod(idr.shift + (d2-d1), idr.modval);
|
|
idr.sample = id1.sample;
|
|
}
|
|
}
|
|
changes++;
|
|
println(hlog, identification);
|
|
return;
|
|
}
|
|
if(d2 != d1) {
|
|
auto oid2 = id2;
|
|
id2.modval = gcd(id2.modval, abs(d2-d1));
|
|
for(auto& p: identification)
|
|
if(p.second.target == oid2.target) p.second.modval = id2.modval;
|
|
changes++;
|
|
println(hlog, identification);
|
|
return;
|
|
}
|
|
}
|
|
|
|
EX bool reverse_order;
|
|
EX bool minimize_on_convert;
|
|
|
|
EX void convert_max() {
|
|
identification.clear(); changes = 0;
|
|
|
|
manual_celllister cl;
|
|
cl.add(currentmap->gamestart());
|
|
|
|
int more_tests = 1000;
|
|
pointer_indices.clear();
|
|
|
|
int chg = -1;
|
|
while(changes > chg) {
|
|
changes = chg;
|
|
|
|
set<int> masters_analyzed;
|
|
|
|
for(int i=0; i<isize(cl.lst); i++) {
|
|
auto c = cl.lst[i];
|
|
auto& id = get_identification(c);
|
|
|
|
if(masters_analyzed.count(id.target)) {
|
|
more_tests--;
|
|
if(more_tests < 0) continue;
|
|
}
|
|
masters_analyzed.insert(id.target);
|
|
|
|
cellwalker cw0(c, id.shift);
|
|
cellwalker cws(id.sample, 0);
|
|
|
|
for(int i=0; i<c->type; i++) {
|
|
if(1) {
|
|
indenter ind(2);
|
|
be_identified(cw0 + i + wstep, cws + i + wstep);
|
|
be_identified(cw0 + i + wstep, cw0 + i + id.modval + wstep);
|
|
}
|
|
|
|
if(1) {
|
|
indenter ind(2);
|
|
auto cwx = cw0 + i + wstep;
|
|
|
|
auto idx = get_identification(cwx.at);
|
|
cellwalker xsample(idx.sample, cwx.spin);
|
|
xsample -= idx.shift;
|
|
|
|
be_identified(cwx + wstep, xsample + wstep);
|
|
|
|
cl.add((cw0 + i).cpeek());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
EX void convert_minimize(int N, vector<int>& old_shvids, map<int, int>& old_to_new) {
|
|
vector<pair<int, int>> address;
|
|
vector<int> next;
|
|
for(int i=0; i<N; i++) {
|
|
int q = identification[old_shvids[i]].modval;
|
|
int c = isize(address);
|
|
for(int j=0; j<q; j++) {
|
|
address.emplace_back(i, j);
|
|
next.emplace_back(j == q-1 ? c : c+j+1);
|
|
}
|
|
}
|
|
|
|
int K = isize(address);
|
|
vector<array<ld, 3> > dists(K);
|
|
for(int i=0; i<K; i++) {
|
|
auto pi = address[i];
|
|
auto si = identification[old_shvids[pi.first]];
|
|
pi.second += si.shift;
|
|
array<hyperpoint, 3> pcorner;
|
|
array<ld, 3> pdists;
|
|
|
|
for(int j=0; j<3; j++)
|
|
pcorner[j] = currentmap->get_corner(si.sample, gmod(pi.second+j, si.sample->type));
|
|
|
|
for(int j=0; j<3; j++)
|
|
pdists[j] = hdist(pcorner[j], pcorner[(j+1)%3]);
|
|
|
|
dists[i] = pdists;
|
|
}
|
|
|
|
// this is O(K^3) and also possibly could get confused on convex/concave,
|
|
// but should be good enough, hopefully
|
|
|
|
vector<vector<int>> equal(K);
|
|
for(int i=0; i<K; i++) equal[i].resize(K, 0);
|
|
for(int i=0; i<K; i++)
|
|
for(int j=0; j<K; j++) {
|
|
|
|
equal[i][j] = true;
|
|
for(int s=0; s<3; s++)
|
|
equal[i][j] = equal[i][j] && abs(dists[i][s] - dists[j][s]) < 1e-6;
|
|
}
|
|
|
|
int chg = 1;
|
|
while(chg) {
|
|
for(auto& eq: equal) println(hlog, eq);
|
|
chg = 0;
|
|
for(int i=0; i<K; i++)
|
|
for(int j=0; j<K; j++)
|
|
if(equal[i][j] && !equal[next[i]][next[j]]) {
|
|
equal[i][j] = false;
|
|
chg++;
|
|
}
|
|
}
|
|
|
|
for(int i=0; i<K; i++)
|
|
for(int j=0; j<K; j++) if(i!=j && equal[i][j]) {
|
|
auto pi = address[i];
|
|
auto si = identification[old_shvids[pi.first]];
|
|
cellwalker cwi(si.sample, si.shift + pi.second);
|
|
|
|
auto pj = address[j];
|
|
auto sj = identification[old_shvids[pj.first]];
|
|
cellwalker cwj(sj.sample, sj.shift + pj.second);
|
|
|
|
be_identified(cwi, cwj);
|
|
}
|
|
}
|
|
|
|
EX void convert() {
|
|
start_game();
|
|
convert_max();
|
|
bool minimize = minimize_on_convert;
|
|
reidentify:
|
|
vector<int> old_shvids;
|
|
map<int, int> old_to_new;
|
|
for(auto id: identification)
|
|
if(id.first == id.second.target) {
|
|
old_to_new[id.first] = isize(old_shvids);
|
|
old_shvids.push_back(id.first);
|
|
}
|
|
|
|
int N = isize(old_shvids);
|
|
println(hlog, "N = ", N);
|
|
if(minimize) {
|
|
convert_minimize(N, old_shvids, old_to_new);
|
|
minimize = false;
|
|
goto reidentify;
|
|
}
|
|
|
|
if(reverse_order) {
|
|
reverse(old_shvids.begin(), old_shvids.end());
|
|
for(int i=0; i<isize(old_shvids); i++)
|
|
old_to_new[old_shvids[i]] = i;
|
|
}
|
|
|
|
auto& ac = arb::current;
|
|
ac.order++;
|
|
ac.comment = ac.filename = "converted from: " + full_geometry_name();
|
|
ac.cscale = cgi.scalefactor;
|
|
ac.boundary_ratio = 1;
|
|
ac.floor_scale = cgi.hexvdist / cgi.scalefactor;
|
|
ac.range = cgi.base_distlimit;
|
|
ac.shapes.clear();
|
|
ac.shapes.resize(N);
|
|
|
|
ginf[gArbitrary].g = cginf.g;
|
|
ginf[gArbitrary].flags = cgflags & qCLOSED;
|
|
|
|
for(int i=0; i<N; i++) {
|
|
auto id = identification[old_shvids[i]];
|
|
cell *s = id.sample;
|
|
auto& sh = ac.shapes[i];
|
|
sh.id = i;
|
|
int t = s->type;
|
|
sh.vertices.clear();
|
|
sh.connections.clear();
|
|
sh.cycle_length = id.modval;
|
|
sh.repeat_value = t / id.modval;
|
|
sh.flags = hr::pseudohept(s) ? arcm::sfPH : 0;
|
|
#if CAP_ARCM
|
|
if(arcm::in() && arcm::linespattern(s)) { sh.flags |= arcm::sfLINE; ac.have_line = true; }
|
|
#endif
|
|
for(int j=0; j<t; j++) {
|
|
auto co = currentmap->get_corner(s, j);
|
|
sh.vertices.push_back(co);
|
|
cellwalker cw(s, j);
|
|
cw += wstep;
|
|
auto idx = get_identification(cw.at);
|
|
cellwalker xsample(idx.sample, cw.spin);
|
|
xsample -= idx.shift;
|
|
sh.connections.emplace_back(arb::connection_t{old_to_new.at(idx.target), xsample.spin, false});
|
|
}
|
|
sh.stretch_shear.resize(t, make_pair(1, 0));
|
|
sh.edges.clear();
|
|
for(int j=0; j<t-1; j++)
|
|
sh.edges.push_back(hdist(sh.vertices[j], sh.vertices[j+1]));
|
|
sh.edges.push_back(hdist(sh.vertices[t-1], sh.vertices[0]));
|
|
|
|
sh.angles.clear();
|
|
for(int j=0; j<t; j++) {
|
|
hyperpoint v0 = sh.vertices[j];
|
|
hyperpoint v1 = sh.vertices[(j+1) % t];
|
|
hyperpoint v2 = sh.vertices[(j+2) % t];
|
|
transmatrix T = gpushxto0(v1);
|
|
v0 = T * v0;
|
|
v2 = T * v2;
|
|
ld alpha = atan2(v0) - atan2(v2);
|
|
cyclefix(alpha, 0);
|
|
sh.angles.push_back(alpha);
|
|
}
|
|
if(debugflags & DF_GEOM) {
|
|
println(hlog, "shape ", i, ":");
|
|
indenter indp(2);
|
|
println(hlog, "vertices=", sh.vertices);
|
|
println(hlog, "connections=", sh.connections);
|
|
println(hlog, "edges=", sh.edges);
|
|
println(hlog, "angles=", sh.angles);
|
|
}
|
|
}
|
|
|
|
arb::compute_vertex_valence(ac);
|
|
|
|
ac.have_ph = geosupport_football() ? 1 : 0;
|
|
arb::check_football_colorability(ac);
|
|
}
|
|
|
|
EX bool in() {
|
|
return arb::in() && base_geometry != gArbitrary;
|
|
}
|
|
|
|
/** activate the converted tessellation */
|
|
EX void activate() {
|
|
if(geometry != gArbitrary) {
|
|
base_geometry = geometry;
|
|
base_variation = variation;
|
|
stop_game();
|
|
geometry = gArbitrary;
|
|
variation = eVariation::pure;
|
|
}
|
|
}
|
|
|
|
EX }
|
|
|
|
#if CAP_COMMANDLINE
|
|
int readArgs() {
|
|
using namespace arg;
|
|
|
|
if(0) ;
|
|
else if(argis("-tes") || argis("-arbi")) {
|
|
PHASEFROM(2);
|
|
shift();
|
|
run(args());
|
|
}
|
|
else if(argis("-tes-opt")) {
|
|
arg::run_arguments(current.options);
|
|
}
|
|
else if(argis("-arb-convert")) {
|
|
try {
|
|
convert::convert();
|
|
set_geometry(gArbitrary);
|
|
}
|
|
catch(hr_exception& e) {
|
|
println(hlog, "failed to convert: ", e.what());
|
|
}
|
|
}
|
|
else if(argis("-arb-unmirror")) {
|
|
shift(); do_unmirror = argi();
|
|
}
|
|
else if(argis("-arb-football")) {
|
|
shift(); extended_football = argi();
|
|
}
|
|
else if(argis("-arb-slider")) {
|
|
PHASEFROM(2);
|
|
shift();
|
|
string slider = args();
|
|
bool found = true;
|
|
for(auto& sl: current.sliders)
|
|
if(sl.name == slider) {
|
|
shift_arg_formula(sl.current, [] { sliders_changed(false, false); });
|
|
found = true;
|
|
}
|
|
for(auto& sl: current.intsliders)
|
|
if(sl.name == slider) {
|
|
shift(); sl.current = argi();
|
|
stop_game();
|
|
sliders_changed(true, false);
|
|
found = true;
|
|
}
|
|
if(!found) {
|
|
println(hlog, "warning: no slider named ", slider, " found");
|
|
shift();
|
|
}
|
|
}
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
auto hook = addHook(hooks_args, 100, readArgs);
|
|
#endif
|
|
|
|
EX bool in() { return geometry == gArbitrary; }
|
|
|
|
EX string tes = find_file("tessellations/sample/marjorie-rice.tes");
|
|
|
|
EX bool linespattern(cell *c) {
|
|
return current.shapes[id_of(c->master)].flags & arcm::sfLINE;
|
|
}
|
|
|
|
EX bool pseudohept(cell *c) {
|
|
if(!current.have_ph) return true;
|
|
return current.shapes[id_of(c->master)].flags & arcm::sfPH;
|
|
}
|
|
|
|
EX void choose() {
|
|
dialog::openFileDialog(tes, XLAT("open a tiling"), ".tes",
|
|
[] () {
|
|
run(tes);
|
|
#if CAP_COMMANDLINE
|
|
if(!current.options.empty())
|
|
dialog::push_confirm_dialog([] { arg::run_arguments(current.options); start_game(); }, "load the settings defined in this file?");
|
|
#endif
|
|
return true;
|
|
});
|
|
}
|
|
|
|
EX pair<ld, ld> rep_ideal(ld e, ld u IS(1)) {
|
|
ld alpha = TAU / e;
|
|
hyperpoint h1 = point3(cos(alpha)*u, -sin(alpha)*u, 1);
|
|
hyperpoint h2 = point3(u, 0, 1);
|
|
hyperpoint h3 = point3(cos(alpha)*u, sin(alpha)*u, 1);
|
|
hyperpoint h12 = mid(h1, h2);
|
|
hyperpoint h23 = mid(h2, h3);
|
|
ld len = hdist(h12, h23);
|
|
transmatrix T = gpushxto0(h12);
|
|
auto T0 = T * C0;
|
|
auto Th23 = T * h23;
|
|
ld beta = atan2(T0);
|
|
ld gamma = atan2(Th23);
|
|
return {len, 90._deg - (gamma - beta)};
|
|
}
|
|
|
|
EX void swap_vertices() {
|
|
for(auto& p: {¤t, &slided})
|
|
for(auto& s: p->shapes)
|
|
for(auto& v: s.vertices)
|
|
swappoint(v);
|
|
}
|
|
|
|
#if MAXMDIM >= 4
|
|
auto hooksw = addHook(hooks_swapdim, 100, [] {
|
|
swap_vertices();
|
|
for(auto& p: altmap) for(auto& pp: p.second) swapmatrix(pp.second);
|
|
for(auto& p: arbi_matrix) swapmatrix(p.second.second);
|
|
});
|
|
#endif
|
|
|
|
EX }
|
|
}
|