1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-11-24 13:27:17 +00:00
hyperrogue/rulegen.cpp
2021-07-31 16:10:37 +02:00

1712 lines
46 KiB
C++

// Hyperbolic Rogue -- rule generator
// Copyright (C) 2011-2021 Zeno Rogue, see 'hyper.cpp' for details
/** \file rulegen.cpp
* \brief An algorithm to create strict tree rules for arb tessellations
*/
#include "hyper.h"
namespace hr {
EX namespace rulegen {
/* limits */
EX int max_retries = 999;
EX int max_tcellcount = 1000000;
EX int max_adv_steps = 100;
EX int max_examine_branch = 5040;
EX int max_bdata = 1000;
/* other parameters */
EX int dlbonus = 0;
#if HDR
/** exception thrown by this algoritm in case of any problems */
struct rulegen_failure : hr_exception {
rulegen_failure(string _s) : hr_exception(_s) {}
};
/** this exception is thrown if we want to restart the computation -- this is normal, but if thrown more than max_retries times, just surrender */
struct rulegen_retry : rulegen_failure {
rulegen_retry(string _s) : rulegen_failure(_s) {}
};
/** this exception is thrown in case if we run into a special case that is not implemented yet */
struct rulegen_surrender : rulegen_failure {
rulegen_surrender(string _s) : rulegen_failure(_s) {}
};
const int MYSTERY = 31999;
const int MYSTERY_DIST = 31998;
#endif
/* === tcell === */
/** number of tcells created */
EX int tcellcount = 0;
/** number of tcells united into other tcells */
EX int tunified = 0;
#if HDR
struct tcell* tmove(tcell *c, int d);
/** rulegen algorithm works on tcells which have their own map generation */
struct tcell {
/** tcells form a list */
tcell *next;
/** shape ID in arb::current */
int id;
/** degree */
int type;
/** distance from the root */
short dist;
/** cached code */
short code;
/** direction to the parent in the tree */
short parent_dir;
/** can we assume that dist is correct? if we assumed that the dist is correct but then find out it was wrong, throw an error */
bool is_solid;
bool distance_fixed;
/** sometimes we find out that multiple tcells represent the same actual cell -- in this case we unify them; unified_to is used for the union-find algorithm */
walker<tcell> unified_to;
int degree() { return type; }
connection_table<tcell> c;
tcell*& move(int d) { return c.move(d); }
tcell*& modmove(int d) { return c.modmove(d); }
tcell* cmove(int d) { return tmove(this, d); }
tcell* cmodmove(int d) { return tmove(this, c.fix(d)); }
tcell() { }
};
inline void print(hstream& hs, tcell* h) { print(hs, "P", index_pointer(h)); }
using twalker = walker<tcell>;
#endif
queue<reaction_t> fix_queue;
bool in_fixing = false;
void unify_distances(tcell *c1, tcell *c2);
void handle_distance_errors();
void process_fix_queue() {
if(in_fixing) return;
in_fixing = true;
while(!fix_queue.empty()) {
fix_queue.front()();
fix_queue.pop();
}
in_fixing = false;
handle_distance_errors();
}
void ufind(twalker& p) {
if(p.at->unified_to.at == p.at) return;
twalker p1 = p.at->unified_to;
ufind(p1);
p.at->unified_to = p1;
p = p1 + p.spin;
}
EX tcell *first_tcell = nullptr;
void connect_and_check(twalker p1, twalker p2);
void unify(twalker pw1, twalker pw2);
tcell *gen_tcell(int id) {
int d = isize(arb::current.shapes[id].connections);
auto c = tailored_alloc<tcell> (d);
c->id = id;
c->next = first_tcell;
c->unified_to = twalker(c, 0);
c->is_solid = false;
c->distance_fixed = false;
c->dist = MYSTERY;
c->code = MYSTERY;
c->parent_dir = MYSTERY;
first_tcell = c;
// println(hlog, c, " is a new tcell of id ", id);
tcellcount++;
return c;
}
tcell* tmove(tcell *c, int d) {
if(c->move(d)) return c->move(d);
auto& co = arb::current.shapes[c->id].connections[d];
auto cd = twalker(c, d);
ufind(cd);
tcell *c1 = gen_tcell(co.sid);
connect_and_check(cd, twalker(c1, co.eid));
return c1;
}
/** check whether we have completed the vertex to the right of edge d of c */
void check_loops(twalker pw) {
ufind(pw);
auto& shs = arb::current.shapes;
int id = pw.at->id;
int valence = shs[id].vertex_valence[pw.spin];
int steps = 0;
twalker pwf = pw;
twalker pwb = pw;
while(true) {
if(!pwb.peek()) break;
pwb = pwb + wstep - 1;
steps++;
if(pwb == pwf) {
if(steps == valence) return; /* that's great, we already know this loop */
else throw hr_exception("vertex valence too small");
}
if(steps == valence) {
fix_queue.push([=] { unify(pwf, pwb); });
return;
}
}
while(true) {
pwf++;
if(!pwf.peek()) break;
pwf += wstep;
steps++;
if(pwb == pwf) {
if(steps == valence) return; /* that's great, we already know this loop */
else throw hr_exception("vertex valence too small");
}
if(steps == valence) {
fix_queue.push([=] { unify(pwf, pwb); });
return;
}
}
if(steps == valence - 1) {
connect_and_check(pwb, pwf);
}
}
void connect_and_check(twalker p1, twalker p2) {
p1.at->c.connect(p1.spin, p2.at, p2.spin, false);
fix_queue.push([=] { check_loops(p1); });
fix_queue.push([=] { check_loops(p2); });
process_fix_queue();
}
void unify(twalker pw1, twalker pw2) {
ufind(pw1);
ufind(pw2);
if(pw1.at->unified_to.at != pw1.at)
throw hr_exception("not unified to itself");
if(pw2.at->unified_to.at != pw2.at)
throw hr_exception("not unified to itself");
if(pw1.at == pw2.at) {
if(pw1.spin != pw2.spin) throw hr_exception("called unify with self and wrong direction");
return;
}
if(pw1.at->id != pw2.at->id)
throw hr_exception("unifying two cells of different id's");
auto& shs = arb::current.shapes;
int id = pw1.at->id;
for(int i=0; i<shs[id].size(); i++) {
if(!pw2.peek()) {
/* no need to reconnect */
}
else if(!pw1.peek()) {
connect_and_check(pw1, pw2+wstep);
}
else {
fix_queue.push([=] { unify(pw1+wstep, pw2+wstep); });
auto ss = pw1+wstep;
connect_and_check(pw1, pw2+wstep);
connect_and_check(pw1, ss);
}
pw1++;
pw2++;
}
pw2.at->unified_to = pw1 - pw2.spin;
tunified++;
unify_distances(pw1.at, pw2.at);
}
EX vector<tcell*> t_origin;
void delete_tmap() {
while(first_tcell) {
auto second = first_tcell->next;
tailored_delete(first_tcell);
first_tcell = second;
}
tcellcount = 0;
tunified = 0;
t_origin.clear();
}
/* used in the debugger */
EX vector<twalker> debuglist;
/* === distances === */
bool no_errors = false;
struct hr_solid_error : rulegen_retry {
hr_solid_error() : rulegen_retry("solid error") {}
};
int solid_errors;
void fix_distances_rec(tcell *c) {
c->distance_fixed = true;
vector<tcell*> q = {c};
for(int qi=0; qi<isize(q); qi++) {
c = q[qi];
auto& d = c->dist;
restart:
for(int i=0; i<c->type; i++) {
tcell *c1 = c->cmove(i);
if(c1->dist == MYSTERY) continue;
auto& d1 = c1->dist;
if(d > d1+1) { d = d1+1; goto restart; }
if(d1 > d+1) {
if(c1->is_solid) {
if(debugflags & DF_GEOM)
println(hlog, "solid ", c1, "changes ", d1, " to ", d+1);
solid_errors++;
}
d1 = d+1;
q.push_back(c1);
}
}
}
}
EX int prepare_around_radius;
void fix_distances(tcell *c) {
fix_distances_rec(c);
handle_distance_errors();
}
void calc_distances(tcell *c) {
if(c->dist != MYSTERY) return;
c->dist = MYSTERY_DIST;
fix_distances(c);
}
void prepare_around(tcell *c) {
vector<tcell*> q;
set<tcell*> visited;
auto visit = [&] (tcell *x) {
if(visited.count(x)) return;
visited.insert(x);
q.push_back(x);
};
visit(c);
int next_lev = 1;
int cdist = 0;
for(int i=0; i<isize(q); i++) {
if(i == next_lev) { cdist++; if(cdist == prepare_around_radius) break; next_lev = isize(q); }
tcell *cx = q[i];
for(int d=0; d<cx->type; d++) visit(cx->cmove(d));
}
for(auto cx: q) calc_distances(cx);
}
void unify_distances(tcell *c1, tcell *c2) {
int d1 = c1->dist;
int d2 = c2->dist;
int d = min(d1, d2);
c1->dist = d;
c2->dist = d;
if(c1->is_solid && d != d1) solid_errors++;
if(c2->is_solid && d != d2) solid_errors++;
c1->distance_fixed = c1->distance_fixed || c2->distance_fixed;
c1->is_solid = c1->is_solid || c2->is_solid;
if(c1->dist < MYSTERY)
fix_distances_rec(c1);
}
void handle_distance_errors() {
bool b = solid_errors;
solid_errors = 0;
if(b && !no_errors) {
prepare_around_radius++;
if(debugflags & DF_GEOM)
println(hlog, "increased prepare_around_radius to ", prepare_around_radius);
throw hr_solid_error();
}
}
/** make sure that we know c->dist */
void be_solid(tcell *c) {
if(c->is_solid) return;
if(tcellcount >= max_tcellcount)
throw rulegen_surrender("max_tcellcount exceeded");
prepare_around(c);
c->is_solid = true;
}
/** which neighbor will become the parent of c */
int get_parent_dir(tcell *c) {
if(c->parent_dir != MYSTERY) return c->parent_dir;
int bestd = -1;
vector<int> bestrootpath;
be_solid(c);
if(c->dist > 0) {
auto& sh = arb::current.shapes[c->id];
int n = sh.size();
int k = sh.cycle_length;
vector<int> olen;
for(int i=0; i<k; i++) {
vector<int> nearer;
for(int j=0; j<n/k; j++) {
tcell *c1 = c->cmove(i+j*k);
be_solid(c1);
olen.push_back(c1->dist);
if(c1->dist < c->dist) {
nearer.push_back(j);
}
}
if(nearer.size() == 1) {bestd = i+nearer[0]*k; break; }
if(nearer.size() == 2 && nearer[1] == nearer[0] + 1) {
bestd = i + nearer[0] * k;
break;
}
if(nearer.size() == 2 && nearer[0] == 0 && nearer[1] == n/k-1) {
bestd = i + nearer[1] * k;
break;
}
if(nearer.size() > 1) throw rulegen_failure("still confused");
}
if(bestd == -1) throw rulegen_failure("should not happen");
}
c->parent_dir = bestd;
return bestd;
}
/** determine states for tcells */
#if HDR
using aid_t = pair<int, int>;
struct analyzer {
vector<twalker> spread;
vector<int> parent_id;
vector<int> spin;
void add_step(int pid, int s) {
twalker cw = spread[pid];
cw = cw + s + wstep;
spread.push_back(cw);
parent_id.push_back(pid);
spin.push_back(s);
}
};
#endif
map<aid_t, analyzer> analyzers;
EX aid_t get_aid(twalker cw) {
ufind(cw);
auto ide = cw.at->id;
return {ide, gmod(cw.to_spin(0), arb::current.shapes[ide].cycle_length)};
}
EX analyzer& get_analyzer(twalker cw) {
auto aid = get_aid(cw);
auto& a = analyzers[aid];
if(a.spread.empty()) {
a.spread.push_back(cw);
a.parent_id.push_back(-1);
a.spin.push_back(-1);
for(int i=0; i<cw.at->type; i++)
a.add_step(0, i);
}
return a;
}
EX vector<twalker> spread(analyzer& a, twalker cw) {
vector<twalker> res;
int N = isize(a.spread);
res.reserve(N);
res.push_back(cw);
for(int i=1; i<N; i++)
res.push_back(res[a.parent_id[i]] + a.spin[i] + wstep);
return res;
}
void extend_analyzer(twalker cw_target, int dir, int id, int mism, twalker rg) {
if(debugflags & DF_GEOM)
println(hlog, "extend called, cw_target = ", cw_target);
twalker cw_conflict = cw_target + dir + wstep;
auto &a_target = get_analyzer(cw_target);
auto &a_conflict = get_analyzer(cw_conflict);
twalker model = a_target.spread[0] + dir + wstep;
auto res = spread(a_conflict, model);
vector<int> ids_to_add;
int k = id;
while(k) {
ids_to_add.emplace_back(a_conflict.spin[k]);
k = a_conflict.parent_id[k];
}
int gid = 1 + dir;
bool added = false;
while(!ids_to_add.empty()) {
int spin = ids_to_add.back();
ids_to_add.pop_back();
int next_gid = -1;
for(int i=0; i<isize(a_target.parent_id); i++)
if(a_target.parent_id[i] == gid && a_target.spin[i] == spin) {
next_gid = i;
}
if(next_gid == -1) {
next_gid = isize(a_target.parent_id);
a_target.add_step(gid, spin);
added = true;
}
gid = next_gid;
}
if(mism == 0 && !added)
throw rulegen_failure("no extension");
}
#if HDR
using code_t = pair<aid_t, vector<int> >;
struct treestate {
int id;
bool known;
vector<int> rules;
twalker giver;
int sid;
int parent_dir;
tcell* where_seen;
code_t code;
bool is_live;
bool is_possible_parent;
bool is_root;
vector<pair<int, int>> possible_parents;
};
static const int C_IGNORE = 0;
static const int C_CHILD = 1;
static const int C_UNCLE = 2;
static const int C_EQUAL = 4;
static const int C_NEPHEW = 6;
static const int C_PARENT = 8;
#endif
EX vector<treestate> treestates;
set<twalker> sideswap;
/** is what on the left side, or the right side, of to_what? */
int get_side(tcell *what, tcell *to_what) {
twalker w(what, -1);
twalker tw(to_what, -1);
auto adv = [] (twalker& cw) {
int d = get_parent_dir(cw.at);
cw.spin = d;
cw += wstep;
};
while(w.at != tw.at) {
ufind(w); ufind(tw);
if(w.at->dist > tw.at->dist)
adv(w);
else if(w.at->dist < tw.at->dist)
adv(tw);
else {
adv(w); adv(tw);
}
}
if(w.spin == -1 || tw.spin == -1) return 0;
int d = get_parent_dir(w.at);
if(d >= 0) {
twalker last(w.at, d);
return last.to_spin(w.spin) - last.to_spin(tw.spin);
}
// failed to solve this in the simple way (ended at the root) -- go around the tree
twalker wl(what, get_parent_dir(what));
twalker wr = wl;
auto go = [&] (twalker& cw, int delta) {
int d = get_parent_dir(cw.at);
if(cw.spin == d || get_parent_dir(cw.peek()) == (cw+wstep).spin)
cw += wstep;
cw+=delta;
};
while(true) {
go(wl, -1);
go(wr, +1);
if(wl.at == to_what) return +1;
if(wr.at == to_what) return -1;
}
}
code_t id_at_spin(twalker cw) {
code_t res;
ufind(cw);
res.first = get_aid(cw);
auto& a = get_analyzer(cw);
vector<twalker> sprawl = spread(a, cw);
int id = 0;
for(auto cs: sprawl) {
be_solid(cs.at);
be_solid(cw.at);
ufind(cw);
ufind(cs);
int x;
int pid = a.parent_id[id];
if(pid > -1 && (res.second[pid] != C_CHILD)) {
x = C_IGNORE;
}
else {
int p = get_parent_dir(cs.at);
if(p >= 0 && get_parent_dir(cs.at) == cs.spin)
x = C_CHILD;
else {
int y = cs.at->dist - cs.peek()->dist;
if(y == 1) x = C_NEPHEW;
else if(y == 0) x = C_EQUAL;
else if(y == -1) x = C_UNCLE;
else throw rulegen_failure("distance problem");
auto gs = get_side(cs.at, cs.peek());
if(gs == 0 && x == C_UNCLE) x = C_PARENT;
if(gs > 0) x++;
}
}
res.second.push_back(x);
id++;
}
return res;
}
map<code_t, int> code_to_id;
EX pair<int, int> get_code(tcell *c) {
if(c->code != MYSTERY) {
int bestd = c->parent_dir;
if(bestd == -1) bestd = 0;
return {bestd, c->code};
}
be_solid(c);
for(int i=0; i<c->type; i++) {
twalker cw0(c, i);
twalker cw(c, i);
cw+=wstep;
int val = 0;
while(cw.at != cw0.at) {
ufind(cw0); ufind(cw);
be_solid(cw.at);
cw++;
cw+=wstep;
val++;
if(val > 1000)
throw rulegen_failure("excessive valence problem");
}
}
int bestd = get_parent_dir(c);
if(bestd == -1) bestd = 0;
indenter ind(2);
code_t v = id_at_spin(twalker(c, bestd));
if(code_to_id.count(v)) {
c->code = code_to_id[v];
return {bestd, code_to_id[v]};
}
int id = isize(treestates);
code_to_id[v] = id;
if(c->code != MYSTERY && (c->code != id || c->parent_dir != bestd)) exit(1);
c->code = id;
treestates.emplace_back();
auto& nts = treestates.back();
nts.id = id;
nts.code = v;
nts.where_seen = c;
nts.known = false;
nts.is_live = true;
return {bestd, id};
}
/* == rule generation == */
struct mismatch_error : rulegen_retry {
mismatch_error() : rulegen_retry("mismatch error") {}
};
struct double_edges: rulegen_surrender {
double_edges() : rulegen_surrender("double edges detected") {}
};
EX int rule_root;
vector<int> gen_rule(twalker cwmain);
EX int try_count;
vector<tcell*> important;
vector<tcell*> cq;
#if HDR
/* special codes */
static const int DIR_UNKNOWN = -1;
static const int DIR_MULTI_GO_LEFT = -2;
static const int DIR_MULTI_GO_RIGHT = -3;
static const int DIR_LEFT = -4;
static const int DIR_RIGHT = -5;
static const int DIR_PARENT = -6;
#endif
vector<int> gen_rule(twalker cwmain) {
vector<int> cids;
for(int a=0; a<cwmain.at->type; a++) {
auto front = cwmain+a;
tcell *c1 = front.cpeek();
be_solid(c1);
if(a == 0 && cwmain.at->dist) { cids.push_back(DIR_PARENT); continue; }
if(c1->dist <= cwmain.at->dist) { cids.push_back(DIR_UNKNOWN); continue; }
auto co = get_code(c1);
auto& d1 = co.first;
auto& id1 = co.second;
if(c1->cmove(d1) != cwmain.at || c1->c.spin(d1) != front.spin) {
cids.push_back(DIR_UNKNOWN); continue;
}
cids.push_back(id1);
}
return cids;
}
void rules_iteration_for(tcell *c) {
indenter ri(2);
auto co = get_code(c);
auto& d = co.first;
auto& id = co.second;
twalker cwmain(c,d);
ufind(cwmain);
vector<int> cids = gen_rule(cwmain);
auto& ts = treestates[id];
if(!ts.known) {
ts.known = true;
ts.rules = cids;
ts.giver = cwmain;
ts.sid = cwmain.at->id;
ts.parent_dir = cwmain.spin;
ts.is_root = c->dist == 0;
for(int d=0; d<c->type; d++)
cq.push_back(c->cmove(d));
}
else if(ts.rules != cids) {
auto& r = ts.rules;
if(debugflags & DF_GEOM) {
println(hlog, "merging ", ts.rules, " vs ", cids);
println(hlog, "C ", treestates[id].code, " [", id, "]");
}
int mismatches = 0;
for(int z=0; z<isize(cids); z++) {
if(r[z] == cids[z]) continue;
if(r[z] < 0 || cids[z] < 0)
throw rulegen_failure("neg rule mismatch");
auto& c1 = treestates[r[z]].code.second;
auto& c2 = treestates[cids[z]].code.second;
if(debugflags & DF_GEOM) {
println(hlog, "direction ", z, ":");
println(hlog, "A ", treestates[r[z]].code, " [", r[z], "]");
println(hlog, "B ", treestates[cids[z]].code, " [", cids[z], "]");
}
if(isize(c1) != isize(c2)) {
throw rulegen_failure("length mismatch");
}
for(int k=0; k<isize(c1); k++) {
if(c1[k] == C_IGNORE || c2[k] == C_IGNORE) continue;
if(c1[k] != c2[k]) {
if(debugflags & DF_GEOM) {
println(hlog, "code mismatch (", c1[k], " vs ", c2[k], " at position ", k, " out of ", isize(c1), ")");
println(hlog, "rulegiver = ", treestates[id].giver, " c = ", cwmain);
println(hlog, "gshvid = ", c->id);
println(hlog, "cellcount = ", tcellcount, "-", tunified, " codes discovered = ", isize(treestates));
}
extend_analyzer(cwmain, z, k, mismatches, treestates[id].giver);
mismatches++;
}
}
}
debuglist = { cwmain, ts.giver };
if(mismatches)
throw mismatch_error();
throw rulegen_failure("no mismatches?!");
}
}
void minimize_rules() {
if(debugflags & DF_GEOM)
println(hlog, "minimizing rules...");
int next_id = isize(treestates);
vector<int> new_id(next_id);
map<aid_t, int> new_id_of;
int new_ids = 0;
for(int id=0; id<next_id; id++) {
auto aid = get_aid(treestates[id].giver);
if(!new_id_of.count(aid)) new_id_of[aid] = new_ids++;
new_id[id] = new_id_of[aid];
}
int last_new_ids = 0;
while(new_ids > last_new_ids && new_ids < next_id) {
last_new_ids = new_ids;
map<vector<int>, int> hashes;
new_ids = 0;
auto last_new_id = new_id;
for(int id=0; id<next_id; id++) {
vector<int> hash;
hash.push_back(last_new_id[id]);
auto& ts = treestates[id];
for(auto& r: ts.rules)
if(r >= 0) hash.push_back(last_new_id[r]);
else hash.push_back(r);
if(!hashes.count(hash))
hashes[hash] = new_ids++;
new_id[id] = hashes[hash];
}
}
if(debugflags & DF_GEOM)
println(hlog, "final new_ids = ", new_ids, " / ", next_id);
if(1) {
vector<int> old_id(new_ids, -1);
for(int i=0; i<next_id; i++) if(old_id[new_id[i]] == -1) old_id[new_id[i]] = i;
for(int i=0; i<new_ids; i++) treestates[i] = treestates[old_id[i]];
for(int i=0; i<new_ids; i++) treestates[i].id = i;
treestates.resize(new_ids);
for(auto& ts: treestates) {
for(auto& r: ts.rules)
if(r >= 0) r = new_id[r];
}
for(auto& p: code_to_id) p.second = new_id[p.second];
}
}
void find_possible_parents() {
for(auto& ts: treestates) {
ts.is_possible_parent = false;
for(int r: ts.rules)
if(r == DIR_PARENT)
ts.is_possible_parent = true;
}
while(true) {
int changes = 0;
for(auto& ts: treestates) ts.possible_parents.clear();
for(auto& ts: treestates)
if(ts.is_possible_parent) {
int rid = 0;
for(int r: ts.rules) {
if(r >= 0) treestates[r].possible_parents.emplace_back(ts.id, rid);
rid++;
}
}
for(auto& ts: treestates)
if(ts.is_possible_parent && ts.possible_parents.empty()) {
ts.is_possible_parent = false;
changes++;
}
if(!changes) break;
}
int pp = 0;
for(auto& ts: treestates) if(ts.is_possible_parent) pp++;
if(debugflags & DF_GEOM)
println(hlog, pp, " of ", isize(treestates), " states are possible_parents");
}
/* == branch testing == */
struct bad_tree : rulegen_retry {
bad_tree() : rulegen_retry("bad tree") {}
};
bool equiv(twalker w1, twalker w2);
inline bool IS_DIR_MULTI(int d) { return among(d, DIR_MULTI_GO_LEFT, DIR_MULTI_GO_RIGHT); }
struct branchdata {
int id;
int dir;
twalker at;
int temporary;
void step() {
if(treestates[id].rules[dir] < 0)
throw rulegen_failure("invalid step");
id = treestates[id].rules[dir]; dir = 0; at += wstep;
auto co = get_code(at.at);
auto& d1 = co.first;
auto& id1 = co.second;
if(id != id1 || d1 != at.spin) {
important.push_back(at.at);
if(debugflags & DF_GEOM)
println(hlog, "expected ", id, " found ", id1, " at ", at);
important.push_back(at.at->cmove(get_parent_dir(at.at)));
throw bad_tree();
}
}
void spin(int i) {
at += i;
dir += i;
dir = gmod(dir, isize(treestates[id].rules));
}
void spin_full(int i) {
spin(i);
while(IS_DIR_MULTI(treestates[id].rules[dir]))
spin(i);
}
};
inline void print(hstream& hs, const branchdata& bd) { print(hs, "[", bd.id,":",bd.dir, " ", bd.at, ":", bd.temporary, "]"); }
/* we need to be careful with multiple edges */
bool paired(twalker w1, twalker w2) {
if(w1 + wstep == w2) return true;
if(w1.cpeek() == w2.at && w2.cpeek() == w1.at) {
return true;
}
return false;
}
bool equiv(twalker w1, twalker w2) {
if(w1 == w2) return true;
if(w1.at == w2.at && w1.cpeek() == w2.cpeek()) {
return true;
}
return false;
}
void advance(vector<branchdata>& bdata, branchdata at, int dir, bool start_forward, bool stack, int distlimit) {
if(start_forward) {
at.step();
at.spin_full(dir);
}
else {
at.spin_full(dir);
}
vector<branchdata> b;
int steps = 0;
while(true) {
steps++; if(steps == max_adv_steps)
throw rulegen_failure("max_adv_steps exceeded");
auto& ts = treestates[at.id];
auto r = ts.rules[at.dir];
if(r < 0) {
at.temporary = 0;
b.push_back(at);
break;
}
else if(!treestates[r].is_live) {
advance(b, at, dir, true, false, distlimit);
if(b.back().dir == 0)
b.pop_back();
else
advance(b, at, -dir, true, true, distlimit);
at.spin_full(dir);
}
else {
at.step();
if(at.at.at->dist < distlimit || !ts.is_live) at.spin_full(dir);
else {
at.temporary = dir;
b.push_back(at);
break;
}
}
}
if(stack) {
while(b.size()) { bdata.push_back(b.back()); b.pop_back(); }
}
else {
for(auto& bd: b) bdata.push_back(bd);
}
}
map<int, branchdata> split;
void assign_lr(branchdata bd, int dir) {
if(dir) { bd.spin_full(dir); if(bd.dir == 0) bd.dir = bd.at.at->type; }
auto& r = treestates[bd.id].rules;
for(int i=0; i<isize(r); i++) {
if(!among(r[i], DIR_UNKNOWN, DIR_LEFT, DIR_RIGHT)) continue;
int val = i < bd.dir ? DIR_LEFT : DIR_RIGHT;
if(r[i] == DIR_UNKNOWN)
r[i] = val;
else if(r[i] != val) {
if(debugflags & DF_GEOM) {
println(hlog, "state ", bd.id, " index ", i, ":", bd.dir, "/", bd.at.at->type, " was ", split[bd.id]);
println(hlog, important);
}
important.push_back(bd.at.at);
important.push_back(split[bd.id].at.at);
throw mismatch_error();
}
}
split[bd.id] = bd;
}
set<vector<int> > branch_hashes;
void examine_branch(int id, int left, int right) {
auto rg = treestates[id].giver;
if(debugflags & DF_GEOM)
println(hlog, "need to examine branches ", tie(left, right), " of ", id, " starting from ", rg);
vector<branchdata> bdata;
int dist_at = rg.at->dist;
while(left != right) {
/* can be false in case of multi-edges */
if(treestates[id].rules[left] >= 0) {
if(bdata.size() && bdata.back().dir == 0)
bdata.pop_back();
else {
auto bl = branchdata{id, left, rg+left, dist_at+dlbonus};
advance(bdata, bl, -1, true, true, dist_at+5);
}
}
left++;
if(left == rg.at->type) left = 0;
if(treestates[id].rules[left] >= 0) {
auto br = branchdata{id, left, rg+left, dist_at+dlbonus};
advance(bdata, br, +1, true, false, dist_at+5);
}
}
int steps = 0;
while(true) {
steps++;
if(steps == max_examine_branch)
throw rulegen_failure("max_examine_branch exceeded");
if(isize(bdata) > max_bdata)
throw rulegen_failure("max_bdata exceeded");
/* advance both */
vector<branchdata> bdata2;
int advcount = 0, eatcount = 0;
for(int i=0; i<isize(bdata); i+=2) {
if(!bdata[i].temporary && !bdata[i+1].temporary && paired(bdata[i].at, bdata[i+1].at) && min(bdata[i].at.at->dist, bdata[i+1].at.at->dist) <= dist_at) {
advcount++;
if(bdata2.size() && !bdata2.back().temporary && equiv(bdata2.back().at, bdata[i].at)) {
assign_lr(bdata[i], 0);
eatcount++; bdata2.pop_back();
}
else
advance(bdata2, bdata[i], -1, false, true, dist_at+dlbonus);
if(i+2 < isize(bdata) && !bdata[i+1].temporary && !bdata[i+2].temporary && equiv(bdata[i+1].at, bdata[i+2].at)) {
assign_lr(bdata[i+1], +1);
eatcount++; i += 2; bdata2.push_back(bdata[i+1]);
}
else
advance(bdata2, bdata[i+1], +1, false, false, dist_at+dlbonus);
}
else {
if(bdata[i].temporary && bdata[i].at.at->dist <= dist_at+dlbonus-2) {
advcount++;
advance(bdata2, bdata[i], bdata[i].temporary, false, bdata[i].temporary < 0, dist_at+dlbonus);
}
else bdata2.push_back(bdata[i]);
if(bdata[i+1].temporary && bdata[i+1].at.at->dist <= dist_at+3) {
advcount++;
advance(bdata2, bdata[i+1], bdata[i+1].temporary, false, bdata[i+1].temporary < 0, dist_at+dlbonus);
}
else bdata2.push_back(bdata[i+1]);
}
}
bdata = bdata2;
if(!advcount) dist_at++;
if(advcount) {
vector<int> hash;
for(int i=0; i<isize(bdata); i++) {
hash.push_back(bdata[i].id);
hash.push_back(bdata[i].dir);
hash.push_back(bdata[i].temporary);
hash.push_back(bdata[i].at.at->dist - dist_at);
}
if(branch_hashes.count(hash)) {
return;
}
branch_hashes.insert(hash);
}
}
}
/* == main algorithm == */
void clear_codes() {
treestates.clear();
code_to_id.clear();
auto c = first_tcell;
while(c) {
c->code = MYSTERY;
c = c->next;
}
}
void rules_iteration() {
clear_codes();
cq = important;
if(debugflags & DF_GEOM)
println(hlog, "important = ", cq);
for(int i=0; i<isize(cq); i++) {
rules_iteration_for(cq[i]);
}
if(debugflags & DF_GEOM)
println(hlog, "number of treestates = ", isize(treestates));
rule_root = get_code(t_origin[0]).second;
if(debugflags & DF_GEOM)
println(hlog, "rule_root = ", rule_root);
int N = isize(important);
for(int id=0; id<isize(treestates); id++) {
if(!treestates[id].known) {
important.push_back(treestates[id].where_seen);
if(debugflags & DF_GEOM)
println(hlog, "no rule found for ", id);
continue;
}
}
if(isize(important) != N)
throw mismatch_error();
int new_deadends = -1;
while(new_deadends) {
new_deadends = 0;
for(int id=0; id<isize(treestates); id++) {
auto& ts = treestates[id];
if(!ts.known) continue;
if(!ts.is_live) continue;
int children = 0;
for(int i: ts.rules) if(i >= 0 && treestates[i].is_live) children++;
if(!children)
treestates[id].is_live = false, new_deadends++;
}
if(debugflags & DF_GEOM)
println(hlog, "deadend states found: ", new_deadends);
}
for(int id=0; id<isize(treestates); id++) {
auto& rg = treestates[id].giver;
auto& r = treestates[id].rules;
for(int p=0; p<2; p++)
for(int it=0; it<isize(r); it++) {
for(int i=0; i<isize(r); i++) {
int i1 = gmod(i+1, isize(r));
if((rg+i).peek() == (rg+i1).peek()) {
if(r[i1] == DIR_UNKNOWN && (r[i] >= (p?DIR_UNKNOWN:0) || r[i] == DIR_PARENT || r[i] == DIR_MULTI_GO_LEFT))
r[i1] = DIR_MULTI_GO_LEFT;
if(r[i] == DIR_UNKNOWN && (r[i1] >= 0 || r[i1] == DIR_PARENT || r[i+1] == DIR_MULTI_GO_RIGHT))
r[i] = DIR_MULTI_GO_RIGHT;
}
}
}
}
// print_rules();
branch_hashes.clear();
for(int id=0; id<isize(treestates); id++) if(treestates[id].is_live) {
auto& r = treestates[id].rules;
int last_live_branch = -1;
int first_live_branch = -1;
for(int i=0; i<isize(r); i++)
if(r[i] >= 0 && treestates[r[i]].is_live) {
if(first_live_branch == -1) first_live_branch = i;
if(last_live_branch >= 0)
examine_branch(id, last_live_branch, i);
else for(int a=0; a<i; a++)
if(r[a] == DIR_UNKNOWN) r[a] = DIR_LEFT;
last_live_branch = i;
}
if(id == 0) examine_branch(id, last_live_branch, first_live_branch);
for(int a=last_live_branch; a<isize(r); a++)
if(r[a] == DIR_UNKNOWN) r[a] = DIR_RIGHT;
}
if(isize(important) != N)
throw mismatch_error();
minimize_rules();
find_possible_parents();
for(int id=0; id<isize(treestates); id++) {
auto& ts = treestates[id];
for(auto& r: ts.rules) if(r == DIR_UNKNOWN)
throw rulegen_failure("UNKNOWN remaining");
}
if(isize(important) != N)
throw mismatch_error();
}
void clear_tcell_data() {
auto c = first_tcell;
while(c) {
c->is_solid = false;
c->dist = MYSTERY;
c->parent_dir = MYSTERY;
c->code = MYSTERY;
c->distance_fixed = false;
c = c->next;
}
for(auto& c: t_origin) c->dist = 0;
}
void cleanup() {
clear_tcell_data();
analyzers.clear();
code_to_id.clear();
split.clear();
important.clear();
}
void clear_all() {
treestates.clear();
cleanup();
}
bool double_edges_check(cell *c, set<int>& visited) {
int i = shvid(c);
if(visited.count(i)) return false;
visited.insert(i);
for(int j=0; j<c->type; j++) {
cellwalker cw(c, j);
bool on = true;
if(double_edges_check(cw.cpeek(), visited)) return true;
int qty = 0;
for(int k=0; k<=c->type; k++) {
bool on2 = (cw+k).cpeek() == cw.cpeek();
if(on != on2) qty++;
on = on2;
}
if(qty > 2) return true;
}
return false;
}
EX void generate_rules() {
delete_tmap();
if(!arb::in()) try {
arb::convert::convert();
}
catch(hr_exception& e) {
throw rulegen_surrender("conversion failure");
}
prepare_around_radius = 1;
clear_all();
analyzers.clear();
split.clear();
t_origin.clear();
for(auto& ts: arb::current.shapes) {
tcell *c = gen_tcell(ts.id);
c->dist = 0;
t_origin.push_back(c);
}
set<int> visited;
if(double_edges_check(currentmap->gamestart(), visited))
throw double_edges();
try_count = 0;
important = t_origin;
retry:
try {
rules_iteration();
}
catch(rulegen_retry& e) {
try_count++;
if(try_count >= max_retries)
throw;
if(debugflags & DF_GEOM) println(hlog, "attempt: ", try_count);
auto c = first_tcell;
while(c) {
c->is_solid = false;
c->parent_dir = MYSTERY;
c->code = MYSTERY;
c = c->next;
}
goto retry;
}
}
int reclevel;
void build_test();
/* == hrmap_rulegen == */
struct hrmap_rulegen : hrmap {
hrmap *base;
heptagon *origin;
heptagon* gen(int s, int d, bool c7) {
int t = arb::current.shapes[treestates[s].sid].size();
heptagon *h = init_heptagon(t);
if(c7) h->c7 = newCell(t, h);
h->distance = d;
h->fieldval = s;
h->zebraval = treestates[s].sid;
h->s = hsA;
return h;
}
~hrmap_rulegen() {
clearfrom(origin);
}
hrmap_rulegen() {
origin = gen(rule_root, 0, true);
origin->s = hsOrigin;
}
hrmap_rulegen(heptagon *h) {
origin = h;
}
heptagon *getOrigin() override {
return origin;
}
int get_rule(heptspin hs) {
int s = hs.at->fieldval;
return treestates[s].rules[hs.spin];
}
static void hsconnect(heptspin a, heptspin b) {
a.at->c.connect(a.spin, b.at, b.spin, false);
}
void group_connect(heptspin a, heptspin b) {
/* go leftmost with a */
while(get_rule(a) == DIR_MULTI_GO_LEFT || get_rule(a-1) == DIR_MULTI_GO_RIGHT)
a--;
/* go rightmost with b */
while(get_rule(b) == DIR_MULTI_GO_RIGHT || get_rule(b+1) == DIR_MULTI_GO_LEFT)
b++;
int gr = 0;
// verify_connection(a, b);
while(true) {
hsconnect(a, b); gr++;
bool can_a = get_rule(a) == DIR_MULTI_GO_RIGHT || get_rule(a+1) == DIR_MULTI_GO_LEFT;
if(can_a) a++;
bool can_b = get_rule(b) == DIR_MULTI_GO_LEFT || get_rule(b-1) == DIR_MULTI_GO_RIGHT;
if(can_b) b--;
if(can_a && can_b) continue;
if(can_a || can_b)
throw rulegen_failure("multi disagreement");
break;
}
}
heptagon *create_step(heptagon *h, int d) override {
heptspin hs(h, d);
int r = get_rule(hs);
indenter ind(2);
if(hlog.indentation >= 6000)
throw rulegen_failure("failed to create_step");
if(r >= 0) {
auto h1 = gen(r, h->distance + 1, h->c7);
auto hs1 = heptspin(h1, 0);
// verify_connection(hs, hs1);
hsconnect(hs, hs1);
return h1;
}
else if(r == DIR_PARENT) {
auto& hts = treestates[h->fieldval];
auto& choices = hts.possible_parents;
if(choices.empty()) throw rulegen_failure("no possible parents");
auto selected = hrand_elt(choices);
auto h1 = gen(selected.first, h->distance - 1, h->c7);
auto hs1 = heptspin(h1, selected.second);
hsconnect(hs, hs1);
return h1;
}
else if(r == DIR_UNKNOWN)
throw rulegen_failure("UNKNOWN rule remained");
else if(r == DIR_MULTI_GO_LEFT) {
// hs = (hs - 1) + wstep;
hsconnect(hs, hs - 1 + wstep - 1);
return h->move(d);
}
else if(r == DIR_MULTI_GO_RIGHT) {
// hs = (hs + 1) + wstep;
hsconnect(hs, hs + 1 + wstep + 1);
return h->move(d);
}
else if(r == DIR_LEFT || r == DIR_RIGHT) {
heptspin hs1 = hs;
int delta = r == DIR_LEFT ? -1 : 1;
int rev = (DIR_LEFT ^ DIR_RIGHT ^ r);
while(IS_DIR_MULTI(get_rule(hs1))) hs1 += delta;
hs1 += delta;
while(true) {
int r1 = get_rule(hs1);
if(r1 == rev) {
group_connect(hs, hs1);
return hs1.at;
}
else if(IS_DIR_MULTI(r1)) {
hs1 += delta;
}
else if(r1 == r || r1 == DIR_PARENT || r1 >= 0) {
hs1 += wstep;
while(get_rule(hs1) == (r == DIR_RIGHT ? DIR_MULTI_GO_RIGHT : DIR_MULTI_GO_LEFT)) {
hs1 += delta;
}
hs1 += delta;
}
else throw rulegen_failure("bad R1");
}
}
else throw rulegen_failure("bad R");
throw rulegen_failure("impossible");
}
int get_arb_dir(int s, int dir) {
int sid = treestates[s].sid;
int N = arb::current.shapes[sid].size();
return gmod(dir + treestates[s].parent_dir, N);
}
transmatrix adj(heptagon *h, int dir) override {
if(h->fieldval == -1)
return arb::get_adj(arb::current_or_slided(), h->zebraval, dir, -1, -1);
int s = h->fieldval;
int dir0 = get_arb_dir(s, dir);
int dir1 = -1;
int sid1 = -1;
if(h->c.move(dir)) {
auto s1 = h->c.move(dir)->fieldval;
dir1 = get_arb_dir(s1, h->c.spin(dir));
sid1 = treestates[s1].sid;
}
return arb::get_adj(arb::current_or_slided(), treestates[s].sid, dir0, sid1, dir1);
}
int shvid(cell *c) override {
return c->master->zebraval;
}
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
return relative_matrix_recursive(h2, h1);
}
hyperpoint get_corner(cell *c, int cid, ld cf) {
if(c->master->fieldval == -1) {
auto& sh = arb::current_or_slided().shapes[c->master->zebraval];
cid = gmod(cid, sh.size());
return normalize(C0 + (sh.vertices[cid] - C0) * 3 / cf);
}
int s = c->master->fieldval;
auto& sh = arb::current_or_slided().shapes[c->master->zebraval];
auto dir = get_arb_dir(s, cid);
return normalize(C0 + (sh.vertices[dir] - C0) * 3 / cf);
}
void find_cell_connection(cell *c, int d) override {
if(c->master->cmove(d) == &oob) {
c->c.connect(d, &out_of_bounds, 0, false);
}
else hrmap::find_cell_connection(c, d);
}
bool strict_tree_rules() { return true; }
virtual bool link_alt(heptagon *h, heptagon *alt, hstate firststate, int dir) override {
auto& hts = treestates[h->fieldval];
int psid = hts.sid;
if(firststate == hsOrigin) {
alt->s = hsOrigin;
for(auto& ts: treestates) if(ts.sid == psid && ts.is_root) {
alt->fieldval = ts.id;
// ts.parent_dir should be 0, but anyway
altmap::relspin(alt) = gmod(ts.parent_dir-hts.parent_dir, isize(hts.rules));
return true;
}
return false;
}
int odir = hts.parent_dir + dir;
int cl = arb::current.shapes[psid].cycle_length;
vector<int> choices;
for(auto& ts: treestates)
if(ts.is_possible_parent && ts.sid == psid)
if(gmod(ts.parent_dir - odir, cl) == 0)
choices.push_back(ts.id);
alt->fieldval = hrand_elt(choices, -1);
alt->s = hsA;
if(alt->fieldval == -1) return false;
altmap::relspin(alt) = dir;
return true;
}
};
EX int get_arb_dir(cell *c, int dir) {
return ((hrmap_rulegen*)currentmap)->get_arb_dir(c->master->fieldval, dir);
}
EX hrmap *new_hrmap_rulegen_alt(heptagon *h) {
return new hrmap_rulegen(h);
}
EX hrmap *new_hrmap_rulegen() { return new hrmap_rulegen(); }
EX int get_state(cell *c) {
return c->master->fieldval;
}
string rules_known_for = "unknown";
string rule_status;
EX bool known() {
return arb::current.have_tree || rules_known_for == arb::current.name;
}
EX bool prepare_rules() {
if(known()) return true;
try {
generate_rules();
rules_known_for = arb::current.name;
rule_status = XLAT("rules generated successfully: %1 states using %2-%3 cells",
its(isize(treestates)), its(tcellcount), its(tunified));
return true;
}
catch(rulegen_retry& e) {
rule_status = XLAT("too difficult: %1", e.what());
}
catch(rulegen_surrender& e) {
rule_status = XLAT("too difficult: %1", e.what());
}
catch(rulegen_failure& e) {
rule_status = XLAT("bug: %1", e.what());
}
return false;
}
int args() {
using namespace arg;
if(0) ;
else if(argis("-rulegen")) {
PHASEFROM(3);
prepare_rules();
}
else if(argis("-rulegen-cleanup"))
cleanup();
else if(argis("-rulegen-play")) {
PHASEFROM(3);
if(prepare_rules()) {
stop_game();
arb::convert::activate();
start_game();
}
}
else if(argis("-d:rulegen")) {
launch_dialog(show);
}
else return 1;
return 0;
}
auto hooks =
addHook(hooks_args, 100, args)
+ addHook(hooks_configfile, 100, [] {
param_i(max_retries, "max_retries");
param_i(max_tcellcount, "max_tcellcount")
->editable(0, 16000000, 100000, "maximum cellcount", "controls the max memory usage of conversion algorithm -- the algorithm fails if exceeded", 'c');
param_i(max_adv_steps, "max_adv_steps");
param_i(max_examine_branch, "max_examine_branch");
param_i(max_bdata, "max_bdata");
param_i(dlbonus, "dlbonus");
});
EX void parse_treestate(arb::arbi_tiling& c, exp_parser& ep) {
if(!c.have_tree) {
c.have_tree = true;
treestates.clear();
rule_root = 0;
}
treestates.emplace_back();
auto& ts = treestates.back();
ts.id = isize(treestates) - 1;
ts.sid = ep.iparse();
ts.parent_dir = 0;
if(!arb::correct_index(ts.sid, isize(c.shapes)))
throw hr_parse_exception("incorrect treestate index at " + ep.where());
int N = c.shapes[ts.sid].size();
for(int i=0; i<N; i++) {
ep.force_eat(","); ep.skip_white();
if(ep.eat("PARENT")) ts.rules.push_back(DIR_PARENT);
else if(ep.eat("LEFT")) ts.rules.push_back(DIR_LEFT);
else if(ep.eat("RIGHT")) ts.rules.push_back(DIR_RIGHT);
else { int i = ep.iparse(); ts.rules.push_back(i); }
}
ep.force_eat(")");
}
EX void verify_parsed_treestates() {
if(rule_root < 0 || rule_root >= isize(treestates))
throw hr_parse_exception("undefined treestate as root");
for(auto& ts: treestates) for(auto& r: ts.rules) {
if(r < 0 && !among(r, DIR_PARENT, DIR_LEFT, DIR_RIGHT))
throw hr_parse_exception("negative number in treestates");
if(r > isize(treestates))
throw hr_parse_exception("undefined treestate");
}
for(auto& sh: arb::current.shapes) sh.cycle_length = sh.size();
find_possible_parents();
}
EX void show() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen(1);
dialog::init(XLAT("strict tree maps"));
dialog::addHelp(XLAT(
"Strict tree maps are generated using a more powerful algorithm.\n\nThis algorithms supports horocycles and knows the expansion rates of various "
"tessellations (contrary to the basic implementation of Archimedean, tes, and unrectified/warped/untruncated tessellations).\n\nYou can convert mostly any "
"non-spherical periodic 2D tessellation to strict tree based.\n\nSwitching the map format erases your map."));
if(kite::in()) {
dialog::addInfo("not available in aperiodic tessellations");
dialog::addBack();
dialog::display();
}
else if(WDIM == 3) {
dialog::addInfo("not available in 3D tessellations");
dialog::addBack();
dialog::display();
}
dialog::addBoolItem(XLAT("in tes internal format"), arb::in(), 't');
dialog::add_action([] {
if(!arb::in()) {
arb::convert::convert();
arb::convert::activate();
start_game();
rule_status = XLAT("converted successfully -- %1 cell types", its(isize(arb::current.shapes)));
rules_known_for = "unknown";
}
else if(arb::convert::in()) {
stop_game();
geometry = arb::convert::base_geometry;
variation = arb::convert::base_variation;
start_game();
}
else {
addMessage(XLAT("cannot be disabled for this tiling"));
}
});
dialog::addBoolItem(XLAT("strict tree based"), currentmap->strict_tree_rules(), 's');
dialog::add_action([] {
if(!currentmap->strict_tree_rules()) {
if(prepare_rules()) {
println(hlog, "prepare_rules returned true");
stop_game();
arb::convert::activate();
start_game();
delete_tmap();
}
}
else if(arb::current.have_tree) {
addMessage(XLAT("cannot be disabled for this tiling"));
}
else {
rules_known_for = "unknown";
rule_status = "manually disabled";
stop_game();
start_game();
}
});
add_edit(max_tcellcount);
dialog::addBreak(100);
dialog::addHelp(rule_status);
dialog::items.back().color = known() ? 0x00FF00 : rules_known_for == "unknown" ? 0xFFFF00 : 0xFF0000;
dialog::addBreak(100);
dialog::addBack();
dialog::display();
}
EX }
}