mirror of
				https://github.com/zenorogue/hyperrogue.git
				synced 2025-10-26 03:17:39 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			594 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			594 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "../hyper.h"
 | |
| 
 | |
| // This program generates the error table for Solv approxiations.
 | |
| 
 | |
| #define D3 1
 | |
| #define D2 0
 | |
| 
 | |
| #if CAP_FIELD
 | |
| namespace hr {
 | |
| 
 | |
| ld solerror(hyperpoint ok, hyperpoint chk) {
 | |
|   return geo_dist(chk, ok);
 | |
|   }
 | |
| 
 | |
| ld minz = -1e-9, maxz = 1e-9;
 | |
| 
 | |
| int max_iter = 999999;
 | |
| 
 | |
| bool isok;
 | |
| 
 | |
| hyperpoint iterative_solve(hyperpoint xp, hyperpoint candidate, ld minerr, bool debug = false) {
 | |
| 
 | |
|   transmatrix T = Id; T[0][1] = 8; T[2][2] = 5;
 | |
|   
 | |
|   auto f = [&] (hyperpoint x) { return nisot::numerical_exp(x); }; // T * x; };
 | |
| 
 | |
|   auto ver = f(candidate);
 | |
|   ld err = solerror(xp, ver);
 | |
|   auto at = candidate;
 | |
|   
 | |
|   ld eps = 1e-6;
 | |
| 
 | |
|   hyperpoint c[6];
 | |
|   for(int a=0; a<3; a++) c[a] = point3(a==0, a==1, a==2);
 | |
|   for(int a=0; a<3; a++) c[3+a] = point3(-(a==0), -(a==1), -(a==2));
 | |
|   
 | |
|   int iter = 0;
 | |
|   
 | |
|   while(err > minerr) { again:
 | |
|     iter++; if(iter > max_iter) { isok = false; return at; }
 | |
|     // cands.push_back(at);
 | |
|     if(debug) println(hlog, "\n\nf(", at, "?) = ", ver, " (error ", err, ")");
 | |
|     array<hyperpoint, 3> pnear;
 | |
|     
 | |
|     for(int a=0; a<3; a++) {
 | |
|       auto x = at + c[a] * eps;
 | |
|       if(debug) println(hlog, "f(", x, ") = ", f(x), " = y + ", f(x)-ver, "imp ", err - solerror(xp, f(x)) );
 | |
|       auto y = at - c[a] * eps;
 | |
|       if(debug) println(hlog, "f(", y, ") = ", f(y), " = y + ", f(y)-ver, "imp ", err - solerror(xp, f(y)) );
 | |
|       pnear[a] = (f(x) - ver) / eps; //  (direct_exp(at + c[a] * eps, prec) - ver) / eps;
 | |
|       }
 | |
|     
 | |
|     transmatrix U = Id;
 | |
|     for(int a=0; a<3; a++) 
 | |
|     for(int b=0; b<3; b++)
 | |
|       U[a][b] = pnear[b][a];
 | |
| 
 | |
|     hyperpoint diff = (xp - ver);
 | |
|     
 | |
|     hyperpoint bonus = inverse(U) * diff;
 | |
|     
 | |
|     ld lbonus = hypot_d(3, bonus);
 | |
|     
 | |
|     if(lbonus > 0.1) bonus = bonus * 0.1 / hypot_d(3, bonus);
 | |
|     
 | |
|     if(false && lbonus > 1000) {
 | |
|       int best = -1;
 | |
|       ld besti = err;
 | |
|       for(int a=0; a<6; a++) {
 | |
|         auto x = at + c[a] * eps;
 | |
|         auto nerr = solerror(xp, f(x));
 | |
|         if(nerr < besti) best = a, besti = nerr;
 | |
|         }
 | |
|       if(best == -1) { 
 | |
|         println(hlog, "local best"); 
 | |
|         for(int a=0; a<1000000; a++) {
 | |
|           auto x = at;
 | |
|           for(int i=0; i<3; i++) x[i] += (hrand(1000000) - hrand(1000000)) * 1e-5;
 | |
|           auto nerr = solerror(xp, f(x));
 | |
|           if(nerr < besti) { println(hlog, "moved to ", x); at = x; goto again; }
 | |
|           }
 | |
|         break; 
 | |
|         }
 | |
|       bonus = c[best] * 1e-3;
 | |
|       }
 | |
|     
 | |
|     int fixes = 0;
 | |
|     
 | |
|     if(debug) 
 | |
|       println(hlog, "\nU = ", U, "\ndiff = ", diff, "\nbonus = ", bonus, " of ", lbonus, "\n");
 | |
|     
 | |
|     nextfix:
 | |
|     hyperpoint next = at + bonus;
 | |
|     hyperpoint nextver = f(next);
 | |
|     ld nexterr = solerror(xp, nextver);
 | |
|     if(debug) println(hlog, "f(", next, ") = ", nextver, ", imp = ", err - nexterr);
 | |
|     
 | |
|     if(nexterr < err) {
 | |
|       // println(hlog, "reduced error ", err, " to ", nexterr);
 | |
|       at = next;
 | |
|       ver = nextver;
 | |
|       err = nexterr;
 | |
|       continue;
 | |
|       }
 | |
|     else {
 | |
|       bonus /= 2;
 | |
|       fixes++;
 | |
|       if(fixes > 10) {
 | |
|         if(err > 999) {
 | |
|           for(ld s = 1; abs(s) > 1e-9; s *= 0.5)
 | |
|           for(int k=0; k<27; k++) {
 | |
|             int kk = k;
 | |
|             next = at;
 | |
|             for(int i=0; i<3; i++) { if(kk%3 == 1) next[i] += s; if(kk%3 == 2) next[i] -= s; kk /= 3; }
 | |
|             // next = at + c[k] * s;
 | |
|             nextver = f(next);
 | |
|             nexterr = solerror(xp, nextver);
 | |
|             // println(hlog, "f(", next, ") = ", nextver, ", error = ", nexterr);
 | |
|             if(nexterr < err) { at = next; ver = nextver; err = nexterr; goto nextiter; }
 | |
|             }
 | |
|             println(hlog, "cannot improve error ", err);
 | |
|             exit(1);
 | |
|           }
 | |
|         if(debug) println(hlog, "fixes = ", fixes, " : break");
 | |
|         isok = false;
 | |
|         return at;
 | |
|         }
 | |
|       goto nextfix;
 | |
|       }
 | |
|     
 | |
|     nextiter: ;
 | |
|     }
 | |
| 
 | |
|   if(debug) println(hlog, "\n\nsolution found: f(", at, ") = ", ver, " (error ", err, ")");
 | |
|   
 | |
|   isok = true;
 | |
|   
 | |
|   return at;
 | |
|   }
 | |
| 
 | |
| EX void geodesic_step_euler(hyperpoint& at, hyperpoint& velocity) {
 | |
|   auto acc = nisot::christoffel(at, velocity, velocity);
 | |
|   at = at + velocity + acc / 2;
 | |
|   velocity += acc;
 | |
|   }
 | |
| 
 | |
| EX void geodesic_step_poor(hyperpoint& at, hyperpoint& velocity) {
 | |
|   auto acc = nisot::christoffel(at, velocity, velocity);
 | |
|   at = at + velocity;
 | |
|   velocity += acc;
 | |
|   }
 | |
| 
 | |
| EX void geodesic_step_midpoint(hyperpoint& at, hyperpoint& velocity) {
 | |
| 
 | |
|   // y(n+1) = y(n) + f(y(n) + 1/2 f(y(n)))
 | |
|   
 | |
|   auto acc = nisot::christoffel(at, velocity, velocity);
 | |
|   auto at2 = at + velocity / 2;
 | |
|   auto velocity2 = velocity + acc / 2;
 | |
|       
 | |
|   auto acc2 = nisot::christoffel(at2, velocity2, velocity2);
 | |
|   
 | |
|   at = at + velocity + acc2 / 2;
 | |
|   
 | |
|   velocity = velocity + acc2;
 | |
|   }
 | |
| 
 | |
| auto& chr = nisot::get_acceleration;
 | |
| 
 | |
| EX bool invalid_any(const hyperpoint h) {
 | |
|   return isnan(h[0]) || isnan(h[1]) || isnan(h[2]) || isinf(h[0]) || isinf(h[1]) || isinf(h[2]) ||
 | |
|     abs(h[0]) > 1e20 || abs(h[1]) > 1e20 || abs(h[2]) > 1e20;
 | |
|   }
 | |
| 
 | |
| EX void geodesic_step_rk4(hyperpoint& at, hyperpoint& vel) {
 | |
|   auto acc1 = chr(at, vel);
 | |
|   auto acc2 = chr(at + vel/2, vel + acc1/2);
 | |
|   auto acc3 = chr(at + vel/2 + acc1/4, vel + acc2/2);
 | |
|   auto acc4 = chr(at + vel + acc2/2, vel + acc3);
 | |
|   
 | |
|   at += vel + (acc1+acc2+acc3)/6;
 | |
|   vel += (acc1+2*acc2+2*acc3+acc4)/6;
 | |
|   }
 | |
| 
 | |
| template<class T> 
 | |
| hyperpoint numerical_exp(hyperpoint v, int steps, const T& gstep) {
 | |
|   hyperpoint at = point31(0, 0, 0);
 | |
|   v /= steps;
 | |
|   v[3] = 0;
 | |
|   for(int i=0; i<steps; i++) {
 | |
|     if(invalid_any(at)) return at;
 | |
|     gstep(at, v);
 | |
|     }    
 | |
|   return at;
 | |
|   }
 | |
| 
 | |
| ld x_to_scr(ld x) { return 150 + 100 * x; }
 | |
| ld y_to_scr(ld x) { return 950 - log(x * 1e9) / log(10) * 80; }
 | |
| 
 | |
| hyperpoint pt(ld x, ld y) { return tC0(atscreenpos(x, y, 1)); };
 | |
| 
 | |
| map<pair<string, color_t>, map<double, double>> maxerr;
 | |
| 
 | |
| bool scatterplot;
 | |
| 
 | |
| void queueline1(hyperpoint a, hyperpoint b, color_t c) {
 | |
|   queueline(shiftless(a), shiftless(b), c);
 | |
|   }
 | |
| 
 | |
| void draw_graph() {
 | |
|   vid.linewidth *= 2;
 | |
|   queueline1(pt(0, 950), pt(1500, 950), 0xFF);
 | |
|   queueline1(pt(150, 0), pt(150, 1000), 0xFF);
 | |
|   
 | |
|   vid.linewidth /= 2;
 | |
|   
 | |
|   for(int i=1; i<=9; i++) {
 | |
|     queueline1(pt(x_to_scr(i), 950), pt(x_to_scr(i), 960), 0xFF);
 | |
|     queuestr(x_to_scr(i), 980, 0, 60, its(i), 0, 0, 8);
 | |
|     }
 | |
|   
 | |
|   for(int i=-8; i<=2; i++) {
 | |
|     ld v = pow(10, i);
 | |
|     queueline1(pt(140, y_to_scr(v)), pt(150, y_to_scr(v)), 0xFF);
 | |
|     queuestr(70, y_to_scr(v), 0, 60, "1e"+its(i), 0, 0, 8);
 | |
|     vid.linewidth /= 2;
 | |
|     queueline1(pt(1100, y_to_scr(v)), pt(150, y_to_scr(v)), 0xFF);
 | |
|     vid.linewidth *= 2;
 | |
|     }
 | |
|   
 | |
|   vid.linewidth *= 2;
 | |
|   for(auto& [id, graph]: maxerr) {
 | |
|     auto& [name, col] = id;
 | |
|     ld last = 1e-9;
 | |
|     ld lastx = 0;
 | |
|     for(auto [x, y]: graph) {
 | |
|       if(scatterplot) {
 | |
|         curvepoint(pt(x_to_scr(x)+2, y_to_scr(y)));
 | |
|         curvepoint(pt(x_to_scr(x)-2, y_to_scr(y)));
 | |
|         queuecurve(shiftless(Id), col, 0, PPR::LINE);
 | |
|         curvepoint(pt(x_to_scr(x), y_to_scr(y)+2));
 | |
|         curvepoint(pt(x_to_scr(x), y_to_scr(y)-2));
 | |
|         queuecurve(shiftless(Id), col, 0, PPR::LINE);
 | |
|         }
 | |
|       if(y_to_scr(y) > y_to_scr(last) - x_to_scr(lastx) + x_to_scr(x)) continue;
 | |
|       if(y > 100) y = 100;
 | |
|       last = y;
 | |
|       lastx = x;
 | |
|       ld xx = x;
 | |
|       if(xx > 9) xx = 9;
 | |
|       if(!scatterplot) curvepoint(pt(x_to_scr(x), y_to_scr(y)));
 | |
|       if(xx == 9) break;
 | |
|       }
 | |
|     if(!scatterplot) {
 | |
|       queuestr(1100, y_to_scr(last), 0, 60, name, col >> 8, 0, 0);
 | |
|       queuecurve(shiftless(Id), col, 0, PPR::LINE);
 | |
|       }
 | |
|     }
 | |
|   vid.linewidth /= 2;
 | |
|   
 | |
|   drawqueue();
 | |
|   }
 | |
|   
 | |
| void draw_sol_diffeq_graph() {
 | |
|   }
 | |
| 
 | |
| void make_graph(string fname) {
 | |
| 
 | |
|   start_game();
 | |
|   
 | |
|   flat_model_enabler fme;
 | |
| 
 | |
|   shot::shotx = 1500;
 | |
|   shot::shoty = 1000;
 | |
|   shot::format = shot::screenshot_format::svg;
 | |
|   svg::divby = 1;
 | |
| 
 | |
|   shot::take(fname, draw_graph);
 | |
|   }  
 | |
| 
 | |
| void sol_diffeq_graph() {
 | |
| 
 | |
|   auto& s = sn::get_tabled();
 | |
|   s.load();
 | |
| 
 | |
|   for(int x=0; x<s.PRECX-1; x++)
 | |
|   for(int y=0; y<s.PRECY-1; y++)
 | |
|   for(int z=0; z<s.PRECZ-1; z++) {
 | |
|     println(hlog, tie(x,y,z));
 | |
|     auto ax = sn::ix_to_x(x / (s.PRECX-1.));
 | |
|     auto ay = sn::ix_to_x(y / (s.PRECY-1.));
 | |
|     auto az = sn::iz_to_z(z / (s.PRECZ-1.));
 | |
|     
 | |
|     ld d = hypot(ax, hypot(ay, az));
 | |
|     
 | |
|     hyperpoint h = point31(ax, ay, az);
 | |
|     hyperpoint v = inverse_exp(shiftless(h)); // , pfNO_INTERPOLATION);
 | |
|     
 | |
|     hyperpoint actual = numerical_exp(v, 2000, geodesic_step_rk4);
 | |
|     if(invalid_any(actual)) continue;
 | |
|     
 | |
|     auto test = [&] (string name, color_t col, int iter, auto method) {
 | |
|       hyperpoint res = numerical_exp(v, iter, method);
 | |
|       if(invalid_any(res)) return;
 | |
|       ld err = geo_dist(actual, res);
 | |
|       ld& me = maxerr[{name, col}][d];
 | |
|       me = max(me, err);
 | |
|       };
 | |
|     
 | |
|     test("RK2 5", 0xB0E0B0FF, 5, geodesic_step_rk4);
 | |
|     test("RK2 10", 0x8AD0A0FF, 10, geodesic_step_rk4);
 | |
|     test(" ", 0x90E090FF, 20, geodesic_step_rk4);
 | |
|     test("RK2 30", 0x80C080FF, 30, geodesic_step_rk4);
 | |
|     test("RK4 100", 0x408040FF, 100, geodesic_step_rk4);
 | |
|     test("RK4 300", 0x306030FF, 300, geodesic_step_rk4);
 | |
|     test("RK4 1000", 0x204020FF, 1000, geodesic_step_rk4);
 | |
|     test("mid 100", 0x8080C0FF, 100, geodesic_step_midpoint);
 | |
|     test("mid 1000", 0x404080FF, 1000, geodesic_step_midpoint);
 | |
|     }
 | |
|   
 | |
|   make_graph("sol-diff-graph.svg");
 | |
|   }
 | |
| 
 | |
| void sol_numerics_out() {
 | |
|   hyperpoint v = inverse_exp(shiftless(point31(2, 1, 0)));
 | |
|   // point3(0.1, 0, 10);
 | |
|   
 | |
|   hyperpoint result = numerical_exp(v, 1000000, geodesic_step_rk4);
 | |
|   
 | |
|   println(hlog, "exp(", v, ") = ", result);
 | |
| 
 | |
|   for(int steps: {1, 2, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000}) {
 | |
|     shstream ss;
 | |
|     auto experiment = [&] (string name, auto f) {
 | |
|       print(ss, name, lalign(30, hdist0(numerical_exp(v, steps, f) - result)));
 | |
|       };
 | |
|     experiment(" P ", geodesic_step_poor);
 | |
|     experiment(" E ", geodesic_step_euler);
 | |
|     experiment(" M ", geodesic_step_midpoint);
 | |
|     experiment(" R ", geodesic_step_rk4);
 | |
|     println(hlog, " steps=", lalign(6, steps), ss.s);
 | |
|     }
 | |
|   
 | |
|   println(hlog, "timing M");
 | |
|   numerical_exp(v, 10000000, geodesic_step_midpoint);
 | |
| 
 | |
|   println(hlog, "timing R");
 | |
|   numerical_exp(v, 10000000, geodesic_step_rk4);
 | |
|   
 | |
|   println(hlog, "ok");
 | |
|   }
 | |
| 
 | |
| vector<ld> quantiles(vector<ld> data) {
 | |
|   sort(data.begin(), data.end());
 | |
|   if(isize(data) <= 20) return data;
 | |
|   vector<ld> q;
 | |
|   for(int i=0; i<=20; i++)
 | |
|     q.push_back(data[(isize(data)-1)*i/20]);
 | |
|   return q;
 | |
|   }
 | |
| 
 | |
| auto smax(auto& tab, ld& i, ld x) { if(x) tab[i] = max(tab[i], x); }
 | |
| 
 | |
| ld median(vector<ld> v) {
 | |
|   sort(v.begin(), v.end());
 | |
|   return v[isize(v)/2];
 | |
|   }
 | |
|   
 | |
| void sol_table_test() {
 | |
| 
 | |
|   // auto& length_good = maxerr[{"length/good", 0x408040FF}];
 | |
|   // auto& angle_good = maxerr[{"angle/good", 0x404080FF}];
 | |
| 
 | |
|   // auto& length_good2 = maxerr[{"length/mid", 0x808040FF}];
 | |
|   // auto& angle_good2 = maxerr[{"angle/mid", 0x804080FF}];
 | |
| 
 | |
|   // auto& length_bad = maxerr[{"length/bad", 0xC08040FF}];
 | |
|   // auto& angle_bad = maxerr[{"angle/bad", 0xC04080FF}];
 | |
|   
 | |
|   // map<string, int> wins;
 | |
| 
 | |
|   auto& s = sn::get_tabled();
 | |
|   s.load();
 | |
|   
 | |
|   map<double, double> maxerr;
 | |
|   
 | |
|   int good = 0, bad = 0;
 | |
|   
 | |
|   vector<ld> length_errors;
 | |
|   vector<ld> angle_errors;
 | |
|   
 | |
|   vector<ld> split;
 | |
|   
 | |
|   vector<ld> lerrs[4][4][4], aerrs[4][4][4];
 | |
|   
 | |
|   for(int a: {16, 32, 48, 60})
 | |
|     println(hlog, "xy_", a, " : ", sn::ix_to_x(a / (s.PRECX-1.)));
 | |
| 
 | |
|   for(int a: {16, 32, 48, 60})
 | |
|     println(hlog, "z_", a, " : ", sn::iz_to_z(a / (s.PRECZ-1.)));
 | |
|     
 | |
|   
 | |
|   FILE *g = fopen("solv-error-data.csv", "wt");
 | |
|   
 | |
|   for(ld x=0; x<s.PRECX-4; x+=.25)
 | |
|   for(ld y=0; y<s.PRECY-4; y+=.25)
 | |
|   for(ld z=0; z<s.PRECZ-4; z+=.25) {
 | |
|   
 | |
|     int xp = x * 4 / s.PRECX;
 | |
|     int yp = y * 4 / s.PRECY;
 | |
|     int zp = z * 4 / s.PRECZ;
 | |
|   
 | |
|     if(y == 0.5 && z== 0.5) println(hlog, x, " : ", good, " vs ", bad);
 | |
|   
 | |
|     int a0 = 0, b0 = 0;
 | |
|     
 | |
|     for(ld x1: {floor(x), ceil(x)})
 | |
|     for(ld y1: {floor(y), ceil(y)})
 | |
|     for(ld z1: {floor(z), ceil(z)}) {
 | |
|       auto ax = sn::ix_to_x(x1 / (s.PRECX-1.));
 | |
|       auto ay = sn::ix_to_x(y1 / (s.PRECY-1.));
 | |
|       auto az = sn::iz_to_z(z1 / (s.PRECZ-1.));
 | |
|   
 | |
|       hyperpoint h = point31(ax, ay, az);
 | |
|   
 | |
|       hyperpoint v = inverse_exp(shiftless(h), pfNO_INTERPOLATION);
 | |
|       
 | |
|       if(v[2] > 0) a0++;
 | |
|       else b0++;
 | |
|       }
 | |
|     
 | |
|     bool bad_region = x > s.PRECX/2 && y > s.PRECY/2 && z < s.PRECZ/2;
 | |
|     
 | |
|     bool bad_break = bad_region && a0 && b0;
 | |
|     
 | |
|     auto ax = sn::ix_to_x(x / (s.PRECX-1.));
 | |
|     auto ay = sn::ix_to_x(y / (s.PRECY-1.));
 | |
|     auto az = sn::iz_to_z(z / (s.PRECZ-1.));
 | |
| 
 | |
|     hyperpoint h = point31(ax, ay, az);
 | |
| 
 | |
|     hyperpoint v = inverse_exp(shiftless(h), bad_break ? pfNO_INTERPOLATION : pNORMAL);
 | |
|     
 | |
|     // println(hlog, "looking for ", h);
 | |
|     
 | |
|     // println(hlog, "exp(", v, ") = ", nisot::numerical_exp(v));
 | |
|     
 | |
|     hyperpoint v1 = iterative_solve(h, v, 1e-9, false);
 | |
| 
 | |
|     // println(hlog, "exp(", v1, ") = ", nisot::numerical_exp(v1));
 | |
|     
 | |
|     hyperpoint h2 = nisot::numerical_exp(v1);
 | |
|     
 | |
|     if(sqhypot_d(3, h-h2) > 1e-6) {
 | |
|       bad++; 
 | |
|       continue;
 | |
|       }
 | |
|     else good++;
 | |
|     
 | |
|     ld dv  = hypot_d(3, v);
 | |
|     ld dv1 = hypot_d(3, v1);
 | |
|     
 | |
|     ld lerr = abs(dv - dv1);
 | |
|     ld aerr = asin(hypot_d(3, v^v1) / dv / dv1);
 | |
|     
 | |
|     ld d    = hypot_d(3, v1);
 | |
|     
 | |
|     if(dv == 0 || dv1 == 0) continue;
 | |
|     
 | |
|     if(invalid_any(v1) || invalid_any(v)) {
 | |
|       println(hlog, "invalid");
 | |
|       continue;
 | |
|       }
 | |
|     
 | |
|     if(isnan(aerr)) println(hlog, "v = ", v, " v1 = ", v1, "aerr");
 | |
|     
 | |
|     else fprintf(g, "%lf;%lf;%lf;%lf;%lf;%lf;%lf;%lf;%d\n",
 | |
|       x, y, z, 
 | |
|       ax, ay, az, 
 | |
|       lerr, aerr,
 | |
|       bad_break
 | |
|       );
 | |
|     
 | |
|     lerrs[zp][yp][xp].push_back(lerr);
 | |
|     aerrs[zp][yp][xp].push_back(aerr);
 | |
|     }
 | |
|   
 | |
|   fclose(g);
 | |
| 
 | |
|     
 | |
| /*
 | |
|     if(d >= 3 && d <= 3.1 && !bad_region) {
 | |
|       println(hlog, tie(x,y,z), " : ", lerr);
 | |
|       split.push_back(lerr);
 | |
|       }
 | |
|     
 | |
|     if(bad_break) 
 | |
|       smax(length_bad, d, lerr), 
 | |
|       smax(angle_bad, d, aerr),
 | |
|       0;
 | |
|     else if(bad_region) 
 | |
|       smax(length_good2, d, lerr), 
 | |
|       smax(angle_good2, d, aerr),
 | |
|       0;
 | |
|     else
 | |
|       smax(length_good, d, lerr),
 | |
|       smax(angle_good, d, aerr),
 | |
|       0;
 | |
|     length_errors.push_back(lerr);
 | |
|     
 | |
|     ld cross = hypot_d(3, v^v1) / dv / dv1;
 | |
|     
 | |
|     angle_errors.push_back(cross);
 | |
|     } 
 | |
|   
 | |
|   // println(hlog, quantiles(length_errors));
 | |
|   println(hlog, quantiles(split)); */
 | |
|   
 | |
|   // for(auto p: angle_good) println(hlog, p);
 | |
|   
 | |
|   // make_graph("sol-la-errors.svg");
 | |
|   
 | |
|   FILE *f = fopen("devmods/graph.tex", "wt");
 | |
| 
 | |
| 
 | |
|   fprintf(f, "\\documentclass{article}\n\\begin{document}\n");
 | |
|   fprintf(f, "\\small\\setlength{\\tabcolsep}{3pt}\n");
 | |
| 
 | |
|   fprintf(f, "\\begin{tabular}{|c|cccc|cccc|cccc|cccc|}\n\\hline\n");
 | |
|   for(int z=0; z<4; z++) {
 | |
|     fprintf(f, " & ");
 | |
|     fprintf(f, "\\multicolumn{4}{|c%s}{$z_%d$}", z==3?"|":"", z);
 | |
|     }
 | |
|   fprintf(f, "|\\\\\n");
 | |
|   for(int z=0; z<4; z++) {
 | |
|     for(int x=0; x<4; x++) {
 | |
|       fprintf(f, " & ");
 | |
|       fprintf(f, "$x_%d$", x);
 | |
|       }
 | |
|     }
 | |
|   fprintf(f, "\\\\\n\\hline");
 | |
|   for(int y=0; y<4; y++) {
 | |
|     fprintf(f, "$y_%d$ ", y);
 | |
|     for(int z=0; z<4; z++) {
 | |
|       for(int x=0; x<4; x++) {
 | |
|         fprintf(f, " & ");
 | |
|         fprintf(f, "%4.2g", log10(median(lerrs[z][y][x])));
 | |
|         }
 | |
|       }
 | |
|     fprintf(f, "\\\\\n");
 | |
|     }
 | |
|   fprintf(f, "\\hline \n");
 | |
|   for(int y=0; y<4; y++) {
 | |
|     fprintf(f, "$y_%d$ ", y);
 | |
|     for(int z=0; z<4; z++) {
 | |
|       for(int x=0; x<4; x++) {
 | |
|         fprintf(f, " & ");
 | |
|         fprintf(f, "%4.2g", log10(median(aerrs[z][y][x])));
 | |
|         }
 | |
|       }
 | |
|     fprintf(f, "\\\\\n");
 | |
|     }
 | |
|   fprintf(f, "\\hline\n");
 | |
|   fprintf(f, "\\end{tabular}\n");
 | |
|   fprintf(f, "\\end{document}\n");
 | |
|   fclose(f);
 | |
|   }
 | |
| 
 | |
| int readArgs() {
 | |
|   using namespace arg;
 | |
|            
 | |
|   if(0) ;
 | |
| 
 | |
|   else if(argis("-sol-diff-graph")) {
 | |
|     sol_diffeq_graph();
 | |
|     }
 | |
| 
 | |
|   else if(argis("-sol-tabletest")) {
 | |
|     sol_table_test();
 | |
|     }
 | |
| 
 | |
|   else if(argis("-sol-numerics")) {
 | |
|     sol_numerics_out();
 | |
|     }
 | |
| 
 | |
|   else return 1;
 | |
|   return 0;
 | |
|   }
 | |
| 
 | |
| auto nhook = addHook(hooks_args, 100, readArgs);
 | |
| 
 | |
| }
 | |
| #endif
 | 
